SUPPORTING INFORMATION

for

Substitution of the native Zn(II) with Cd(II), Co(II) and Ni(II) changes the downhill unfolding mechanism of Ros87 to a completely different scenario

Rinaldo Grazioso¹, Sara García-Viñuales², Luigi Russo¹, Gianluca D'Abrosca¹, Sabrina Esposito¹, Laura Zaccaro³, Rosa Iacovino¹, Danilo Milardi², Roberto Fattorusso¹, Gaetano Malgieri^{1*} and Carla Isernia^{1*}

1: Department of Environmental, Biological and Pharmaceutical Science and Technology – University of Campania - Luigi Vanvitelli, via Vivaldi 43, 81100 Caserta (Italy).

2: Institute of Crystallography-CNR, Via Paolo Gaifami 18, 95126 Catania (Italy).

3: Institute of Biostructures and Bioimaging-CNR (Naples), Via Mezzocannone 16, 80134 Naples, Italy

*to whom correspondence should be addressed

Figure S1. Thermal unfolding of Co(II)-Ros87 via NMR: ¹H-¹⁵N HSQC spectra acquired at different temperatures using a 600 MHz spectrometer.

Figure S2. Reversibility of the thermal unfolding of Co(II)-Ros87. **a**) CD spectra acquired at 298 K before (green) and after heating the sample at 368 K (red). **b**) UV-Vis spectra at 298 K before (green) and after heating the sample at 368 K (red); the most significant regions of the spectrum are magnified (350-400nm and 550-690nm). **c**) superposition of the ¹H-¹⁵N HSQC spectra of Co(II)-Ros87 acquired at 298 K before (blue) and after heating the sample at 343 K (red), respectively.

Figure S3. Reversibility of the thermal unfolding of Ni(II)-Ros87. **a**) CD spectra acquired at 298 K before (green) and after heating the sample to 368 K (red), respectively. **b**) UV-Vis spectra at 298 K before (green) and after heating the sample at 368 K (red). **c**) superposition of the ¹H-¹⁵N HSQC spectra of Ni(II)-Ros87 recorded at 298K before (blue) and after heating the sample at 343K (red).

Figure S4. Thermal unfolding of Ni(II)-Ros87 monitored via NMR: ¹H-¹⁵N HSQC spectra measured at different temperatures.

$\Delta\delta HN/\Delta T$ (ppb/K)	Residues with non linear	Residues with linear coefficients
	coentcients	
	SER16	GLN18
	VAL 23	CYS27
>-4.6	CYS24	GLU51
	GLY28	TRP53
	HIS37	
	SER43	
	ME144	
	GLU48	
	ARO30 TVR66	
	11K00	
	A SD20	CL US
	LEU25	LYS6
	SER30	GLN7
	LEU34	SER12
	LYS35	VAL13
	LEU38	ASP19
		HIS21 CLV20
-16	GL Y78	OL 129 PHF31
< 1.0	GLY80	ARG36
	ARG82	THR39
	LYS84	THR40
		HIS41
		THR45
		ASP58 MET77
		GLN87
		ALA85
		ARG87
	VAI 4	
	LYS8	
	ALA10	
	VAL17	
	GLU26	
>-4.6 from 298 K to 323 K		
anu <-4.0 11'0111 52518 to 33816	L 1 333 TYR 59	
JUIX	ALA65	
	ALA68	
	SER71	
	ALA74	
	LYS75	
	LEU79	

 Table S1. Amide-proton temperature coefficients (ppb/K) of Ni(II)-Ros87.

Figure S5. Thermal unfolding of Cd(II)-Ros87 investigated by NMR: ¹H-¹⁵N HSQC spectra collected at different temperatures.

$\Delta\delta HN/\Delta T$ (ppb/K)	Residues with non linear	Residues with linear
- (rr)	coefficients	coefficients
>-4.6	SER16 CYS24 GLY29 SER33 HIS 37 ARG50 GLU51	GLN18 LYS35 SER43 GLU48 TYR49 TRP53 TYR66
<-4.6	ALA10 VAL13 ASP19 ILE22 VAL23 CYS27 LEU38 THR45 LEU55 VAL57 TYR59 GLU68 GLN81 ARG87	VAL4 GLU5 GLN7 VAL17 HIS21 SER30 PHE31 LEU34 ARG36 THR39 THR40 HIS41 ALA65 ALA74 LYS75 MET77 GLY80 ARG82 ALA85
>-4.6 from 298 K to 323 K and <-4.6 from 323K to 338K	LYS6 SER12 LEU25 GLU26 MET44 GLU47 LYS52 ASP58 ALA63 ALA63 ALA69 ARG70 GLU76 GLY78 LEU79	MET61 LEU73

 Table S2. Amide-proton temperature coefficients (ppb/K) of Cd(II)-Ros87.

Figure S6. Reversibility of the thermal unfolding of Cd(II)-Ros87. **a**) CD spectra acquired at 298 K before (green) and after heating the sample at 368 K (red). **b**) UV-Vis spectra at 298 K before (green) and after heating the sample at 368K (red). **c**) superposition of the ¹H-¹⁵N HSQC spectra of Cd(II)-Ros87 at 298K before (blue) and after heating the sample at 343K (red).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).