3D spheroids derived from human lipedema ASCs demonstrated similar adipogenic differentiation potential and ECM remodeling to non-lipedema ASCs *in vitro*

Sara Al-Ghadban^{1,2,*}, India A. Pursell², Zaidmara T. Diaz², Karen L. Herbst³, Bruce A. Bunnell^{1,2,*}

¹Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States

²Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, United States

³ Medical Director, Limitless Therapeutics, Los Angeles, CA, United States

* Correspondence: sara.al-ghadban@unthsc.edu; bruce.bunnell@unthsc.edu;

Supplementary data

1. Expression levels of ECM components in 3D differentiated spheroids

Figure S1: Characterization of ECM components of ASC spheroids. The quantitative analysis of the fluorescence intensity of ECM staining revealed no difference between healthy and lipedema in 3D differentiated spheroids (n=3 per group; average of 4 fields/sample). The dotted line represents the expression level normalized to that of the undifferentiated spheroids. Data are shown as mean ± SEM.