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Abstract: The wide natural variation present in rice is an important source of genes to facilitate
stress tolerance breeding. However, identification of candidate genes from RNA-Seq studies is
hampered by the lack of high-quality genome assemblies for the most stress tolerant cultivars. A more
targeted solution is the reconstruction of transcriptomes to provide templates to map RNA-seq reads.
Here, we sequenced transcriptomes of ten rice cultivars of three subspecies on the PacBio Sequel
platform. RNA was isolated from different organs of plants grown under control and abiotic stress
conditions in different environments. Reconstructed de novo reference transcriptomes resulted in
37,500 to 54,600 plant-specific high-quality isoforms per cultivar. Isoforms were collapsed to reduce
sequence redundancy and evaluated, e.g., for protein completeness (BUSCO). About 40% of all
identified transcripts were novel isoforms compared to the Nipponbare reference transcriptome.
For the drought/heat tolerant aus cultivar N22, 56 differentially expressed genes in developing seeds
were identified at combined heat and drought in the field. The newly generated rice transcriptomes
are useful to identify candidate genes for stress tolerance breeding not present in the reference
transcriptomes/genomes. In addition, our approach provides a cost-effective alternative to genome
sequencing for identification of candidate genes in highly stress tolerant genotypes.

Keywords: dehydrins; natural genetic variation; PacBio Sequel; RNA-Seq; SMRT sequencing; de novo
reference transcriptomes; rice

1. Introduction

Global climate change is causing an increase in the severity and frequency of abiotic stress
conditions such as heat, drought and high night temperatures that all have a strong negative impact
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on crop yield [1–5]. In combination with the increasing world population, plant breeders face the
challenging task of developing new cultivars that produce higher yield, with enhanced quality and
accompanied by reduced environmental footprints [6]. Rice (Oryza sativa L.) is the main source of
calories for more than half of the world’s population, especially for the poorest in Asia [7]. As an
important reservoir for genes that may be used for crop improvement, the wide natural genetic diversity
within the species and its wild relatives, which is preserved in more than 230,000 rice germplasm
accessions, maintained in gene banks worldwide [8], is an invaluable resource.

While almost 80% of rice cultivation in the world is based on varieties of the indica subspecies [9],
the current gold standard genome assembly and annotation is derived from the cultivar Nipponbare
of the japonica subspecies [10]. Due to the lack of proper genome assemblies, studies of cultivars
from different O. sativa subspecies have largely been based on this reference genome. For instance,
the sequences obtained in the 3000 Rice Genomes Project [8] were mapped against the Nipponbare
genome, excluding all sequences that could not be mapped to this reference [11]. This may have led to
the loss of genetic information that is specific to the non-japonica subspecies. However, more recently
the genomes of cultivars belonging to additional O. sativa subspecies have been sequenced, such as
indica (e.g., the cultivars Shuhui498 (R498 genome; [12]), Zhenshan 97, and Minghui 63 [13]), or aus
(e.g., the cultivars Kasalath [14] and N22 [6]), although the degree of completeness and annotation
remains variable. In particular, the aus subspecies (addressed as own phylogenetic group more closely
related to the indica than japonica subspecies [15]) has been a valuable source of genes underlying
traits for disease resistance [16], tolerance to phosphate starvation [17], submergence [18], deep water
growth [19], anaerobic germination [20,21] and drought [22]. For example, the phosphate-starvation
tolerance gene OsPSTOL1, the deepwater escape genes OsSNORKEL1/2 and the submergence tolerance
gene OsSUB1A were identified in the genomes of aus cultivars. Significantly, these genes are absent in
the genome sequence of the japonica reference cultivar Nipponbare.

During the last years, RNA sequencing (in particular Illumina-based short-read RNA-Seq)
has emerged as a powerful tool for analyzing transcriptomes to identify genes that show
differential expression between unstressed control and various environmental stress conditions.
However, the determination of transcript levels from RNA-Seq data requires reference genome
or transcriptome sequences for read mapping and annotation. In rice, the identification of
differentially expressed genes and transcript isoforms is determined by the reference genome [23].
Obviously, the expression data of any gene that is not represented in the reference genome/transcriptome
will be lost from the analysis. This could be particularly relevant when investigating stress-tolerant
exotic cultivars, land races or wild rice species, as they may contain tolerance genes not present in
the reference cultivar Nipponbare. This would then severely limit the possibility to identify novel
candidate genes that can support crop improvement programs.

An obvious solution to this problem would be the sequencing, assembly and annotation of the
required genomes. However, this is still comparatively expensive and time-consuming. Here, we have
explored a more targeted approach of sequencing and reconstructing partial transcriptomes of rice
cultivars from three different subspecies that can be used as references to map RNA-Seq reads from
abiotic stress experiments. For this purpose, we have used Pacific Bioscience (PacBio) Single-Molecule
Real-Time (SMRT) long-read sequencing technology isoform sequencing (Iso-Seq), belonging to
a new generation of sequencing methods that provide full-length transcript sequences with high
throughput [24]. It thus offers the ability to sequence transcriptomes without the need for an assembly
based on an existing reference genome and to discover novel transcripts and genes in stress-tolerant
“exotic” genotypes. Moreover, this approach already has been successfully applied to explore and
extend existing plant transcriptomes and annotations for example in sorghum [25], wheat [26,27],
sugarcane [28], wild cotton [29], different panicoid grass species [30] and alfalfa [31].
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2. Results

2.1. De Novo Reconstruction of Transcriptomes

We selected ten rice (Oryza sativa L.) cultivars of the subspecies aus (Dular, N22), indica (Anjali,
IR6226-42-6-2, IR64, IR72) and japonica (CT9993-5-10-1M, M202, Moroberekan, Nipponbare) for this
study that we have used in previous stress experiments [32–36]. RNA was isolated from different
organs and tissues of plants grown under various control and stress conditions in climate chambers,
net-houses and in the field (Table 1 and Supplementary File S1). It should be stressed that we did not
aim to obtain (near) complete transcriptomes, but rather to assemble targeted partial transcriptomes
with relevance to the RNA-Seq analysis of these stress treatments.

Pooled RNA samples were sequenced on the PacBio Sequel I platform on two or three SMRT cells
per cultivar (Table 2). The raw data have been deposited at the NCBI’s Sequence Read Archive (SRA) [37]
under the BioProject number PRJNA640670 and are freely available. In total, between 15.49 and
24.51 gigabases (GB) of sequences were obtained for the different cultivars. Sequence raw data was
processed with the software IsoSeq3 using the steps ccs and lima, resulting in between 460,340 and
736,747 full-length non-chimeric reads (FLNC, containing 5′ primer, 3′ primer and poly(A) tail) for
the combined SMRT cells per cultivar. After the IsoSeq3 cluster and polish steps, between 37,951 and
54,684 high-quality (HQ), as well as between 1233 and 2170 low-quality (LQ) sequences were obtained.
Possible sequence contaminations by non-plant organisms were identified by alignment against the
NCBI nucleotide database using blastn [38] (E ≤ 1 × 10−10). Isoforms without a significant hit were
aligned against the NCBI protein database using blastx [38] (E ≤ 1 × 10−10). All sequences that showed
no significant similarity to sequences from the Viridiplantae (green plants) family were removed,
resulting in between 37,535 and 54,594 HQ full-length transcripts for further analysis (Table 2).

It has been shown for the previous PacBio sequencing platform (RSII) that correcting long reads
using corresponding RNA-Seq data could lead to an increased number of HQ sequences [25,27,28,31].
This was necessary because of a relatively high rate of LQ sequences with insertions and deletions
(InDels). However, the newer PacBio Sequel platform produces a higher sequencing output compared
to the RSII, including a higher number of HQ and a lower number of LQ sequences [39] which we have
also seen in our own data when comparing it to previous RSII studies [25,27]. To evaluate whether
InDels could be a problem in our data set, we mapped all uncorrected HQ transcripts with minimap2
against the genome sequences of the corresponding subspecies. The number of InDels was extracted
from the cigar string of the alignment files (Supplementary File S2). The analysis indicated that the
uncorrected sequences showed only a small fraction of InDels (between 0.08% and 0.14%). Because of
this low frequency of InDels and the low number of LQ sequences (Table 2), further data analysis was
performed without error correction and excluding LQ transcripts.



Int. J. Mol. Sci. 2020, 21, 8148 4 of 26

Table 1. Sampling for PacBio isoform sequencing. RNA of ten Oryza sativa L. (Poaceae) cultivars from different organs and conditions was extracted and pooled
for each cultivar (FL—flag leaves, LE—leaves, PA—panicles, FS—flowering spikelets, DS—developing seeds, SH—sheaths, RO—roots, SO-shoots, PP—pollinated
pistils, AN—anthers). Seed database accession numbers (IRTP/IRGC/IRIS ID No.) from the International Rice Research Institute (IRRI) are shown. Plants were grown
in climate chambers (CC), net-houses (NH), and/or in the field (F). Cultivars were sorted alphabetically within the subspecies (ssp.) aus, indica, and japonica. See
Supplementary File S1 for a more detailed description of all samples used for RNA isolation. X—sample was taken for the respective organ and cultivar.

Cultivar ssp. ID No.
Organ Set-up

FL LE PA FS DS SH RO SO PP AN CC F NH

Dular aus IRGC 636 X X X X
N22 IRTP 3911 X X X X

Anjali

indica

IRTP 23206 X X X X
IR62266-42-6-2 IRGC 117597 X X X X X X X

IR64 IRTP 12158 X X X X X X X X
IR72 IRTP 14747 X X X X X X X

CT9993-5-10-1M

japonica

IRIS
71-1229921 X X X X X X X

M202 IRGC 77142 X X X X X X X
Moroberekan IRGC 12048 X X X X X X X X
Nipponbare IRGC 12731 X X X X X
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Table 2. Overview of results from PacBio full-length isoform sequencing from ten Oryza sativa L.
(Poaceae) cultivars. Identified high (HQ) and low quality (LQ) isoforms were analyzed for non-plant
contamination using blast. Contaminating sequences (not in the group of Viridiplantae) were removed
(HQ after filtering). PB—number of PacBio SMRT cells, GB—total number of sequenced base pairs
in gigabases, FLNC—full-length non-chimeric reads. Cultivars were sorted alphabetically within the
subspecies (ssp.) aus, indica and japonica.

Cultivar ssp. PB GB FLNC HQ LQ HQ after Filtering

Dular aus 2 18.46 460,340 42,252 1960 41,396
N22 3 24.17 736,747 54,572 1807 52,333

Anjali

indica

2 15.49 481,094 40,208 1732 39,438
IR62266-42-6-2 2 22.48 649,085 50,569 1659 50,510

IR64 2 21.97 622,881 49,633 1279 49,327
IR72 2 20.31 554,872 44,176 2170 44,049

CT9993-5-10-1M

japonica

2 20.81 620,595 48,537 1465 48,401
M202 2 24.07 656,740 48,836 1501 48,676

Moroberekan 2 24.51 675,251 54,684 1721 54,594
Nipponbare 3 15.65 544,792 37,951 1233 37,535

2.2. Collapsing Redundant Isoforms

During library preparation, 5′ RNA degradation products can be formed and are subsequently
sequenced. These degraded products have the same exonic structure but lack some 5′ sequence
information and hence yield redundant isoforms that are not associated with technical bias or biological
context. To tackle the problem, three different approaches to collapse redundant isoform models
were tested, namely cogent, cDNA cupcake and TAMA. While cDNA cupcake and TAMA perform
collapsing based on a reference genome sequence, cogent can be used without a reference sequence.
Instead, it reconstructs a coding genome based on the PacBio sequences and maps the same sequences
back to the reconstructed genome. Based on this mapping, it then collapses the redundant isoforms
using the cDNA cupcake algorithm. For TAMA and cDNA cupcake, transcripts were mapped against
the respective O. sativa subspecies genome sequences using minimap2. Only a small number of
transcripts were not mapped by these approaches (Table 3). With cogent, a much larger number
of transcripts (5441 to 7979) could not be mapped back against the respective reconstructed coding
genomes. In general, all three tools reduced the number of isoforms strongly, by 47.6% (cDNA cupcake,
Nipponbare) to 68.3% (cogent, Dular) after collapsing.

Table 3. Number of isoform models after collapsing with TAMA, cDNA cupcake and cogent.
#Tr.—number of filtered, high-quality isoforms used for collapsing. Cultivars were sorted alphabetically
within the subspecies (ssp.) aus, indica, and japonica.

Cultivar ssp. Reference # Tr.
Reference-Based Reference-Free

TAMA cDNA Cupcake Unmapped Cogent Unmapped

Dular aus n22
41,396 13,995 18,239 313 13,107 7340

N22 52,333 18,787 23,954 149 19,026 6603

Anjali

indica S498

39,438 14,371 18,170 178 13,237 6476
IR62266-42-6-2 50,510 18,926 23,803 220 18,773 6913

IR64 49,327 19,064 23,435 1911 17,874 7979
IR72 44,049 15,954 20,646 143 15,251 7426

CT9993-5-10-1M

japonica Nipponbare

48,401 18,789 23,415 223 18,359 6611
M202 48,676 18,925 23,670 240 18,091 6695

Moroberekan 54,594 20,604 26,009 268 20,378 7358
Nipponbare 37,535 16,584 19,674 42 14,345 5441

Uncollapsed (Figure 1a) and collapsed (Figure 1b) isoforms were evaluated by a BUSCO assessment
against a set of 430 highly conserved orthologous proteins in plants and shown for HQ transcripts
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collapsed with TAMA. Because of the incomplete sampling, between 54% and 27% of the essential
proteins were missing, while in the reference transcriptome of Nipponbare (IRGSP) only six essential
proteins were missing. The tissue localization of the missing proteins was checked exemplary in the
InterPro database [40]. This only provided information on a small fraction of the proteins, but those were
mostly expressed in roots, flowers, stems and seedlings, or expressed during a specific developmental
stage (Supplementary File S3). Due to our pooling of several RNA samples before library construction,
we would also expect to miss rare transcripts due to a dilution effect. For all cultivars, between 3%
and 7% of all identified proteins were fragmented before collapsing. This fraction decreased between
2% and 5% after collapsing (Figure 1). Similarly, the number of complete and duplicated transcripts
was reduced in favor of single-copy proteins. While for the uncollapsed isoforms, around 19%
(Dular) up to 40% (CT9993-5-10-1M) of the proteins were complete and duplicated, this fraction
decreased after collapsing to approximately 8% (Anjali) and 18% (IR64) with a corresponding increase
of complete and single-copy proteins. For the IRGSP Nipponbare reference transcriptome the majority
of transcripts encoded complete and single-copy proteins. Similar results were obtained for cDNA
cupcake (Figure A1b). For cogent (Figure A1a) more than 50% of the BUSCO proteins were missing,
most likely due to not mapping back to the reconstructed genome.

Figure 1. BUSCO assessment analysis of uncollapsed (a) and collapsed (b) transcripts. Results of
collapsed transcripts obtained by TAMA are shown. Corresponding results obtained by cDNA cupcake
and cogent are shown in Figure A1. Cultivars were sorted alphabetically within the subspecies aus,
indica and japonica. IRGSP indicates the Nipponbare reference transcriptome.

Through collapsing, the median transcript length increased for all cultivars and for all three
methods, as shown for TAMA in Figure A2. The length distribution and median length of the transcripts
from each cultivar were more similar to the Nipponbare reference transcriptome after collapsing.
Additionally, the number of isoforms per gene locus was determined for all three collapsing methods
(Figure 2). TAMA yielded the highest fraction of unique isoform models per gene locus, with around
75% for each cultivar. cDNA cupcake resulted in around 60%, whereas cogent, the reference-free
approach, collapsed around 50% of the HQ isoforms into unique isoform models. The relative number
of isoforms per gene locus was also determined for the Nipponbare reference transcriptome (IRGSP)
resulting in 85% unique isoform models per gene locus.

The three O. sativa subspecies aus, indica and japonica differ in their genome sequences and cultivars
from the same subspecies are more closely related [15]. To evaluate genetic distances among our
candidate cultivars and to compare the effect of collapsing by different tools, a phylogenetic study
was performed. Single nucleotide polymorphisms (SNPs) were called in the collapsed transcriptome
datasets based on the IRGSP Nipponbare genome reference and phylogenetic trees were drawn based
on an analysis with SNPhylo (Figure 3). SNPhylo extracts high-quality and representative SNPs for
the analysis and resulted in around 30,000 SNPs for cDNA cupcake, 23,200 SNPs for cogent and
around 16,000 SNPs for TAMA. For all three approaches, the cultivars of the same subspecies clustered
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together. The trees constructed from the cogent (Figure 3a) and cDNA cupcake (Figure 3b) analyses
were more similar to each other than to the tree obtained after collapsing with TAMA (Figure 3c).
By all three approaches, the aus cultivars were clearly separated from the indica and japonica cultivars.
However, the separation between cultivars of the indica and japonica subspecies was less clear for
cogent and TAMA than for cDNA cupcake.

Figure 2. Fraction of isoforms per gene locus for the ten Oryza sativa L. (Poaceae) cultivars and the
Nipponbare reference transcriptome (IRGSP). Cultivars were sorted alphabetically within the subspecies
aus, indica and japonica.

Figure 3. Phylogenetic trees constructed with SNPhylo. Trees are based on SNPs from the transcriptomes
of ten Oryza sativa L. (Poaceae) cultivars from the subspecies aus, indica and japonica after collapsing
redundant transcripts with cogent (a), cDNA cupcake (b) and TAMA (c). Red—japonica, purple—indica,
green—aus.

2.3. Evaluation of Reconstructed Transcriptomes

For further biological analysis, collapsed HQ transcripts obtained with TAMA were used.
Because TAMA only collapses transcripts mapped against the reference genome, unmapped transcripts
were collapsed additionally with cogent. The combined data for each cultivar resulted in 10,511 (Dular)
to 15,011 (IR64) reconstructed gene loci as well as between 14,255 (Dular) and 20,803 (Moroberekan)
unique isoform models (Table 4). Compared to the Nipponbare transcriptome reference (IRGSP),
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around one third of the gene loci and about half of the transcript models were reconstructed. The average
number of transcripts per gene locus was about 1.4 to 1.5 for each cultivar, which was slightly higher
than for the reference transcriptome with 1.2. The median transcript length ranged from 986 bp (Dular)
to 1394 bp (Nipponbare) and was similar to the Nipponbare reference of 1385 bp. The average GC
content was between 50.87% (Dular) and 52.76% (IR64), again similar to the reference GC content
of 51.24%.

Table 4. Summary of reconstructed transcriptomes including the Nipponbare reference transcriptome
(IRGSP). #GL—Number of gene loci, #TR—Number of transcripts, #TR/GL—average number of
transcripts per gene locus, Total #bp—total number of bp of all transcripts, Min—shortest transcript in
bp, Max—longest transcript in bp, Median—median length of transcripts in bp, GC—content of the
nucleotides G and C in %. Cultivars were sorted alphabetically within the subspecies (ssp.) aus, indica,
and japonica.

Cultivar ssp. # GL # TR # TR/GL Total # bp Min [bp] Max [bp] Median [bp] GC [%]

Dular aus 10,511 14,255 1.4 15,447,641 56 4551 986 50.87
N22 13,343 18,913 1.4 26,290,969 62 5911 1295 52.26

Anjali

indica

10,616 14,499 1.4 17,717,403 75 4216 1156 51.99
IR62266-42-6-2 13,227 19,093 1.4 26,791,848 51 7190 1314 51.37

IR64 15,011 20,672 1.4 28,663,408 56 6919 1299 52.76
IR72 11,647 16,081 1.4 19,678,018 53 5475 1149 51.16

CT9993-5-10-1M

japonica

13,354 18,963 1.4 26,757,988 55 5752 1318 51.97
M202 13,143 19,105 1.5 26,258,012 59 6644 1287 51.74

Moroberekan 14,324 20,803 1.5 28,446,682 57 7072 1278 51.80
Nipponbare 11,366 16,622 1.5 24,760,098 75 6035 1394 52.60

IRGSP japonica 38,866 45,660 1.2 69,184,066 30 16,029 1385 51.24

The de novo reconstructed transcriptomes of the ten O. sativa cultivars were compared with the
existing Nipponbare reference annotation using gffcompare. This tool reports transcripts that fully
match, partially match or do not match a reference transcript. A full match transcript has an exact
intron-exon-chain matching (“Annotated”) to the reference annotation, whereas partially matched
transcripts share at least one splice junction with the reference transcript or show intron retention
(“Novel isoform”, “Retrained intron”). Additionally, gffcompare also reports isoforms on the antisense
strand (“Novel antisense”) compared to the reference, fully contained exon-chains within a reference
intron (“Novel intronic”) and on intergenic (“Novel intergenic”) regions as well as intron matches on
the opposite strand, exonic overlap on the opposite strand, and others (“Novel other”). About 60%
of our reconstructed transcripts were fully matched to a known reference transcript of Nipponbare,
while around 40% were reported in a broader sense as novel (Figure A3).

2.4. Functional Annotation

To get insight into the biological context of the reconstructed transcripts, functional annotation was
performed. Open reading frames (ORFs) were predicted using TransDecoder (Figure 4), including blast
and PFAM searches, indicating the presence of approximately 60% to 70% complete ORFs (including
start and stop codon). Between 26% and 38% 5′ partial ORFs (only start codon), and low percentages of
3′ partial (only stop codon) and internal (neither start nor stop codon) ORFs were additionally identified.

Functional annotation was performed with Trinotate and Mercator4. Mercator4 was developed
specifically for plants and uses a simple hierarchical tree structure of terms referred to as “bins” that
describe biological concepts [41]. Major biological processes such as photosynthesis are represented
by top-level bins and each offspring bin describes a more narrowly focused subprocess, ending at
the single-protein level for each parent bin. Currently, the ontology comprises 27 functional top-level
categories representing a diverse range of biological processes in plants. The number of annotated
sequences in each Mercator bin for the cultivars N22, IR64 and Nipponbare as representative cultivars
for each subspecies, were compared with all known genes for O. sativa in the Mercator ontology
(Figure 5). The relative distribution is similar among the three cultivars, and to the reference.
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However, the Mercator ontology has over 28,000 known O. sativa genes (Figure A4) that have not been
assigned to a functional bin and hence, between approximately 8000 and 10,000 transcripts were not
assigned to functional bins for the three cultivars.

1 
 

Figure 4. Fraction of predicted open reading frames (ORFs) using TransDecoder. Complete ORFs
include start and stop codon, 5′ partial/3′ partial ORFs contain only the start or the stop codon,
respectively, and internal ORFs contain neither start nor stop codon. Numbers represent the number of
transcripts for each category per cultivar. Cultivars were sorted alphabetically within the subspecies
aus, indica and japonica.

Figure 5. Classification of transcripts into functional bins. Transcripts of N22 (aus), IR64 (indica)
and Nipponbare (japonica) were classified into functional bins using Mercator. The bins “not
assigned.annotated” and “not assigned.not annotated” are not included.



Int. J. Mol. Sci. 2020, 21, 8148 10 of 26

The complete results of the functional annotation using the TransDecoder-Trinotate pipeline and
Mercator are shown for each cultivar (available online: 10.6084/m9.figshare.c.5128859). The fraction of
sequences with at least one significant hit are summarized in Table 5. For Mercator, blastx, blastp and
PFAM retrieved between approximately 60% and 75% significant hits for annotations. For GO terms,
only around 38–48% of the transcripts of each cultivar were connected to a functional annotation.
Finally, between about 17% and 28% of the transcripts could not be functionally annotated. Because the
Swiss-Prot database was used for annotation, which only includes manually curated proteins, data of
Oryza wild species were mainly not represented. To investigate, whether unannotated transcripts
were derived from wild ancestors of O. sativa, cDNA sequences of all available Oryza wild species
were downloaded from EnsemblPlants and compiled as a blast database. Unannotated transcripts
were searched against it and between 82% and 92% of these transcripts were highly similar to cDNA
sequences of Oryza wild species.

Table 5. Fraction of transcripts (%) for which at least one significant annotation was found by Mercator
or the TransDecoder-Trinotate pipeline (blastx, blastp, PFAM or GO). Furthermore, also shown is
the percentage of transcripts for which no annotation was reported. All unannotated transcripts
(No annotation) were additionally compared with an Oryza wild species cDNA database using blast.
The fraction of unannotated transcripts with a highly similar sequence to an Oryza wild species cDNA is
shown (Homologs WS). Cultivars were sorted alphabetically within the subspecies (ssp.) aus, indica and
japonica.

Cultivar ssp. MercatorBlastx Blastp PFAM GO No Annotation Homologs WS

Dular aus 61.60 65.17 59.57 59.81 37.98 27.60 90.54
N22 68.40 72.05 68.43 70.01 45.52 19.24 91.33

Anjali

indica

65.77 69.46 65.43 66.90 43.06 22.03 89.82
IR62266-46-6-2 68.08 71.53 67.16 68.64 44.85 20.19 91.19

IR64 67.78 71.27 67.37 69.55 45.31 20.23 82.03
IR72 63.55 67.20 62.26 63.78 41.22 24.96 88.54

CT9993-5-10-1M

japonica

68.57 71.80 67.58 69.24 45.01 19.62 92.43
M202 67.78 71.08 66.69 67.97 44.44 20.68 90.71

Moroberekan 65.72 69.03 64.66 66.85 43.42 22.37 91.68
Nipponbare 71.25 74.35 70.26 72.16 47.59 16.81 91.31

2.5. Common and Specific Transcripts among Cultivars

To identify cultivar-specific transcripts, the transcriptome of one cultivar of each subspecies (N22,
IR64, Nipponbare) was used as a blast database and the sequences of the remaining nine cultivars were
searched against it. The most highly significant hit for each database entry of each cultivar was selected
and the common overlap with all other cultivars was determined (Figure 6). For N22 (Figure 6a)
around 18,000 transcripts were included in the database, of which about 9000 were highly similar
to transcripts from the other nine cultivars. In total, 652 transcripts were unique to N22 and over
184 transcripts were only found in the aus cultivars N22 and Dular. The aus-specific transcripts were
extracted, including their annotations (Supplementary File S4). For the indica cultivar IR64 (Figure 6b)
and the japonica cultivar Nipponbare (Figure 6c) the search space included approximately 15,000 and
20,000 transcripts each, resulting also in around 9000 common transcripts over all cultivars. While for
IR64 2426 cultivar-specific transcripts were identified, only 349 were determined for Nipponbare
(Supplementary File S4).
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2 Figure 6. Identified common and specific transcripts over all cultivars. Sequence similarities were
identified by a blastn search using the transcriptome of a representative cultivar of each subspecies as
database. The best hit for each database entry was selected based on the cultivars N22 (a), IR64 (b),
and Nipponbare (c). The 15 largest categories were visualized in an UpSet plot. The barplots on the
left of the cultivar names represent the size of the datasets, with the blue bars indicating the size of
the search space. Dots and vertical lines indicate the cultivars included in the overlap. Barplots in the
top panels represent the number of transcripts in the respective comparison. Cultivars were sorted
alphabetically within the subspecies aus, indica and japonica.
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2.6. Differential Gene Expression Analysis for Aus Specific Transcripts

The aus cultivar N22 is particularly tolerant to combined drought and heat stress [34]. We therefore
asked whether any of the identified aus-specific transcripts were regulated under these conditions.
A differential gene expression (DGE) analysis was performed for N22 plants grown in the field under
control and combined drought and heat stress. RNA-Seq was performed using RNA isolated from
developing seeds and the resulting Illumina reads were mapped against the de novo reconstructed
N22 transcriptome. After identifying significantly differentially expressed genes with DESeq2 (FDR
p < 0.1, absolute log2 fold-change ≥ 1), 56 aus-specific genes were extracted (Supplementary File
S5). As determined by a blast search, about 46% of these genes had Arabidopsis thaliana (L.) Heynh.
(Brassicaceae) homologs, 27% lacked any annotation and 11% each were either only described by a
PFAM domain or were homologous to sequences in other plant species, while 5% had known homologs
in Oryza.

As an example, we describe the gene B12288, which was significantly upregulated during combined
heat and drought stress (Supplementary File S5). It has homologous genes in both japonica and indica
cultivars annotated as RAB21. The gene is induced by drought and the corresponding protein belongs
to the dehydrin family of Late Embryogenesis Abundant (LEA) proteins. Evolutionary relationships
with other Oryza dehydrins [42] were investigated by multiple sequence alignments and visualized
as a tree (Figure A5). The N22 gene product was closely related to four other dehydrins in wild rice
species and O. sativa ssp. japonica. It showed 89.5% sequence coverage and 86.0% sequence identity
compared to the japonica protein (Figure 7) including the highly conserved repeat regions characteristic
of dehydrins [43,44]. The N22 protein was more similar to the proteins from Oryza wild species than to
the japonica protein (see Figures 7 and A5).

Figure 7. Multiple sequence alignment of five Oryza RAB21 dehydrin proteins. Os—Oryza sativa L. ssp.
japonica, OGLUM—Oryza glumaepatula Steud., ORUF—Oryza rufipogon Griff., ONIVA—Oryza nivara
S.D. Sharma and Shastry, B12288_1_PacBio—RAB21 protein from the Oryza sativa ssp. aus cultivar
N22. The encoding transcript was identified as aus-specific in our analysis. Color theme is “identity”
by MVIEW [45].

3. Discussion

3.1. Sequencing Performance

Between 15.7 and 24.5 GB of cDNA were sequenced for each cultivar on two or three SMRT cells
resulting in from 460,340 up to 736,747 full-length non-chimeric (FLNC) reads. Using the IsoSeq3
protocol, between 38,000 and 54,700 high-quality (HQ) transcripts for each cultivar were obtained
before filtering out contaminants. Among the ten cultivars, the sequencing output was similar.
In previous studies of plant transcriptomes more SMRT cells were used, but this resulted in a similar
output of FLNC reads and HQ transcripts. For example, for the wheat cultivar Xiaoyan 81 [46]
around 197,800 FLNC reads were obtained on the RSII platform and processed into 91,800 HQ reads
based on eight SMRT cells. With the newer PacBio Sequel platform that we also used in our study,
around 650,000 FLNC reads were obtained using five SMRT cells analyzing the transcriptome of the
wild cotton species Gossypium australe F. Müll. [29] but in this case an older chemistry and software
were used. Therefore, it is difficult to directly compare the sequencing output from different studies.
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However, our results indicate that two to three SMRT cells are sufficient to obtain useful Iso-Seq data
with the currently available technology.

The PacBio technology has a relatively high sequencing error-rate, but these errors are distributed
randomly among the sequence [24]. Since sequencing is performed on circularized cDNA molecules,
several sequencing passes can be generated for a given cDNA, carrying errors in different random
locations. The PacBio IsoSeq3 tool is then generating a consensus sequence based on the multiple
sequenced cDNA template to eliminate these errors. However, even after the correction, InDels and
SNPs may still occur. In a study on sorghum [25] using the older RSII technology, HQ reads were
mapped against a reference genome sequence and a per-nucleotide error rate of 2.34% was observed.
This made a correction using corresponding RNA-Seq data necessary. Using the Sequel technology,
we found a per-nucleotide error rate between 0.08% and 0.14% for the uncorrected HQ reads, based on
mapping against the respective subspecies reference genome sequences. This low error rate made
further correction unnecessary.

3.2. Collapsing Redundant Transcripts and Transcriptome Quality Assessment

During library preparation, degradation products can be formed and are subsequently sequenced.
These shorter transcripts lack some of the 5′ sequence but are otherwise identical to the full-length
transcripts, resulting in large numbers of redundant transcripts. This effect can be reduced
experimentally using specific 5′ end capturing library preparation methods, or it can be partly
compensated computationally by the use of collapsing software. We compared the utility of the tools
cogent, cDNA cupcake and TAMA to reduce the number of redundant transcripts. Cogent does not
need a reference genome sequence to collapse redundant isoforms and was successfully applied to
transcriptomes from organisms without an available genome reference [29,47,48]. cDNA cupcake
and TAMA, on the other hand, need a reference genome sequence and have been more commonly
used [49–52].

In our study, the number of transcripts after collapsing decreased by up to 68%, indicating the
necessity to reduce redundancy and thereby improve data quality. While TAMA and cogent resulted in
similar numbers of collapsed transcripts, the numbers were slightly higher after processing with cDNA
cupcake. Cogent left more transcripts unmapped, compared to the other tools. This may be due to the
generation of transcript orphans, i.e., putative single-isoform transcripts that were not incorporated
into the reconstructed transcriptomes.

Transcriptome quality improvement after collapsing was shown by the BUSCO assessment,
where the number of encoded complete and single-copy proteins increased by approximately 20% to
between about 35% and 55% of all proteins included in BUSCO, while for the reference transcriptome
this was about 75%. However, as expected, only about 70% of all BUSCO proteins were covered by our
partial transcriptomes. For comparison, PacBio sequencing of the sugarcane transcriptome [28] using a
pooled RNA sample derived from leaf, internode and root tissues at different developmental stages
collected from 22 varieties resulted in a coverage of 90% of the BUSCO proteins. However, since no
collapsing was performed, this study found 66% complete but duplicated BUSCO proteins.

Collapsing transcripts with TAMA resulted in the highest fraction of one isoform models per gene
locus and the average number of isoforms per locus in our different transcriptomes was very similar
to the Nipponbare reference transcriptome. This is, however, not always the case. A PacBio IsoSeq
study in maize [53] identified an average of 6.56 isoforms per gene locus using the cDNA cupcake
pipeline, more than twice the number found for the reference genome annotation with an average of
2.84 transcripts per gene locus. Cogent and cDNA cupcake yielded lower fractions of one isoform
models per gene locus in our study. Since there are, to the best of our knowledge, no other direct
comparisons of the three collapsing tools available, it cannot be judged whether the tools may perform
differently with different data sets or different reference transcriptomes. Obviously, only cogent could
be used in cases where no reference genome sequence is available.
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Around 70% of the transcripts covered a complete ORF in most of the cultivars. Only Dular and
Anjali showed a smaller fraction of complete ORFs. The differences among the cultivars are due to a
different fraction of 5′ truncated ORFs. In these cases, either the collapsing tool (TAMA) has not worked
sufficiently, or no full-length ORFs were sequenced for these particular transcripts. Either way, it seems
that a certain fraction of incomplete ORFs cannot be avoided, given the methodology we employed
in our study. A PacBio IsoSeq study of the chicken transcriptome compared brain and embryo RNA
libraries, where both libraries were normalized to reduce over-represented transcripts, but only for
the embryo library a 5′ cap selection was performed [54]. Here, the number of transcripts dropped
by 60% for the brain data and by 21% for the embryo data after collapsing with an older version of
cDNA cupcake, indicating lower transcript redundancy for the capped library. However, it remains to
be tested in detail, whether other library preparation methods would yield better results, perhaps in
combination with the collapsing approach.

3.3. Common Transcripts and Differential Gene Expression Analysis

Even for the well-annotated Nipponbare transcriptome, around 17% of the transcripts that
we found did not have a functional description and are therefore considered to be novel isoforms.
Similarly, for the remaining cultivars, between 19% and 28% of the transcripts could not be assigned
with a functional description. This is supported by the identification of a large fraction of potential
novel isoform models by the gffcompare tool compared with the Nipponbare reference transcriptome.
However, gffcompare also reports isoforms as “novel” models, which share at least one splice junction
with the reference transcript and differ in the remaining splice junctions for multiple-exon transcripts.
This criterion can be weak for example where exon-exon boundaries are shifted due to sequencing
errors [55].

Since all ten cultivars that we analyzed belong to the same species, they should have a large
fraction of common transcripts that may be identified by a blast search. We therefore used the
transcriptome of one cultivar from each subspecies to generate a database for blast searches of the
other nine transcriptomes. With this approach, we were able to identify common, cultivar- and
subspecies-specific transcripts within our datasets. It must be stressed, however, that the lack of a
transcript in the transcriptome of a particular cultivar may have two reasons. It could indeed be absent
from the transcriptome and genome of this cultivar, or it could be missing from the transcriptome of
this cultivar relative to one of the databases because of differences in sampling, such as different tissues
or growth conditions.

Our analysis indicated, as expected, that the largest fraction of the transcripts identified in N22
(47.6%), IR64 (44.8%) and Nipponbare (55.2%) were common to all transcriptomes. Using the aus cultivar
N22 as the database yielded 652 N22-specific and an additional of 184 aus specific transcripts, resulting
in 836 transcripts in total (4.4% of the total N22 transcripts) that were only found in the aus cultivars.
Interestingly, we also identified 160 transcripts in IR64 and 166 in Nipponbare that were not present in
either of the aus transcriptomes, while neither the IR64 nor the Nipponbare transcriptomes contained
any transcripts that were specific for the respective subspecies. The Nipponbare transcriptome only
contained a very small fraction (2.1%) of cultivar-specific transcripts. This was very different in
the IR64 transcriptome with over 2426 unique transcripts, comprising 11.7% of the transcriptome.
We attribute this high fraction of cultivar-specific IR64 transcripts to the fact that only in this case roots
were included in the analysis and submergence and salt stress were applied. In all other cultivars,
only above-ground tissues were sampled, and treatments involved exclusively high night temperatures,
heat and drought stress.

Aus cultivars are known to be more stress tolerant than indica or japonica cultivars and contain
genes, such as the phosphate starvation tolerance gene OsPSTOL1 [17], the submergence tolerance
gene OsSUB1A [18] and the deepwater escape genes OsSNORKEL1/2 [19] that are absent in the
Nipponbare reference genome. To test whether our transcriptome sequencing approach might
aid in the identification of such aus-specific stress-related genes, we performed a differential gene
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expression analysis by Illumina-based RNA-Seq. The samples from developing seeds were obtained
from N22 plants grown under control and combined drought and heat stress in the field [34].
More than 50 significantly differentially expressed genes were identified as unique to the aus subspecies
transcriptomes. Over 45% of the gene products were annotated as homologous to an A. thaliana gene,
such as the gene B12989 annotated as encoding a RALF precursor polypeptide, which may regulate
plant stress responses, growth and development in Arabidopsis and tobacco (Nicotiana tabacum L.) [56].

We characterized one of the significantly induced genes in more detail. The gene B12288 is
annotated as RAB21. This gene has homologs in different O. sativa subspecies and in various wild
species of Oryza. It belongs to the dehydrin family of LEA proteins and high levels of expression of
RAB21 have been found in mature seeds, as well as in vegetative tissues under salt and drought stress,
and after treatment of rice seedlings with the plant stress hormone abscisic acid [57]. The drought and
heat induced RAB21 gene we identified in N22 was more closely related to RAB21 isoforms from wild
rice species than to the homolog from Nipponbare. The sequence differences are not large but may
nevertheless be functionally significant. It has been shown with in-vitro assays that some dehydrins
are able to protect enzymes from inactivation under heat stress [58,59], indicating a possible function
of RAB21 under combined drought and heat stress conditions that led to transcriptional upregulation.
It is still unclear which structural characteristics determine the ability of a dehydrin to act as an enzyme
stabilizer under heat stress and therefore, the functional significance of the sequence differences between
RAB21 from Nipponbare and N22 cannot be evaluated. However, it has recently been shown that
changes in only four amino acids in the LEA protein COR15A from Arabidopsis significantly increased
the stabilizing effect of this protein for membranes during freezing [60]. It is therefore conceivable that
the minor differences in amino acid sequence between the RAB21 proteins from different subspecies
and wild rice species may have significant functional effects. Obviously, further experimental work
will be necessary to test this hypothesis.

4. Materials and Methods

4.1. Plant Material

Different tissues of ten cultivars from the O. sativa ssp. japonica, indica and aus were used for RNA
isolation. Cultivars of the subspecies aus, indica and japonica are referred to in the text as aus, indica or
japonica cultivars. Plants were grown under combined drought and heat stress in the field at the
International Rice Research Institute at the Philippines (IRRI) (Dular, N22, Anjali) [34], under heat and
combined drought and heat stress under controlled climate conditions at IRRI (N22, Moroberekan) [35],
under shoot submergence and root salinity, and combined shoot submergence and root salinity in
net-houses at IRRI (IR64) [32], under high night temperature stress under controlled climate conditions
at the Max Planck Institute of Molecular Plant Physiology in Germany (IR62266-42-6-2, IR64, IR72,
CT9993-5-10-1M, M202, Moroberekan, Nipponbare) [36] and under high night temperature stress in
the field at IRRI (IR62266-42-6-2, IR64, IR72, CT9993-5-10-1M, M202, Moroberekan) [33]. Samples were
obtained from plants grown under both stress and control conditions (see Supplementary File S1 for a
complete list of all samples). An overview of cultivars, tissues and growth environments is given in
Table 1. The selection of cultivars was based on their different sensitivity to high night temperature [36],
heat, drought or combined heat and drought stress [34,35].

4.2. RNA Extraction and Sequencing

Total RNA was isolated from homogenized frozen material from all samples listed in
Supplementary File S1 using Trizol-based methods [61,62]. RNA was quantified spectrophotometrically
(NanoDrop Technologies, Wilmington, DE, USA) and genomic DNA contamination was removed by
DNase treatment (Rapid Out DNA Removal Kit, Thermo Scientific, Dreieich, Germany). Absence of
genomic DNA was verified by qRT-PCR using a primer pair amplifying an intron sequence [63].
Final RNA quality and integrity were assayed using the Agilent 2100 Bioanalyzer (Agilent Technologies,
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Santa Clara, CA, USA). For each cultivar, RNA isolated from all organs and treatments was pooled to
generate one sample per cultivar. PacBio library preparation and sequencing were performed at the
Max Planck Genome Center Cologne, Germany. cDNA was synthesized and amplified according to
the Pacific Biosciences’s protocol using the SMARTer PCR cDNA Synthesis kit (Clontech, Mountain
View, CA, USA) and amplification by the KAPA HIFI PCR Kit (Kapa Biosystems, Wilmington, MA,
USA). The cDNAs were not size-selected and PacBio libraries were prepared with the SMRTbell
Template Prep Kit 1.0 (Pacific Biosciences, Menlo Park, CA, USA) and sequenced on the PacBio Sequel
I with Sequel DNA polymerase and binding kit and sequencing chemistry version 2.1 for 600 min.
Each library was sequenced on two or three SMRT cells to achieve sufficient coverage.

For RNA-Seq analysis, RNA was isolated from developing seeds of the aus cultivar N22. Plants
were grown in the field in 2013 under either well-watered control conditions or under combined
drought and heat stress [34] and RNA was extracted using Ribospin Seed/Fruit and Riboclear plus!
(GeneAll Biotechnology, Songpa-gu, Republic of Korea) following the manufacturer´s instructions.
Three biological replicates were generated for each condition (control/stress). Quantification of RNA
and quality controls were performed as described above. Library preparation and sequencing were
performed at the Max Planck Genome Centre Cologne. Libraries were prepared with NEBNext Ultra
Directional RNA Library Prep Kit for Illumina (New England Biolabs, Frankfurt am Main, Germany)
and sequenced using Illumina HiSeq 3000 technology generating approximately 30 million 150 base
pair-long single-end reads per sample.

4.3. De novo Transcriptome Reconstruction

To generate full-length isoforms, the software IsoSeq3 v3.0 included in smrtlink v5.1 (Pacific
Bioscience, Menlo Park, CA, USA) was used to perform the following four steps: consensus (ccs 3.0.0),
lima (lima 1.0.0), cluster (sierra 0.7.1) and polish (tango 0.7.1). Raw data processing for each library
was performed on combined data from two or three SMRT cells (using the smrtlink command create)
with default parameters:

ccs $in.subreads.bam $out.bam –noPolish –minPasses=1
lima $in.xml primer.fasta $out.demux.ccs.bam –isoseq –no-pbi –dump-clips
isoseq3 cluster $in.demux.ccs.bam $out.unpolished.bam
isoseq3 polish $in.unpolished.bam $out.polished.bam

As final output high-quality (HQ) and low-quality (LQ) isoforms were obtained. Only HQ
isoforms were used for subsequent analysis. To identify contaminations, HQ isoforms of all cultivars
were aligned against the NCBI nucleotide database (downloaded: 24.07.2018) with blastn v2.3.0 [38]
(E ≤ 1 × 1010). Isoforms without a hit were aligned against the NCBI protein database (downloaded:
24.07.2018) using blastx v2.3.0 [38] (E ≤ 1 × 10−10). All isoforms without a significant hit for the family
Viridiplantae (green plants) were defined as contaminations and removed.

4.4. Genome References

For insertion and deletion (InDel) determination, collapsing and mapping, three O. sativa genome
references from the subspecies aus (N22) [6], indica (Shuhui498 (R498 genome)) [13] and japonica
(Nipponbare, IRGSPv1.0.44) [10] were used.

4.5. InDel Analysis

HQ isoforms of each cultivar were mapped against the subspecies-specific reference genomes
using minimap2, v2.17-r941 [64] with the parameters –ax splice, –uf –C5 and –secondary=no. Insertions
and deletions were determined by extracting the cigar string from the alignment files in bam format [65].
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4.6. Collapsing Redundant Isoforms

For the removal of redundant PacBio isoforms, three tools were tested, namely Transcriptome
Annotation by Modular Algorithms (TAMA) [50], cDNA cupcake [66] and COding GENome
reconstruction Tool (cogent v3.9) [67] followed by the cDNA cupcake collapse pipeline. For further
descriptions, we will refer to the latter only as cogent. TAMA and cDNA cupcake use a reference genome
to collapse PacBio isoforms, while cogent employs a reference-free approach, where it reconstructs
gene loci based on PacBio isoforms creating its own “coding genome”. Afterwards, cDNA cupcake is
employed to collapse the isoforms based on the created reference. For TAMA, the following parameters
were used: -x no_cap,-e longest_ends,-a 100,-z 100,-m 30 and -d merge_dup. cDNA cupcake and cogent
were run with default parameters following the descriptions on the corresponding websites [68,69].
For both reference-based approaches, the respective reference genome of the appropriate subspecies
was used, and HQ isoforms were mapped with minimap2 v2.17-r941 [64]. For all downstream analysis,
collapsed transcript models obtained by TAMA were used. While cogent and cDNA cupcake provide
the PacBio transcripts after collapsing, TAMA generates a bed file with the coordinates of the collapsed
transcripts and sequences extracted from the corresponding genome sequence of each subspecies for
the ten cultivars using bedtools v2.27.0 [70] getfasta. Additionally, remaining unmapped transcripts
were collapsed with cogent and added to the final datasets. All collapsed datasets are available
online [71].

4.7. BUSCO Analysis

A set of 430 Viridiplantae conserved ortholog proteins was used in BUSCO v3.0.2 (Benchmarking
Universal Single-Copy Orthologs) [72] to assess the completeness of the conserved content of the de
novo reconstructed transcriptomes using the BUSCO transcriptome mode.

4.8. Phylogenetic Analysis

For phylogenetic analysis, SNPs of the collapsed transcripts from TAMA, cDNA cupcake and
cogent were used for analyses with SNPhylo [73]. Collapsed transcripts of all cultivars obtained by
cogent and cDNA cupcake were mapped against the IRGSP Nipponbare reference genome and SNPs
were called utilizing the bcftools v1.9 pipeline [74]. For TAMA, HQ transcripts of all cultivars were
collapsed based on the Nipponbare reference genome and the generated variant file was used to
determine SNPs. Entries were filtered for the “M” type and defined as alternative alleles. The respective
reference alleles were extracted with bedtools v2.27.0 from the reference genome. A simple SNP file
was generated and used as input for SNPhylo. Phylogenetic trees were visualized with Figtree [75].

4.9. Comparison of Reconstructed Transcriptomes

HQ collapsed sequences were classified and compared with the existing IRGSP Nipponbare
annotation using gffcompare v0.11.2 [76]. The classifications defined by gffcompare were generalized
into annotated (classes “=” and “c”), novel isoform (classes “j” and “k”), retrained intron (classes “m”
+ “n”), novel antisense (class “x”), novel intronic/intergenic (classes “i” and “u”) and novel others
(classes “o”, “y”, “e”, “s” and “p”).

4.10. Functional Annotation

ORFs were predicted with TransDecoder v5.5.0 [77]. The candidate protein coding regions were
extracted by transDecoder.LongOrfs with a minimum length of 100 amino acids. Resulting ORFs were
characterized according to similarities to known proteins by a blastp v2.3.0 search [38] (E ≤ 1 × 10−5)
of the comprehensive Swiss-Prot protein database [78] (downloaded 09.09.2019) and for conserved
protein domains using Hmmer v3.2.1 [79] based on the Pfam database [80] (downloaded 18.09.2019).
Finally, likely coding regions were reported by the transDecoder.Predict module including all peptides
with blast or domain hits. Additionally, HQ collapsed transcripts of all ten cultivars were searched
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against the Swiss-Prot database using blastx v2.3.0 (E ≤ 1 × 10−10). All results (blastp, blastx and
Pfam) were parsed by Trinotate v3.2.0 [81], stored in an SQLite relational database and then reported
as a tab-delimited transcript annotation summary file. Additional Gene Ontology (GO) information
was extracted by Trinotate based on the Swiss-Prot database entries. Mercator v4.2 [41] was used as
an additional functional annotation pipeline. HQ collapsed nucleotide sequences were submitted
online [82] and resulting tables were downloaded. Trinotate and Mercator tables were merged to
one table per cultivar and is available online [71]). For a detailed comparison with existing O. sativa
bins, results were also compared to the rice MSU7 annotation on the Mercator website and saved.
All transcripts without any annotation for Mercator or the TransDecoder-Trinotate pipeline were
extracted and a blastn search (min. identity 85%, E ≤ 1 × 10−10) performed against all available cDNA
files of Oryza wild species obtained from EnsemblPlants [83].

4.11. Determination of Common Overlap

Common overlap of transcripts among the cultivars was determined using blastn v2.3.0 [38]
with stricter thresholds than before (E ≤ 1 × 10−10; min. identity 95%). The transcriptome data of the
cultivars N22, IR64, and Nipponbare were transformed into blast databases and the transcripts of the
remaining nine cultivars were searched against these databases. Results were filtered for the best hit
for each database entry, and the common overlap was determined and visualized using the R package
UpSetR [84].

4.12. Differential Gene Expression Analysis

RNA-Seq data for the aus cultivar N22 were mapped against the reconstructed PacBio N22
transcriptome using kallisto v0.45 [85]. Based on the mappings, a differential gene expression
analysis was performed using the R-package DESeq2 v1.26.0 [86]. Aus-specific differentially expressed
transcripts were extracted, and transcript annotations merged on gene level. A selected candidate
gene (B12288) was investigated in more detail. Based on the annotation, the product of B12288 is
a dehydrin and hence, a multiple sequence alignment was performed with rice specific dehydrin
sequences [42] using Clustal Omega [45]. The resulting phylogenetic tree was visualized using
Figtree [75]. Protein sequences were downloaded from www.uniprot.org. The multiple sequence
alignment of four closely related protein sequences to the candidate protein B12288 was visualized
with MView [45].

4.13. Graphical Visualization

If not mentioned otherwise, the R packages ggplot2 [87], ggpubr [88], gridExtra [89] and
reshape2 [90] were used for graphical visualization of the results.

4.14. Availability of Data and Material

PacBio raw data are available in the NCBI’s SRA database under the accession number
PRJNA640670. Collapsed and filtered HQ sequences and functional annotation of all ten cultivars are
available online [71]. RNA-Seq data are available at GEO [91] under the accession number GSE153030.

5. Conclusions

The central question of our study was whether targeted partial transcriptomes obtained by PacBio
Iso-Seq may be useful for the down-stream RNA-Seq analysis in rice cultivars from subspecies such as
aus, which are not well represented by the Nipponbare reference genome sequence. Moreover, by using
these transcriptomes, we wanted to discover novel transcripts and genes involved in abiotic stress
responses in rice. Our analysis has shown that for all cultivars, cultivar-specific transcripts could be
identified. In addition, a number of aus subspecies-specific transcripts were determined. These results
strongly suggest that this approach will be useful for future analysis of RNA-Seq datasets. The general
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approach should also be suitable for many other plant species for which no high-quality genome
assemblies are available, as it represents a much cheaper and computationally less challenging
alternative when the aim is the targeted analysis of RNA-Seq data. In principle, the approach should
also be applicable to species outside of the plant kingdom. Additionally, interesting candidate
genes have been identified (e.g., for N22). These results can be used as a resource to improve the
environmental stress tolerance of rice in an effort to generate climate change resilient cultivars through
targeted molecular breeding. The transcriptomes that we have reconstructed here will be directly
available for the research community.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/21/
8148/s1.
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Appendix A

Figure A1. Benchmarking Universal Single-Copy Orthologs (BUSCO) assessment results for the
collapsing tools cogent (a) and cDNA cupcake (b). 
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Figure A2. Transcript length distribution for ten Oryza sativa L. (Poaceae) cultivars. Length distribution
of uncollapsed transcripts is indicated in green, length distribution of transcripts after collapsing by
TAMA is indicated in orange and length distribution of the Nipponbare IRGSP reference transcriptome
is indicated in purple. Dashed lines show the median length of transcripts for the respective datasets.

Figure A3. Annotated and novel transcripts as identified by gffcompare using the Nipponbare reference
annotation. Cultivars were sorted alphabetically within the subspecies aus, indica and japonica.
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Figure A4. Number of genes classified as “annotated” or “not annotated” among the genes not assigned
to a functional bin in the Mercator ontology for rice. Data are shown for the transcriptomes of N22,
IR64 and Nipponbare and the Nipponbare reference transcriptome.

Figure A5. Phylogenetic tree of Oryza dehydrin proteins. Dehydrin selection was based on Verma
et al. (2017) and includes the following Oryza species: BGI—Oryza sativa L. ssp. indica Kato, Os—O.
sativa L. ssp. japonica, OB—O. brachyantha A. Chev and Roehrich, OPUNC—O. punctate Kotschy ex
Steud., OGLUM—O. glumaepatula Steud., ORUF—O. rufipogon Giff., ORGLA—O. glaberrima Steud.,
ONIVA—O. nivara S.D. Sharma and Shastry, OBART—O. barthii A. Chev, OMERI—O. meridionalis Ng.
The red box indicates the proteins used for the sequence alignment shown in Figure 7.
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