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Abstract: Breast cancer was one of the first malignancies to benefit from targeted therapy, i.e.,
treatments directed against specific markers. Inhibitors against HER2 are a significant example and
they improved the life expectancy of a large cohort of patients. Research on new biomarkers, therefore,
is always current and important. AXL, a member of the TYRO-3, AXL and MER (TAM) subfamily, is,
today, considered a predictive and prognostic biomarker in many tumor contexts, primarily breast
cancer. Its oncogenic implications make it an ideal target for the development of new pharmacological
agents; moreover, its recent role as immune-modulator makes AXL particularly attractive to researchers
involved in the study of interactions between cancer and the tumor microenvironment (TME). All these
peculiarities characterize AXL as compared to other members of the TAM family. In this review,
we will illustrate the biological role played by AXL in breast tumor cells, highlighting its molecular
and biological features, its involvement in tumor progression and its implication as a target in ongoing
clinical trials.
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1. Perspective Chapter

In the oncological field, therapeutic scenarios are multiple and have evolved considerably in
recent years. Unspecific treatments, such as chemotherapy, have given way to the new pharmacological
frontiers of targeted therapy and immunotherapy. The discovery of new molecular targets and the
well-established evidence of the tight interconnection between tumor cells and the microenvironment
have revolutionized the clinical management of patients. Human epidermal growth factor receptor
2 (HER2) or estrogen receptor and (ER)/PROGESTERONE RECEPTOR (PR)-positive tumors have
benefited from targeted treatments, but particularly aggressive forms have yet to find the optimal
therapeutic approach. For example, for triple-negative breast cancer (TNBC), the research for new
biomarkers is always open. AXL, especially in this molecular background, performs many oncogenic
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functions and is considered a potential marker in which to invest. However, although a great amount
of evidence confirms that AXL is a key element of breast cell tumorigenesis, its clinical implications are
still limited. Many inhibitors currently in use are multi-targets, and AXL’s selective inhibitors are still
in pre-clinical trials. Therefore, the necessity to better explore the molecular implications of AXL and
its involvement in the immune response becomes even more important in order to develop its selective
and effective molecules.

2. Introduction

Currently, breast cancer is the second leading cause of oncological death in the female population
globally and represents about 30% of invasive tumors in women [1,2]. Although significant advances
have been made in the treatment of this pathology, phenomena such as metastasis and drug resistance
still remain unresolved. Indeed, even if targeted therapy and immunotherapy have greatly improved
the life expectancy of many patients, they have not bypassed these problems at the basis of many
cancer deaths. The use of high performance “omics” technologies, in recent years, has accelerated
the identification of new molecular targets able to perform the dual function of predictive and/or
prognostic factors [3]. Moreover, an extensive study of the biomarkers’ action mechanisms is desirable
to allow the development of new inhibitors.

In recent years, it has emerged that receptor and non-receptor tyrosine kinases (TKs) are often
overexpressed/mutated in many tumor models, including breast cancer, representing a possible
molecular target in clinical cancer therapy [4]. TKs are a big family of proteins that perform a mediator
role between the inside and outside of cell. Their activation regulates cell differentiation, proliferation,
apoptosis and metabolism [5–7]. Receptor TKs (RTKs) include 20 families classifiable according
to amino acid sequence within the kinase domain and structural analogism within extracellular
regions [8–10]. The ligand/receptor interaction triggers a biochemical reaction cascade that culminates
in tyrosine residue phosphorylation on different substrates [9]. RTKs’ subfamily is composed of TYRO-3
(or Sky), AXL (or UFO) and MER (or Eyk, Nym and Tyro12) (TAM) receptors, essentially formed
by an extracellular region and a cytoplasmic kinase domain. Growth arrest-specific 6 (GAS6),
protein S1 (PROS1), Tubby, Tubby-like protein 1 (TULP-1) and Galectin-3 are the most important
ligands of TAMs [11,12]. Despite its highest affinity to AXL, GAS6 recognizes and binds TYRO-3 and
MER also, while PROS1 seems to interact only with TYRO-3 and MER [12,13]. Moreover, TULP-1 binds
all three TAM receptors and Tubby and Galectin-3 only recognize MER [14–16]. TAM receptors are
overexpressed in several human malignancies, including leukemia, melanoma, breast, lung, gastric and
colon cancers, promoting upregulation of pro-survival pathways [17,18]. All members of the TAM
family are involved in the development and progression of different forms of cancer, such as lung
and colon tumors [19,20]; however, in the genesis of the breast cancers, AXL is particularly involved;
indeed, in this tumor context, it results often dysregulated and its overexpression is associated to
unfavorable outcomes for patients. In addition, AXL contributes to all stages of malignant breast
cell transformation, especially by affecting the transition to a mesenchymal and invasive state [21].
Therefore, several inhibitors for this receptor are developed, although its high structural affinity with
other RTKs makes it difficult to produce specific drugs. BGB324 (Bemcentinib or R428) is probably the
most selective AXL inhibitor and, recently, in combination with pembrolizumab, was implicated in
clinical trials for triple-negative breast cancer (TNBC) and adenocarcinoma [22].

In this review, we summarize the current knowledge of AXL functions and its implications in
breast cancer progression.

3. AXL Receptor Tyrosine Kinase

AXL (from the Greek “anexelekto” which means “uncontrolled”) is frequently overexpressed
in several human cancers (such as breast, lung, gastric, metastatic colon and prostate tumors) and is
associated with metastasis and poor prognosis [23]. Several studies, indeed, have shown a significant
correlation between AXL expression and clinical outcome of the patients [24,25]. An example is
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the retrospective study conducted by Masashi Ishikawasu and collaborators on non-small-cell lung
cancer (NSCLC) patients. They observed that the overall survival (OS) rate at 5 years is 77.5% and
38.6% in patients with low or high AXL levels, respectively [26]. AXL was first isolated in 1988 from
patients with chronic myelogenous leukemia and chronic myeloproliferative disorders. Physiologically
expressed in several organs and tissue, it is a mediator of many cellular processes, such as phagocytosis,
cell migration, platelet aggregation and inflammation. As such, AXL’s aberrant expression/activation
are strongly associated with tumor progression [21,27].

3.1. AXL Protein Structure

AXL is composed of an extracellular portion with two immunoglobulin (Ig)-like domains and dual
fibronectin type III (FNIII) repeats, a transmembrane region and a cytoplasmic domain, responsible for
its tyrosine kinase activity (Figure 1A) [11–13,17,28,29]. GAS6, a 678-amino-acid protein, belongs to
the vitamin K-dependent family, represents the major AXL’s ligand and is divided into an N-terminal
region containing multiple gamma-carboxy-glutamic acid (Gla) residues, a loop region, four EGF-like
repeats and two C-terminal globular laminin G-like (LG) domains (Figure 1B) [12,15,30].
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19q13.2 and is characterized by two alternative variants as a result of splicing the site of exon 10, 
within the trans-membrane domain. Both variants work normally because the intra- and extracellular 
domains are preserved. [31–34]. Tumorigenesis, in its various aspects, is influenced mainly by AXL 
overexpression and not by its possible genetic alterations. Indeed, very few AXL-activating 
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within exons 6 and 10 of the AXL gene, have been identified (Figure 2A) [35]. 

Figure 1. AXL receptor and GAS6 protein structures. (A) AXL is structurally composed by two
immunoglobulin (Ig)-like domains, two fibronectin type III (FNIII) repeats, a transmembrane region and
cytoplasmatic domain, implicated in kinase activity. (B) GAS6 is characterized by a γ-carboxyglutamic
acid (Gla) domain, a loop region, four EGF-like repeats and two C-terminal globular laminin G-like
(LG) domains that promote interaction with AXL.

3.2. AXL Expression

AXL is a highly conserved gene between vertebrate species. It is localized on chromosome 19q13.2
and is characterized by two alternative variants as a result of splicing the site of exon 10, within the
trans-membrane domain. Both variants work normally because the intra- and extracellular domains are
preserved [31–34]. Tumorigenesis, in its various aspects, is influenced mainly by AXL overexpression
and not by its possible genetic alterations. Indeed, very few AXL-activating mutations and genomic
amplifications have been found. In breast cancer, data obtained from cBIOPortal show mutations in
only 2% of cases [28]. Instead, three single polymorphisms (SNPs), within exons 6 and 10 of the AXL
gene, have been identified (Figure 2A) [35].

3.2.1. Transcriptional Regulation

Several transcription factors modulate AXL expression: activator protein 1 (AP-1), myeloid Zinc
Finger 1 (MZF-1), transcription factor Fos-related antigen 1 (FRA-1), yes-associated protein 1 (YAP-1)
and specificity protein (SP)1/3 [36–39]. Mudduluru G. and collaborators have emphasized, in different
cellular contexts, the key role of SP1/SP3 in the correct basal expression of AXL; silencing or
upregulation of these transcriptional factors deeply modulates the receptor expression [37]. Moreover,
19 CpG islands, within and around the SP-binding site, influence the interaction between SP1 and
AXL promoter. The methylation of these CG-rich regions is an important epigenetic mechanism
to block AXL transcription. Indeed, in colon cancers analyzed, CpG islands resulted partially
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methylated in cells with low AXL expression, as compared to cells with the highest AXL levels [37].
Microenvironment factors can also determine changes in AXL expression. Several studies have shown
that upregulation of hypoxia-inducible factor 1 (HIF-1), in a hypoxic condition and with nutrient
deprivation, determines AXL transcription and activation of its signaling cascades (Figure 2A) [40,41].

Several microRNAs (miRNAs), downregulated or completely suppressed in several solid tumors,
such as breast, lung and colorectal cancers, negatively affect AXL. Specifically, miR-34a and miR-199a/b
bind AXL’s 3′UTR region and result inversely correlated with receptor levels (Figure 2B) [42].
A recent pre-clinical study showed that in breast cancer, AXL expression is essentially regulated
by miR-34a, which promotes the repressive activity only in selective genetic contexts. The authors,
indeed, have evaluated miR-34a levels in breast cancer cell lines with different genetic backgrounds:
MDA-MB231 (TNBC cells) and SKBR3 (HER2-amplified cells). In both cases, miR-34a levels have
resulted lower as compared to a normal breast cell context, but miRNA overexpression, mediated by
genetic manipulation, decreased AXL levels only in TNBC cells [43].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 23 
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Figure 2. AXL expression: control mechanisms. (A) AXL expression is epigenetically regulated
through methylation of the CpG islands present in its promoter. In contexts with high AXL levels,
the promoter methylation is essentially absent. Moreover, the AXL gene promoter presents binding
sites for more transcription factors. The splicing alternative, in exon 10, promotes the formation of
two AXL functional variants; in addition, three single polymorphisms (SNPs), between exons 6 and
10, are identified. (B) miR-34a and miR-99a/b negatively regulate the receptor expression through
their interaction with 3′UTR region of AXL. (C) Many proteins can negatively or positively regulate
AXL’s expression or activity. A disintegrin and metalloproteinase (ADAM) domain containing protein
10 and 17 and casitas B-lineage lymphoma (CBL) E3 ligases are responsible for AXL inactivation
and ubiquitination, respectively. C1 domain-containing phosphatase and tensin homolog (C1-TEN),
inhibiting AXL catalytic domain, blocks its ability to active AKT. Heat-shock protein 90 (HSP90) and
Tazarotene-induced gene 1 (TIG1), instead, stabilize AXL in plasma membrane.
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3.2.2. Post-Translational Modification

Proteolytic cleavage of extracellular domain represents, certainly, the most important
post-translational modification of AXL. The process is mediated by the a disintegrin and metalloproteinase
domain (ADAM) containing protein 10 and 17 and determines the formation of a soluble form of AXL
(sAXL) that, binding GAS6, inhibits AXL activation (Figure 2C) [44,45]. The balance between sAXL
and the receptor in plasma membrane would seem to be a regulation mechanism actuated in different
cellular contexts. However, AXL activation occurs through different ways, which include its ability
to interact with other membrane receptors [28]. This would explain why in many cancer contexts,
despite the capture of GAS6 by sAXL, the activation of the receptor is still dysregulated. Because sAXL
is particularly abundant in many tumors and is presumably associated with the expression levels of
receptor in membrane, it is considered an important predictive biomarker in cancer progression and
response to treatments [46,47]. A recent study has evaluated the presence of sAXL in the peripheral
blood of patients with melanoma and showed a significant correlation between its high levels and
reduced patient survival [47].

AXL’s stability and functionality are positively or negatively regulated by different proteins.
Heat-shock protein 90 (HSP90), for example, is a molecular chaperonin which modulates the
maturation and stabilization of many “client” proteins, such as AXL receptor (Figure 2C) [48,49].
In inflammatory breast cancer, AXL homeostasis is profoundly associated with Tazarotene-induced gene
1 (TIG1), a functionally undefined membrane protein, correlated with uncontrolled cell proliferation,
migration and survival. TIG1 interaction with AXL simultaneously promotes the receptor stabilization
in plasma membrane and activation of the nuclear factor kappa-light-chain-enhancer of activated
B cells (NFκB) pathway and matrix metalloproteinase (MMP) 9, involved in cell progression and
metastasis (Figure 2C) [50]. To the contrary, casitas B-lineage lymphoma (CBL) E3 ligases promote AXL
degradation through a ubiquitination process [49,51,52]. In recent years, the attention of research has
focused on the C1 domain-containing phosphatase and tensin homolog (C1-TEN) protein that, with a
structure very similar to phosphatase and tensin homolog on chromosome 10 (PTEN), represents a
new negative regulator of phosphatidylinositol 3-kinases (PI3K) signaling. Recent studies have shown
that C1-TEN, by direct interaction with AXL’s catalytic subunit, inhibits the receptor ability to activate
AKT, blocking cell survival signaling (Figure 2C) [53,54].

4. AXL Activation

4.1. GAS6/AXL Activation Mechanism

AXL/GAS6 interaction promotes a molecular complex formed by two molecules of AXL and GAS6
(2:2 stoichiometry) (Figure 3A). This activation mechanism results in trans-autophosphorylation of
multiple tyrosine residues present in AXL’s cytoplasmic domain; three residues (Y779, Y821 and Y866)
are involved in tumor development because their activation modulates several downstream effectors
(Figure 3B). In particular, the Y779 and Y866 residues are implicated in PI3K and Phospholipase Cγ

(PLCγ) activation, respectively; Y821 instead regulates multiple cytoplasmic proteins, such as PI3K,
PLC, growth factor receptor-bound protein 2 (Grb2), c-Src and Lck [55].

In breast cancer, AXL’s activation, mediated by the link with GAS6, has been deeply studied,
especially for its role in the connections between the tumor microenvironment (TME) and cancer cells.
Indeed, it is known that macrophages’ production of GAS6 is the promoter of the receptor activation
on tumor cells and GAS6 levels are often elevated in breast cancer models [56–58]. GAS6′s role
as a negative prognostic factor, however, has been recently criticized by Ayman M. Ibrahim and
collaborators. Tissue microarray studies have detected a higher GAS6 presence in ductal carcinomas in
situ but not in metastatic forms. This clinical observation, therefore, highlighted the non-exclusive
correlation between GAS6 and AXL in breast cancer progression [59].
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4.2. GAS6-Independent Activation Mechanisms

As for the other RTKs, AXL is also activated by alternative mechanisms. Specifically, in breast
cancer, AXL can be interact with its monomers present on neighboring cells or with other RTK family
members (Figure 3A) [14,60–64]. For example, in TNBC tumors, AXL transactivates with epidermal
growth factor receptor (EGFR), promoting drug resistance to inhibitors of the ErbB family [65,66].
TNBCs are characterized by high expression levels of both AXL and EGFR and this prerogative correlates
with a poor prognosis. Only 20% of TNBC patients respond to EGFR inhibitors; indeed, the AXL/EGFR
stable interaction activates AXL in a GAS6-independent manner and promotes the upregulation of
many downstream effectors not activated by EGFR alone [67]. Co-immunoprecipitation experiments,
conducted in TNBC contexts, have shown the formation of heterodimers composed of AXL and ErbB
receptor family components, platelet-derived growth factor receptor (PDGFR) and hepatocyte growth
factor receptor (MET) [67]. Particularly, AXL and MET cooperation, found in different tumor contexts,
is correlated to increased tumor progression and migration. In response to hepatocyte growth factor
(HGF), the two receptors cluster together in the plasma membrane, inducing the phosphorylation of the
Y779 residue in the kinase domain of AXL and the activation of several molecular downstream targets
regulated by AXL and MET [68]. These results support the idea that the simultaneous inhibition of
several elements of the RTK family is necessary to bypass drug-resistance [67]. In HER2-amplified breast
cancer, AXL heterodimerization with HER2 allows its GAS6-independent activation and promotes
drug resistance and tumor progression. The use of murine models of HER2-positive breast tumors
has shown, in a recent study, that the interaction between the two receptors stabilizes and activates
AXL in membrane, favoring intravasation and extravasation phenomena. Moreover, the authors
showed that the increase in AXL’s activity promotes a mesenchymal phenotype and is correlated with
a poor prognosis for HER2-positive patients. AXL and HER2 pharmacological inhibition determines a
reduction in metastasis in HER2-positive breast cancer mice [69].

5. AXL Implications in Breast Cancers

PI3K, mitogen-activated protein kinase (MAPK), Janus kinase (JAK) and NFκB pathways are
the most important molecular cascades regulated by AXL. Their activation is implicated in many
cellular processes related to carcinogenesis: migration, invasion, epithelial to mesenchymal transition
(EMT), drug resistance, apoptosis and angiogenesis (Figure 3B) [23]. In particular, the PI3K pathway is
dysregulated in various tumor forms, including breast cancer, and many drugs for its isoforms have
been developed [70]. Several mutations of PI3K have been found in many malignancies, indicating their
central role in the tumorigenic process [71].

The most important functions of AXL in breast tumors are summarized in Table 1.
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Table 1. AXL involvement into tumorigenesis. Tumor microenvironment (TME); extracellular matrix
(ECM); epithelial–mesenchymal transition (EMT); receptor tyrosine kinase (RTK).

AXL Function(s)

Tumor progression and metastasis

Rearrangement of the actin cytoskeleton
Involvement in cell polarization

Mediator between tumor cells and TME
ECM degradation

Involvement in intravasation and extravasation phenomena

EMT process ↓E-cadherin and β-catenin
↑N-cadherin, Vimentin and Slug

Drug resistance
Transactivation with other members of RTK family

Polarization of macrophages into M2-subtype
Induction of a pro-tumoral immune microenvironment

5.1. AXL and Metastasis: Its Involvement in Cell Migration and Invasion

The cancer ability to invade distant organs and tissues promotes the formation of tumor colonies
with new characteristics, making most treatments ineffective. In breast cancer, the metastatic process is
finely regulated and AXL promotes cell invasion and migration [72–74]. Zhang and collaborators have
shown, on 21 breast cancer cell lines with different invasive capabilities, that AXL mRNA is particularly
expressed in cells with invasive and aggressive phenotypes. The authors, by altering the expression
of the receptor by genetic or pharmacological manipulation, have observed changes in migratory
capacity in all breast cancer cells analyzed. The tumor cells in which AXL was downregulated lost
their invasive and migratory characteristics [75,76].

To migrate, cells need to polarize and rearrange the actin cytoskeleton. In mesenchymal
TNBC tumors, an interesting study analyzed AXL’s direct involvement in cell polarization.
AXL downregulation in two mesenchymal TNBC cell lines (MDA-MB231 and Hs578t) resulted in a cell
motility decrease. Through immunofluorescence analysis, the authors showed a minimal presence of
AXL around the plasma membrane in non-polarized cells; however, polarization increased the AXL
levels, especially in cells’ anterior edge and at the Golgi apparatus. In this condition, AXL induced
cytoskeleton reorganization by co-localizing with F-actin and by controlling actin polymerization.
Indeed, it is known that one of the many downstream effectors of AXL is the small GTPase protein RAC,
involved in actin polymerization and cell migration [77]. AXL pharmacological inhibition resulted in
the blocking of its polarizing localization in TNBC mesenchymal cells. In order to further validate
the results obtained in vitro, immunohistochemistry experiments were conducted on TNBC patients
not responding to chemotherapy. These in vivo studies showed that although no heterogeneous
expression of AXL was found in the tumor mass, it was still greater in tumor cells near the stroma [74].
The TME, especially represented by cancer-associated fibroblasts (CAFs), deeply influences cancer
cells and their progression. CAFs which overexpress hMENA∆v6, an isoform of the actin-regulating
protein hMENA, seem to secrete in the microenvironment with high levels of GAS6, the AXL ligand on
tumor cells. At the same time, hMENA∆v6 promotes tumor receptor overexpression, supporting the
GAS6/AXL axis involvement in tumor progression [78]. In a HER2-amplified breast context, AXL seems
to play a key role in the metastatic process and its high levels are correlated with poor patient
outcomes. Goyette et al. used mouse models to analyze AXL’s contribution to metastasis, suggesting a
GAS6-independent receptor activation, mediated by HER2. Co-immunoprecipitation assays have
validated this hypothesis both in genetically HER2-positive cells (SKBR3) and in contexts where
HER2 is amplified by genetic manipulation (MCF10-A). Moreover, the authors have shown, in a
model with AXL depletion, a significant decrease in its specific effectors, such as integrin, epidermal
growth factor (EGF), Rho-GTPase and transforming growth factor β (TGF-β), as compared to cells
with AXL. The inhibition of these pathways linked to AXL loss has blocked cellular migration and
cytoskeleton reorganization [69]. Extracellular matrix (ECM) degradation is another mechanism that
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AXL supports to promote metastasis [50,79]. AXL overexpression increases MMP9 levels by activating
the MAPK pathway; specific pharmacological inhibition of this pathway determines MMP9 expression
levels reduction, but PI3K signaling inhibition does not produce significant effects. AXL transfection
induces hyperactivation of NFκB and Brg-1, promoting the idea that these factors are all, together,
responsible for AXL-mediated MMP9 activation [79]. Several studies have also shown that in order to
perform this function, AXL’s activation is not mediated by interaction with GAS6 but benefits from its
ability to transactivate with other membrane receptors [50,65,79].

According to the described functionalities, AXL can be considered an important mediator in
the metastatic process; its high levels correlate with tumor stage and cancer progression and are
essentially identified in distal metastasis [31,80]. A relevant study, conducted on a panel of 190 samples
derived from patients with breast cancer, showed a significant correlation between AXL and reduced
patient survival; in addition, clinical investigations have confirmed a higher expression of AXL in
metastatic sites as compared to primary tumors of the same patients, confirming its involvement in
tumor progression [81]. In vitro, AXL downregulation in MDA-MB231 cells significantly reduces their
migratory and invasive capabilities and inhibits, in vivo, the formation of lung metastases [11]. Even in
HER2-amplified contexts, AXL is the promoter of remote metastases. Goyette and collaborators have
highlighted that high levels of AXL correlate with lung and brain metastases and poor prognosis [69].
The use of specific HER2-positive mouse models, presenting GAS6 or AXL losses, has confirmed
the central role of this receptor in the metastatic process; indeed, the formation of lung metastases
decreased in AXL−/− mice [69]. The analysis, conducted in HER2-positive murine models described
above, has also demonstrated that AXL is implicated in intravasation and extravasation phases of
metastatic process. Indeed, AXL loss has promoted a significant reduction in circulating levels of
tumor cells and has reduced their ability to exit blood vessels and colonize distant sites [69].

Steroid receptors (ER and PR), involved in tumor progression, are often unregulated in breast
cancer [82]. Endocrine therapy has significantly improved the life expectancy of these patients by
significantly increasing the OS [83]. The activation of steroid receptors generally occurs through
the formation of stable protein complexes, such as with the SRC protein. Indeed, after stimulation,
these receptors promote the active conformation of SRC, important for the proliferative response
to hormones factors. The agents, able to antagonize the effect of hormones, block uncontrolled cell
proliferation and promote cell cycle arrest [82]. In the context of hormone receptor-positive breast cancer,
AXL’s role and its impact in the tumorigenesis has not yet been fully understood. Indeed, in recent
years, several studies have shown controversial results. Berclaz and collaborators have suggested
a significant correlation between AXL expression and ER-positive state. The analysis conducted on
111 patients showed that the expression of AXL in the membrane is significantly correlated (p < 0.0001)
with the presence of ER, indicating a possible role of AXL as a mediator of the estrogenic action [80].
The opposite results were obtained from two independent studies in which either a non-correlation
between AXL and ER or its correlation with the negative state of ER emerged [84,85]. A recent study,
although it has not fully clarified the question, has partly confirmed the data of Berclaz et al. Indeed,
through AXL expression analysis in 60 breast tumors and 40 benign breast lesions, its correlation with
ER positivity has emerged [86]. Unlike what has been described in the literature so far, this study has
also demonstrated a significant correlation between AXL levels and PR status [87].

In consideration of what has been described, the use of drugs able to mimic AXL loss could be a
favorable pharmacological approach for patients already in disease progression. Pharmacogenomic
analysis, conducted in TNBCs, has shown that a class of dopamine receptor antagonists mimics a
condition similar to AXL depletion, resulting in tumor growth and invasive capacity reduction. Indeed,
the AXL depletion gene expression signature in MDA-MB231 is comparable with the signature of
these drugs. Dopamine receptor antagonists do not affect AXL functionality but block its downstream
signaling: PI3K and MAPK pathways [88]. Although very interesting and innovative, this analysis
will need to be further investigated. Indeed, the use of inhibitors at high concentrations on isolated
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cell lines can reasonably determine off-target phenomena, which are independent from the condition
similar to AXL depletion.

5.2. AXL and EMT Process

EMT is the process by which cells, through the loss of their adhesion capacities, apical-basolateral
polarity and epithelial markers, acquire the mesenchymal phenotype [89]. As described through
in vitro experiments, EMT is promoted by several molecular factors, such as TGF-β, HGF and PDGF,
or is mediated by Slug, Snail and Twist transcription factors [90,91]. Given its profound implications in
cell migration and invasion, this process is commonly used by cancer cells to promote the metastatic
process [91]. In breast cancer, cell transition to mesenchymal and invasive phenotypes is finely
regulated, in several ways, by AXL [81]. Indeed, its high levels downregulate important pro-epithelial
factors, such as E-cadherin and β-catenin, thus determining the acquisition of mesenchymal-like
features of cancer cells [91]. Similarly, in vivo AXL upregulation and its activation are often associated
to an increased expression of the most important mesenchymal markers (N-cadherin and Vimentin),
resulting in poor prognosis for patients [92].

AXL-mediated activation of the PI3K and NFκB pathways promotes, in specific contexts,
the increased expression of transcriptional EMT-positive regulator Slug and other EMT markers,
such as N-cadherin [76,81,86,90]. Consistently, Slug is associated with aggressive forms of breast cancer,
thereby highlighting AXL’s key role in tumor progression (Figure 4) [90].
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Figure 4. AXL involvement in the EMT process. In breast cancers, AXL is crucial for disease progression
and is involved in the regulation of the EMT process. This receptor, when activated in a manner
that is GAS6-dependent or not, induces the PI3K and NFkB pathways’ activation, implicated in cell
mesenchymal state transition. These conditions determine an increase in migration and invasive
properties of the breast cancer cells.

Slug and Snail transfection into MCF10A (breast epithelial cells) promotes AXL overexpression and
acquisition of a mesenchymal phenotype [81]. In HER2-positive breast tumors, TGF-β/AXL axis play
an important role in tumor progression. Indeed, TGF-β promotes AXL expression in HER2-positive
cells by increasing their invasive and migratory properties. AXL or TGF-β inhibition reverts this
condition (Figure 4) [69].

AXL’s involvement in the EMT process is not limited to its function as a downstream effector, i.e.,
an effector activated only when the transition to a mesenchymal phenotype has to be promoted; in breast
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cancer stem cells (BCSCs), indeed, it also exerts a direct influence in this phenomenon. In BCSCs,
AXL results constitutively active, independently of its link with GAS6, and it regulates the maintenance
of cells in a mesenchymal state, determining an NFκB-mediated upregulation of N-cadherin, Snail and
Slug [91]. These results are confirmed in MCF10A, genetically or pharmacologically manipulated
for AXL expression. As expected, AXL inhibition leads to an increase in epithelial marker levels and
reverts the EMT process [91].

5.3. AXL and Drug Resistance

AXL’s dysregulation promotes drug resistance in many cancer contexts and not only [36,67,93,94].
In TNBC tumors, AXL’s transactivation with EGFR or MET induces the formation of an intricate
receptorial network able to increase the downstream signaling of molecular effectors which would not be
activated, in the same way, by the isolated receptors [67]. Since AXL and MET are particularly similar in
intracellular signaling, a simultaneous inhibition of the two receptors is desirable [95]. MAPK pathway
inhibitors play the role of reprogrammers of RTKs activity. In TNBC cells, treatment with selective
agents of this pathway determines a concomitant upregulation of AXL and HER2 levels as result of
the simultaneous increase in their protein synthesis and degradation reduction. Therefore, a deep
knowledge of the mechanisms involved in the reprogramming phenomena will better describe the
hypothetical results of a treatment and will be able to better select drug combinations to overcome
resistance [96]. In HER2- and ER-positive breast cancer cell lines, AXL promotes resistance to lapatinib
and trastuzumab; for example, BT474 cells resistant to lapatinib show higher AXL levels as compared
to the same control cells. A pharmacological downregulation of the receptor restores the response of
these cells to lapatinib treatment, confirming AXL’s involvement in this process. Probably, the direct
interaction between AXL and v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 3 (HER3)
overcomes the drug blockade of HER2 and determines the activation of its downstream pathways [97].

The suppression of immune response and the remodeling of the TME, especially by polarizing
macrophages in the M2 subtype (pro-tumor subtype), are other mechanisms associated to AXL and
tightly interconnected with drug resistance. In some in vivo experiments, conducted in mouse models,
AXL pharmacological inhibition determines profound changes in TME organization and stimulates
the antitumor immune response. Indeed, the receptor blockade maintains the macrophages in an M1
state and causes CD103+ dendritic cell activation in TME. This favorable condition induces cluster
differentiation and (CD8)+ T lymphocytes’ proliferation and increases their antitumor activity [98–100].
Dysregulated activation of AXL can regulate the tumor release of paracrine factors involved in processes
such as inflammation, migration and immune cell recruitment. AXL’s genetic or pharmacological
depletion can, for example, influence the release of granulocytic-colony-stimulating factor (G-CSF),
involved in the recruitment of granulocytic-myeloid-derived suppressor cells (G-MDSCs) in the
TME [101,102]. In addition, the immunological microenvironment is deeply regulated and influenced
by the GAS6/AXL axis. Several studies have shown that the inhibition of AXL promotes an anti-tumor
microenvironment more responsive to therapies. Its depletion, indeed, leads to a significant reduction
in many chemokines involved in the recruitment of monocytes and macrophages (such as C-C motif
chemokine ligand (CCL)-2 and CCL-5). At the same time, this condition favors the production of
molecules important for the attraction of CD8+ lymphocytes and natural killer (NK) cells (C-X-C
Motif Chemokine Ligand (CXCL) 9, and CXCL10) [99,101]. A recent study by Christine Haider and
collaborators has also demonstrated AXL’s role in the recruitment of neutrophils, often associated
with poor prognosis. In hepatocellular carcinoma, the TGF-β/AXL axis promotes the release of
CXCL-5, an attractive factor for these immune cells [103]. The mutual interconnections between the
microenvironment and tumor cells influence the protein expression involved in tumor progression
and drug resistance. During the early stages of mammary neoplasia development, macrophages
induce tumor activation of survival pathways, promoting the transition to more invasive forms. It has
been shown that GAS6, released by stromal cells, activates AXL and its molecular targets in cancer
cells and causes alterations in E-cadherin expression [57]. An analysis conducted on pre-treatment
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melanoma biopsies has shown a higher receptor expression in patients with innate resistance to
immunotherapy [104]. Moreover, the combination between TAM inhibitors and anti-PD-1, in a TNBC
murine model, significantly decreased tumor growth and metastasis as compared to the monotherapy
treatments and determined a major T cell infiltration [105]. Chimeric antigen receptor T (CAR-T)
therapy shows important antitumor effects in patients with hematological malignancies but still
remains ineffective in solid tumors. In vitro and in vivo experiments conducted in TNBC cells have
shown encouraging results in terms of the antitumor activity of AXL-targeting CAR-T, confirming the
real potential of this new therapeutic approach [106]. The promising results obtained in the preclinical
field have led to the introduction of the pharmacological combination between AXL inhibitors and
immunotherapy in various tumor contexts, including breast cancer, to bypass innate resistance. A recent
phase II trial that involved the AXL inhibitor R428 in combination with pembrolizumab was concluded
for TNBC patients, but the results of this study have not yet been disclosed [22]. A clinical trial
(NCT03316586) characterized by nivolumab in combination with cabozantinib (another AXL inhibitor)
for metastatic TNBC patients is now active [22].

6. AXL in BCSCs

Tumors are highly heterogeneous and well-organized structures, consisting of cell clusters with
various differentiation statuses and biomarkers. BCSCs represent the most primitive cellular form,
able to self-regenerate and maintain high plasticity by switching from an epithelial to a mesenchymal
(and vice versa) state under TME influences [107]. BCSCs’ mesenchymal-like phenotype promotes
invasion, metastasis and drug resistance and appears to be associated with AXL expression. In BCSCs,
AXL, constitutively active (in a GAS6-independent manner), induces the EMT process through
regulation of Slug, Snail and E/N-cadherin and is linked to the expression of important stem markers
genes (Isl1, Cdc2a and Bglap1). AXL depletion promotes downregulation of the NFκB pathway and
reverts the mesenchymal phenotype and pharmacological resistance of BCSCs [91].

7. AXL Inhibition in Breast Cancer Treatment

AXL inhibitors are classified, according to their action mechanisms, into three categories:
(1) drugs that modulate and inhibit the kinase activity of the receptor; (2) specific antibodies that
prevent the AXL dimerization and activation; (3) drugs that recognize and bind GAS6 [13].

The most important AXL inhibitors are summarized and described in Table 2.

Table 2. AXL inhibitors. Several AXL inhibitors (selective or not) are involved in the treatment of
breast cancer. Many of them, however, are still in preclinical development.

Selective Inhibitors

Target(s) Function(s) Field(s) Reference(s)

BGB324
(Bemcentinib or

R428)
AXL

ATP-competitive AXL inhibitor
that promotes apoptosis and

reduces cell growth and
metastasis

Preclinical
and clinical [87,93,108–111]

NA80X-1 AXL
Selective AXL inhibitor that
decreases cell motility and

invasion
Preclinical [75]

YW327.6S2 AXL Monoclonal antibody that inhibits
GAS6/AXL interaction Preclinical [112]

GL21-T AXL
RNA-based aptamer that blocks

AXL’s catalytic activity and
inhibits mobility and metastasis

Preclinical [113,114]
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Table 2. Cont.

Selective Inhibitors

Target(s) Function(s) Field(s) Reference(s)

DN10764
(AZD7762)

AXL
ChKs

Selective AXL inhibitor that
decreases cell proliferation,
invasion and migration and

induces apoptosis

Preclinical [115,116]

SGI-7079 AXL
Selective AXL inhibitor that

decreases cell proliferation and
metastasis

Preclinical [50]

Non-Selective Inhibitors

Rebastinib
(DCC-2036)

MET
VEGFR2

SRC
AXL

Multi-target inhibitor that
decreases cell proliferation,

invasion, migration and EMT

Preclinical
and Clinical [27,117]

Cabozantinib
(XL184)

RET
VEGFR2
Flt 1-3-4

Tie2
MET
AXL

Multi-target inhibitor that
decreases cellular invasion and

promotes immune system
activation

Preclinical
and clinical [29,118–122]

Foretinib
(XL880 or

GSK-1363089)

MET
RET

VEGFR2
AXL

Multi-target inhibitor that restores
the response to lapatinib in

HER2+ context

Preclinical
and clinical [97]

Merestinib
(LY2801653)

MET
MST1R

MKNK1/2
AXL

Multi-target agent that inhibits
angiogenesis and mitosis

Preclinical
and clinical [123,124]

Bosutinib
(SKI-606)

SRC
Abl

MEK
BMX
AXL

Multi-target inhibitors that
decreases invasion, metastasis and

tumor differentiation

Preclinical
and clinical [125–127]

Crizotinib
(PF-02341066)

MET
ALK
ROS1
AXL

ATP-competitive agent that
inhibits cell proliferation

Preclinical
and clinical [128,129]

7.1. AXL Selective Inhibitors

BGB324 (Bemcentinib or R428) is the more selective ATP-competitive inhibitor of AXL (IC50 = 14 nM)
and was the first to enter clinical trials to treat several cancer forms, such as TNBC tumors, metastatic
melanoma and NSCLC. By blocking AXL autophosphorylation on tyrosine residue Y821, in vitro,
it induces apoptosis, inhibits cancer cell invasion and reverts erlotinib resistance in TNBC cells;
in vivo, BGB324 reduces cancer metastasis [87,93,108,109]. In a recent preclinical study, BGB324 was
tested in combination with auranofin, a gold phosphine derivative, initially used for the treatment of
rheumatoid arthritis and also studied for the treatment of the other diseases, such as breast cancer. It is a
thioredoxin reductase inhibitor and appears to induce apoptosis through PI3K pathway inhibition [110].
The authors of this study have observed that in different breast cancer settings (MDA-MB231 and MCF7),
the combination of BGB234 and auranofin reduced cell growth by inducing apoptosis, mediated by
increased levels of Bcl-2-associated X-protein (BAX) [111]. Recently, BGB324 was implicated in a
phase II clinical trial (NCT03184558) for TNBC and inflammatory breast cancers, in combination
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with pembrolizumab; however, the results have not yet been released [22]. Other selective AXL
inhibitors have been recently developed and have validated their efficacy in the preclinical field.
NA80X-1 determines a decrease in cell motility and invasion in MDA-MB435 cells [75]. YW327.6S2
represents a potent anti-AXL monoclonal antibody that recognizes and binds AXL with high affinity.
This antibody, by preventing the GAS6 interaction with the receptor, inhibits AXL activation and
its downstream signaling [112]. GL21-T is an RNA-based aptamer which blocks AXL catalytic
activity through interaction with the receptor extracellular domain [113]. In a recent preclinical
study, the inhibitory action of this drug was evaluated in combination with the anti-metastatic
miRNA148b. The authors have created a conjugate (AXL-148b) able to work only in positive AXL
contexts. In vitro, by increasing the expression levels of miRNA148b, the conjugate has reduced the
formation and mobility of mammospheres; in vivo, AXL-148b has blocked metastasis formation [114].
DN10764 (or AZD7762), developed as selective inhibitor of checkpoint kinases (ChKs) 1 and 2, is also
involved in AXL downregulation. In a preclinical field study, DN10764 inhibited, in both vitro and
in vivo experiments, AXL-dependent cell proliferation, invasion and migration and also induces
apoptosis through caspases 3/7 activation [115,116]. SGI-7079 is another selective AXL inhibitor which,
however, also targets the other members of the TAM family; in vitro experiments showed that it
decreased cell proliferation and metastasis [50].

7.2. Multi-Targets Inhibitors

Rebastinib (or DCC-2036) is a multi-target inhibitor involved in the regulation of cell proliferation,
invasion, migration and EMT processes by blocking the activity of several TKs, such as MET,
vascular endothelial growth factor receptor 2 (VEGFR2), SRC and AXL. A recent in vitro and in vivo
study has shown that in TNBCs (little responsive to hormonal and anti-HER2 therapies), rebastinib
inhibited cell proliferation, invasion and EMT more efficiently as compared to other drugs used for
breast cancer treatment. In addition, its combination with lapatinib or cisplatin significantly decreased
the growth of TNBC cells [27]. Although it does not have a single site of action, rebastinib seems to
carry out its inhibitory function mainly on AXL and its downstream targets. Indeed, the drug decreases
cell growth only in murine models inoculated with TNBC characterized by high levels of AXL [117].

Cabozantinib (or XL184) recognizes and blocks many RTKs, such as Rearranged during
Transfection (RET), VEGFR2, Kit, fms-related tyrosine kinases (Flt) 1, 3 and 4, tyrosine kinase
with immunoglobulin-like and EGF-like domains 2 (Tie2), MET and AXL [29]. It is implicated in the
treatment of several solid malignancies, such as renal cell carcinoma, medullary thyroid, NSCLC and
TNBC tumors, by decreasing the metastatic and invasive potential of cancer cells. In a recent
phase II trial (NCT01738438) conducted on metastatic TNBC patients, cabozantinib administration
led to a clinical benefit of 34%, determining a median PFS of 2.0 months; moreover, cabozantinib
treatment has determined quite encouraging results in terms of immune system activation. Indeed,
patients treated with this drug showed higher circulating levels of CD8+ T lymphocytes and a greater
activation of antitumor immunity. However, these results are still not very consistent and need further
investigation [118–122].

Foretinib (XL880 or GSK-1363089) is another multi-kinase inhibitor which blocks AXL, MET,
RET and VEGFR2 activity. In HER2-amplified breast tumors, it restores sensitivity to lapatinib and
trastuzumab in resistant cells with high levels of AXL. AXL and HER3 interaction bypasses the
lapatinib-mediated HER2 block, promoting PI3K/AKT pathway hyperactivation and drug resistance.
AXL inhibition, mediated by foretinib, removes the AXL/HER3 interconnection and restores cell
response to lapatinib [97]. In a phase II clinical trial (NCT01147484), 46% of enrolled TNBC patients
benefited from foretinib treatment [22,130].

Merestinib (or LY2801653) is a small molecule kinase inhibitor which targets AXL, MET,
macrophage-stimulating protein receptor (MST1R) and MAP kinase-interacting serine/threonine kinase
1 (MKNK1/2). In vitro and in vivo experiments have shown that merestinib inhibits angiogenesis and
mitosis [123,124].
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Bosutinib (or SKI-606), originally identified as an SRC and Abelson murine leukemia viral
oncogene (Abl) kinase inhibitor, is also a powerful inhibitor of AXL, Mitogen-activated protein
kinase kinase (MEK) and BMX [125]. In breast cancer, it regulates invasion, metastasis and tumor
differentiation [126,127]. Bosutinib is implicated, for breast tumors, in several clinical trials [22].

Crizotinib (or PF-02341066) is an ATP-competitive small-molecule inhibitor which blocks MET,
anaplastic lymphoma receptor tyrosine kinase (ALK), c-ros oncogene 1 receptor tyrosine kinase (ROS1)
and AXL. In breast cancer cell lines, it inhibits cellular proliferation [128,129]. As described for the
other non-selective inhibitors, crizotinib is also involved in several clinical trials as a modulator of
other molecular targets [22].

8. AXL Clinical Implications: Limits and Future Hopes

The clinical management of cancer patients has been profoundly transformed in recent decades.
The use of targeted therapies and immunotherapy has revolutionized the clinical course of many cancers,
including breast cancer. These new therapeutic scenarios, however, especially in tumor contexts which
lack effective long-term treatment (e.g., TNBC tumors), require the continuous study of new biomarkers.
AXL seems to be an optimal candidate for the development of new therapeutic approaches. Indeed,
it is implicated in the various stages of tumorigenesis and it is considered an important modulator of
the TME. Currently consolidated in hematological malignancies and rapidly evolving even in solid
tumors, anti-AXL therapies are continuously enriched with new inhibitors [12,131]. However, the high
structural affinity of AXL with other RTKs does not make life easy for researchers; indeed, most of the
AXL inhibitors involved in clinical trials are multi-target and are considered primarily for their action
on other sites. In addition, many multi-target agents (also in use for the treatment of breast cancer),
because of their low selectivity, have a difficult clinical management and are often associated with
toxicity events [118,130]. In addition, the idea of a pharmacological blockade of GAS6 has important
limits because, as widely described, AXL can activate itself independently from its ligand. In addition,
in breast cancer, it has been recently demonstrated that GAS6 levels, elevated in carcinoma in situ,
decrease dramatically in the most invasive forms of cancer. This result further confirms that the
functions of GAS6 and AXL can work independently from each other [59]. To date, BGB324 is the
only AXL-specific inhibitor to be involved in clinical trials, although other highly selective molecules
have been developed. Of these, however, there are only promising preclinical data which need to
be extensively investigated [75,111,112]. It is, therefore, clear that the process of development and
the testing of new selective AXL inhibitors will require more time and more extensive studies, in the
clinical field also. Analyzing the results described in this review, it is clear that AXL can be a potential
marker in which to invest for breast cancer management and not only this, but there is still no solid
and definitive evidence on its role in the clinical field. For this reason, it is auspicious to increase the
study of selective inhibitors for AXL that can also be combined with other therapeutic regimens.

9. Conclusions

In recent years, cancer treatments have made important progress and the discovery of new
target therapies has greatly improved the lives of patients and survival rates. However, despite the
promising results obtained, oncology research has not solved two problems that are the causes of
the most cancer deaths: (1) metastasis, with new characteristics as compared to the primary tumor;
(2) drug resistance. For these reasons, it is essential to identify and study, always, new and alternative
molecular targets to bypass these unfortunate conditions. Given its highly oncogenic characteristics
and its involvement in many pro-tumorigenic processes, currently, AXL is considered a valid biomarker
in several tumor contexts, primarily breast cancer. In this pathology, through uncontrolled activation
of different downstream effectors, such as PI3K and MAPK, AXL regulates the malignant progression
and migratory properties of breast cancer cells. Especially in TNBC tumors, AXL has been considered a
key factor in the EMT process, promoting a mesenchymal and invasive phenotype. No less important
is the role of AXL in several mechanisms of pharmacological resistance involved in the disease’s
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relapse, even in contexts previously responding to treatments. To date, several agents which inhibit
the GAS6/AXL axis are being studied and have led to important results from both in vitro and in vivo
experiments. Certainly, BGB324, due to its high selectivity for AXL, is the drug that has mainly produced
significant results in terms of growth inhibition; in addition, it is the only specific AXL inhibitor to
be involved in clinical trials for the treatment of several cancers. The development of new anti-AXL
agents is always active, but even if preclinical studies have produced encouraging results in multiple
tumor contexts, there is still a long way to go in clinical trials. Indeed, although different inhibitors of
AXL have been developed, many of these are multi-target and are often implicated in clinical trials not
for their inhibitory role on AXL. Therefore, the construction of new drugs, increasingly selective for
this receptor, is always expected.
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The following abbreviations are used in this manuscript:

Abl Abelson murine leukemia viral oncogene
ADAM Disintegrin and metalloproteinase domain-containing protein
ALK Anaplastic lymphoma receptor tyrosine kinase
AP-1 Activator protein 1
BAX Bcl-2 Associated X-protein
BCSC Breast cancer stem cell
C1-TEN C1 domain-containing phosphatase and tensin homolog
CAFs Cancer-associated fibroblasts
CAR-T Chimeric antigen receptor T
CBL Casitas B-lineage lymphoma
CCL C-C motif chemokine ligand
CD Cluster differentiation
ChK Checkpoint kinases
CXCL C-X-C Motif Chemokine Ligand
ECM Extracellular Matrix
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
EMT Epithelial–mesenchymal transition
ER Estrogen Receptor
FLT fms-related tyrosine kinase
FNIII Fibronectin type III
FRA-1 Transcription factor Fos-related antigen 1
GAS6 Growth arrest-specific protein 6
G-CSF Granulocytic-colony-stimulating factor
G-MDSC Granulocytic-myeloid-derived suppressor cell
GLA Gamma-carboxy-glutamic acid
GRB2 Growth factor receptor-bound protein 2
HER2 Human epidermal growth factor receptor 2
HER3 V-erb-b2 avian erythroblastic leukemia viral oncogene homolog3
HGF Hepatocyte growth factor
HIF-1 hypoxia inducible factor 1
HSP90 Heat-shock protein 90
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Ig Immunoglobulin
JAK Janus Kinase
LG Laminin G-like
MAPK Mitogen-activated protein kinase
MEK Mitogen-activated protein kinase kinase
MET Hepatocyte growth factor receptor
MicroRNA miRNA
MKNK1/2 MAP kinase-interacting serine/threonine kinase 1
MMP9 Matrix metalloproteinase 9
MST1R Macrophage-stimulating protein receptor
MZF-1 Myeloid Zinc Finger 1
NFκB Nuclear factor kappa-light-chain-enhancer of activated B cells
NSCLC Non-small-cell lung cancer
OS Overall survival
PDGFR Platelet-derived growth factor receptor
PI3K PhosphoInositide3-Kinase
PLC γ Phospholipase C γ

PR Progesterone receptor
PROS1 Protein S
PTEN Phosphatase and tensin homolog on chromosome 10
RET Rearranged during Transfection
ROS1 c-ros oncogene 1, receptor tyrosine kinase
RTKs Receptor tyrosine kinases
sAXL Soluble AXL
SNPs Single polymorphisms
SP Specificity protein
TAM TYRO-3, AXL and MER
TGF-β Transforming growth factor β
TIE-2 Tyrosine kinase with immunoglobulin-like and EGF-like domains 2
TIG1 Tazarotene-induced gene 1
TKs Tyrosine kinases
TNBC Triple-negative breast cancer
TULP-1 Tubby-like protein 1
VEGFR2 Vascula Endothelial Growth Factor Receptor 2
YAP1 Yes-associated Protein 1
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