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Abstract: In patients with gliomas, isocitrate dehydrogenase 1 (IDH1) mutation status has been studied
as a prognostic indicator. Recent advances in machine learning (ML) have demonstrated promise in
utilizing radiomic features to study disease processes in the brain. We investigate whether ML analysis
of multiparametric radiomic features from preoperative Magnetic Resonance Imaging (MRI) can
predict IDH1 mutation status in patients with glioma. This retrospective study included patients
with glioma with known IDH1 status and preoperative MRI. Radiomic features were extracted from
Fluid-Attenuated Inversion Recovery (FLAIR) and Diffusion-Weighted-Imaging (DWI). The dataset
was split into training, validation, and testing sets by stratified sampling. Synthetic Minority
Oversampling Technique (SMOTE) was applied to the training sets. eXtreme Gradient Boosting
(XGBoost) classifiers were trained, and the hyperparameters were tuned. Receiver operating
characteristic curve (ROC), accuracy, and f1-scores were collected. A total of 100 patients (age: 55 ± 15,
M/F 60/40); with IDH1 mutant (n = 22) and IDH1 wildtype (n = 78) were included. The best performance
was seen with a DWI-trained XGBoost model, which achieved ROC with Area Under the Curve
(AUC) of 0.97, accuracy of 0.90, and f1-score of 0.75 on the test set. The FLAIR-trained XGBoost
model achieved ROC with AUC of 0.95, accuracy of 0.90, f1-score of 0.75 on the test set. A model
that was trained on combined FLAIR-DWI radiomic features did not provide incremental accuracy.
The results show that a XGBoost classifier using multiparametric radiomic features derived from
preoperative MRI can predict IDH1 mutation status with > 90% accuracy.

Keywords: glioma; radiomics; machine learning; IDH1; DWI

1. Introduction

Gliomas are primary brain tumors that account for nearly 30% of all primary brain tumors and
80% of all malignant brain tumors, and they are accountable for majority of deaths from primary
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brain tumors, despite advancements in treatment [1]. In patients with gliomas, those with IDH1
mutations, specifically IDH1 R132H, are associated with better prognosis when compared to those
with IDH1 wildtype [2–5]. Currently, IDH1 mutation status is identified by DNA sequencing or
immunohistochemistry techniques. When considering how the World Health Organization (WHO)
Classification of 2016 encourages routine testing for IDH1 mutational status [6], noninvasive methods
of glioma assessment would be highly desirable for patients.

Radiomics may have the potential of providing noninvasive assessment of IDH1 mutational status.
The study of radiomics involves the computation of an extensive number of quantitative features,
referred to as “radiomic features”, which describe the imaging characteristics, such as intensity and
geometry attributed to radiological images. Previous studies have utilized radiomic features to predict
diagnosis, prognosis and treatment responses for patients with gliomas [7,8]. The association between
radiomic features and IDH1 genotype has also been explored [9,10].

In recent years, utilizing machine learning (ML) methods for characterizing gliomas from medical
imaging have attracted attention [11]. With regards to predicting glioma characteristics from MRI
radiomic features, studies have primarily explored support vector machines (SVM) and random forest
(RF) classifiers [11,12]. Recently, a new open source highly scalable gradient tree boosting model named
eXtreme Gradient Boosting (XGBoost) has been introduced with some promising results [13]. Whereas,
RF relies on simple averaging to achieve the final ensemble, gradient boosting (GB) involves a more
constructive strategy, sequentially adding models to the ensemble [14]. XGBoost is an optimized form
of GB. To the best of our knowledge, no study has investigated the utility of XGBoost in identification
of IDH1 mutations in grade II, III, and IV gliomas using FLAIR and DWI radiomic features.

We hypothesized that a supervised ML approach using a XGBoost classifier would be able to
predict IDH1 mutation status purely from MRI radiomic features. Therefore, the purpose of this study
was to train and optimize a XGBoost classifier with preoperative Fluid-Attenuated Inversion Recovery
(FLAIR) and Diffusion-Weighted-Imaging (DWI) radiomic features and predict IDH1 mutation status.

2. Results

2.1. Patient Characteristics

A total of 100 patients met the criteria, 60 males and 40 females. The mean ± standard deviation
of age (years) was 55 ± 15. There were 19 patients with lower-grade glioma, including grade II glioma
(n = 11) and grade III glioma (n = 8) and 81 patients with grade IV glioma. There were 78 IDH1
wildtype and 22 IDH1 mutants. Table 1 summarizes patient characteristics. Table 2 summarizes IDH1
status and characteristics of patients within each of the training, validation, and test sets.

Table 1. Patient Characteristics.

Patient Characteristics n (%)

Total Patients 100
Female 40 (40)
Male 60 (60)

Age (in years)
Mean 55 ± 15

Median 57
Range 28–88

Presence of enhancement on MRI 82 (82)
IDH1 status by immunohistochemistry

Wildtype 78 (78)
Mutant 22 (22)

WHO Grade
Grade II 11 (11)
Grade III 8 (8)
Grade IV 81 (81)
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Table 2. IDH1 Status and Characteristics of Patients in Training/Validation/Test Sets.

Subset IDH1 Status Total Male Female Grade II Grade III Grade IV

Training
(n = 60)

Wildtype 46 25 21 1 0 45
Mutant 14 10 4 5 5 4

Validation
(n = 20)

Wildtype 16 10 6 0 0 16
Mutant 4 3 1 2 1 1

Test
(n = 20)

Wildtype 16 10 6 1 0 15
Mutant 4 2 2 2 2 0

2.2. Prediction of IDH1 Mutation Status Using XGBoost Models

Our FLAR-trained XGBoost model utilized 33 final radiomic features and achieved a
Receiver operating characteristic Area Under the Curve (ROC AUC) of 95%, Accuracy of 90%,
Precision/Recall/f1-score of 94%/94%/94% for IDH1 wildtype, and 75%/75%/75% for IDH1 mutants.
Of the 20 cases in the test set, it correctly classified 15 wildtype cases, incorrectly classified one wildtype
as mutant, correctly classified three mutants, and incorrectly classified one mutant as wildtype.

Our DWI-trained XGBoost model utilized 71 final radiomic features and achieved ROC AUC of
97%, Accuracy of 90%, Precision/Recall/f1-score of 94%/94%/94% for IDH1 wildtype, and 75%/75%/75%
for IDH1 mutants. Of the 20 cases in the test set, it correctly classified 15 wildtype cases, incorrectly
classified one wildtype as mutant, correctly classified three mutants, and incorrectly classified 1 mutant
as wildtype.

Our DWI-FLAIR trained XGBoost model utilized 88 final radiomic features and achieved
ROC AUC of 91%, Accuracy of 90%, Precision/Recall/f1-score of 94%/94%/94% for IDH1 wildtype,
and 75%/75%/75% for IDH1 mutants. Of the 20 cases in the test set, it correctly classified 15 wildtype
cases, incorrectly classified one wildtype as mutant, correctly classified three mutants, and incorrectly
classified one mutant as wildtype.

The AUC with 95% confidence interval, Accuracy, Precision, Recall, and f1-score for each model is
aggregated in Table 3. Figure 1 shows the ROC curve with the AUC score for each model.

Table 3. Receiver operating characteristic Area under the Curve (ROC AUC), Accuracy, Precision,
Recall, and F1-Score of Trained XGBoost Models.

Model ROC AUC
[95% CI] Accuracy Precision Recall F1-Score

DWI 0.97
[0.898, 1.000] 0.90 Wildtype: 0.94

Mutant: 0.75
Wildtype: 0.94
Mutant: 0.75

Wildtype: 0.94
Mutant: 0.75

FLAIR 0.95
[0.864, 1.000] 0.90 Wildtype: 0.94

Mutant: 0.75
Wildtype: 0.94
Mutant: 0.75

Wildtype: 0.94
Mutant: 0.75

DWI-FLAIR [0.741, 1.000] 0.90 Wildtype: 0.94
Mutant: 0.75

Wildtype: 0.94
Mutant: 0.75

Wildtype: 0.94
Mutant: 0.75

The 10 most important radiomic features ordered by gain for each XGBoost model is aggregated
in Table 4. Out of 184 total radiomic features, 153 were non-normally distributed (p < 0.05 on
Shapiro–Wilks test). Total of 46 DWI and FLAIR radiomic features with significant difference between
IDH1 Wildtype and Mutant are listed in Appendix A Table A1. A total of 98 DWI and FLAIR
radiomic features with significant difference between glioblastomas and non-glioblastomas are listed
in Appendix A Table A2. The list of final features used ranked by gain are shown in Appendix A
Tables A3–A5 for the DWI-FLAIR, DWI, and FLAIR XGBoost model, respectively. The list of all
radiomic features by feature class are shown in Appendix A Table A6. Spearman correlation matrix of
DWI and FLAIR radiomic features are shown in Appendix A Figures A1 and A2.
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Figure 1. Receiver Operating Characteristic Curves with calculated AUC for (A)
Diffusion-Weighted-Imaging (DWI), (B) Fluid-Attenuated Inversion Recovery (FLAIR), and (C)
DWI-FLAIR XGBoost models.

Table 4. Top 10 Most Important Radiomic Features Ranked By Gain for Each Model.

DWI-FLAIR FLAIR DWI

DWI_Original First Order Total Energy Original Gray Level Run Length Matrix Short
Run High Gray Level Emphasis

Original Gray Level Co-occurrence Matrix
Autocorrelation

DWI_Original First Order Mean
Absolute Deviation Original First Order Mean Absolute Deviation Original Gray Level Run Length Matrix

Run Entropy
FLAIR_Original First Order

90th Percentile
Original Gray Level Co-occurrence

Matrix Correlation
Original Gray Level Dependence Matrix

Dependence Non Uniformity Normalized
FLAIR_Original Gray Level Dependence

Matrix Small Dependence High Gray
Level Emphasis

Original Gray Level Size Zone Matrix Gray
Level Variance

Original Gray Level Dependence Matrix
Gray Level Variance

FLAIR_Original Gray Level Run Length
Matrix High Gray Level Run Emphasis

Original Gray Level Size Zone Matrix Low
Gray Level Zone Emphasis

Original Gray Level Co-occurrence Matrix
Maximum Probability

FLAIR_Original Gray Level Size Zone
Matrix Gray Level Non Uniformity

Original Gray Level Co-occurrence Matrix
Informal Measure of Correlation 2

Original Gray Level Run Length Matrix
Long Run High Gray Level Emphasis

DWI_Original First Order Maximum Original Gray Level Co-occurrence Matrix
Cluster Prominence

Original Gray Level Run Length Matrix
Gray Level Non Uniformity

DWI_Original Gray Level Run Length
Matrix Run Entropy

Original Gray Level Dependence Matrix
Small Dependence High Gray Level Emphasis

Original Gray Level Size Zone Matrix
Small Area High Gray Level Emphasis

DWI_Original First Order Skewness Original Neighboring Gray Tone Difference
Matrix Coarseness Original First Order Total Energy

DWI_Original First Order 10th Percentile Original First Order Range Original Gray Level Co-occurrence Matrix
Informal Measure of Correlation 2
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3. Discussion

In patients with glioma, IDH1 mutation has been shown to be an independent positive prognostic
biomarker with improved progression-free survival and treatment outcome in comparison to the IDH1
wildtype [15]. Although the genetic biomarkers are determined by histopathological testing, the ability
to predict biomarker status noninvasively is of clinical interest, as large tissue specimens are often
needed for accurate histopathological diagnosis and potential inaccuracies that are related to tumoral
tissue heterogeneity. Furthermore, pre-surgical identification of these biomarkers can help in surgical
planning and the determination of the extent of surgical resection.

Qualitative MRI features have been shown to correlate with IDH1 genotypes in high grade
gliomas [16–18]. More recently, the T2-FLAIR mismatch sign, which is defined as the presence of
hyperintense signal on a T2-weighted image and a relatively hypointense signal on FLAIR (except for
a hyperintense peripheral rim), has been described as a helpful imaging marker of IDH-mutant
gliomas [19,20].

Recent improvements in ML algorithms and computational power provide an attractive venue for
exploring MR radiomic features, an excellent fit for ML-approach analysis that considers the large data
size and multimodal nature. Therefore, ML methods have been recently explored to predict glioma
genetic biomarkers from MRI radiomic features [10–12,21–33].

Recent investigations on the use of ML and MRI-radiomics to predict IDH1 genotype have
primarily explored the SVM [21,25,30] and RF [10,22,24,27–29] models. Some studies only used
conventional MRI sequences and achieved AUC ranging 0.84–0.96 [10,22–25,30]. Others explored
the added value of advanced MRI imaging, such as MR diffusion or perfusion, with mixed
results [21,26–29,31]. The highest performance of predicting IDH1 genotype with AUC of 0.96 was
observed with a RF model that was trained with conventional MRI, but this study focused only on
patients with glioblastomas [10].

Expanding on above studies, we selected XGBoost as our classifier and trained models using
FLAIR and DWI radiomic features, in a diverse cohort of patients, including grade II, III, and IV
gliomas. Our DWI model achieved AUC of 0.97 (I: 0.898, 1.000) and 90% accuracy (Figure 1A), and our
FLAIR model achieved an AUC of 0.95 (CI: 0.864, 1.000) and 90% accuracy (Figure 1B). XGBoost is a
non-linear gradient boosted tree model with superior performance in comparison to conventional ML
models [13]. RF and GB are both sets of decision trees. Whereas, RF builds each tree independently
and combines the results at the end, GB builds each tree sequentially, and works to correct the error of
the previous tree [14]. In GB, there are more hyperparameters than RF to optimize. Therefore, it may
be more difficult to optimize a GB algorithm, but a better tuned GB algorithm may outperform a
RF. In the training process, XGBoost calculates the importance score of each feature in each iteration,
which provides a basis for establishing a new tree with gradient direction in the next iteration [13,34].
When two features are correlated, then, when deciding a split, the tree will only choose the one feature
with greater importance, and this process is repeated. This automated feature selection structure is
of particular use with high-dimensional data with potential multicollinearity, such as in radiomics.
Another advantage of XGBoost is that it provides both L1 and L2 regularization, thus handling
sparsity and reduces overfitting [13]. In this study, 92 radiomic features that were calculated by our
postprocessing program were used as input to train our DWI and FLAIR classifiers, and a total of
184 radiomic features as input to train our DWI-FLAIR classifier. The DWI-FLAIR model utilized
88 out of the initial 184 features (Appendix A Table A3). The DWI model utilized 71 out of the 92
features (Appendix A Table A4). The FLAIR model utilized 33 out of the initial 92 features (Appendix A
Table A5). A comparison of features that were selected by XGBoost and analysis of features with
statistically significant differences between IDH1 wildtype and mutants (Appendix A Table A1) and
between glioblastomas and non-glioblastomas (Appendix A Table A2) shows the effectiveness of the
automated feature selection. In review, all of the features with statistical significance between IDH1
wildtype and mutant were included in at least one of the XGBoost models, except for two features,
DWI_Original Gray Level Dependence Matrix High Gray Level Emphasis and FLAIR_Original First
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Order Maximum. In comparison, there were seven features that had statistical significance between
glioblastomas and non-glioblastomas, but they were not included in any of the XGBoost models.
This is consistent with the fact that we trained the models based on IDH1 status as opposed to glioma
grade. In review of features within the top 10 that were included in our XGBoost model by automatic
feature selection, but did not have statistical significant difference between IDH1 wildtype and mutant,
the mean p-values were 0.07 in the DWI model, 0.08 in the FLAIR model, and 0.23 in the DWI-FLAIR
model. This may partially explain why we did not observe an incremental value in combining DWI
and FLAIR in our XGBoost models (Figure 1C).

Our results compared favorably with the results of a recent study conducted by Shboul et al.,
where XGBoost models were used to predict several glioma biomarkers, including IDH mutation [23].
In this study, a XGBoost model was trained while using conventional MRI sequences in patients with
grade II and III gliomas and reported an AUC of 0.83 in predicting IDH status.

In our experience, the diagnostic performance of the combined trained model using combination
of DWI and FLAIR (AUC: 91%, accuracy: 90%) was comparable to the isolated model (DWI only or
FLAIR only) and with no significant incremental diagnostic value (Table 3). This is likely attributed
to the fact that, in the combined model, the number of features was doubled without increasing the
number of observations, which can result in overfitting during the training process.

Interestingly, we observed from feature importance assessment that six out of the top 10 important
radiomic features for the combined model (DWI-FLAIR) were from the DWI dataset (Table 4). DWI has
shown to corelate with physiological characterization of tumors, such as cellularity and proliferation
index, as a function of water diffusivity [35]. Prior histopathological studies showed that IDH mutations
can decrease glioma proliferation through the upregulation of miR-128a [36]. It is plausible that DWI
may hold invaluable information regarding the IDH status, as shown in our results.

Our study has several limitations. Our XGBoost classifiers were trained with single-center data
and, thus, the generalizability of our results may be impacted by differences in imaging acquisition
protocols and the image postprocessing programs that were used for radiomic feature extraction.

The small total sample size of in combination with the skewed distribution of IDH1 wildtype
and mutant is a notable limitation. We utilized stratified sampling when splitting our dataset into
train, validation, and test sets in order to account for the small proportion of IDH1 mutants and the
sampling error that could be introduced during randomization. Subsequently, as suggested by prior
reports [10,32], we applied SMOTE on our train set in order to prevent biased training that favors the
majority class. During our hyperparameter tuning step, the parameters were optimized for the highest
ROC AUC score, as ROC curves are mathematically insensitive to class distribution unlike accuracy.
Nonetheless, the effect of the skewed distribution is observed in our study (Table 2). The test set had 16
wildtype and four mutants. Our XGBoost models correctly classified 15/16 as wildtype, and correctly
classified 3/4 as mutants. As the denominator is four for the mutants, one error results in a numerically
steep decrease (Table 3). The skewed distribution of IDH1 genotypes have been acknowledged in
literature; studies with low grade gliomas involved predominantly IDH1 mutants [33,37] and studies
with glioblastomas involved predominantly IDH1 wildtypes [10,28]. This is reflected in our dataset,
as 17 out of 19 (89%) low grade gliomas were IDH1 mutants and 76 out of 81 (94%) grade IV gliomas
were wildtype (Table 2).

Another limitation is that, within our IDH1 wildtype population, there were two cases with minor
IDH2 (p.R172M, p.R172K) mutations. IDH2 mutations are much less common than IDH1 and they are
mutually exclusive with IDH1 mutations [3]. To our knowledge, there is no study that has specifically
compared the radiomic features between IDH1 and IDH2 mutants in gliomas.

Another limitation is that tumor segmentation to generate VOI was performed by one observer
and under supervision of another board-certified neuroradiologist, who made necessary adjustments
before the extraction of radiomic features. Therefore, inter-observer variability assessment was
not performed.
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Another limitation of our ML-approach is that it does not fully explain the physiological significance
of radiomic features. The prolonged survival of patients with IDH1 mutations has previously been
proposed to be associated with less aggressive biological behavior from the perspective of MRI tumor
heterogeneity [16]. In this study, no additional categorical variables, such as list of comorbidities,
were included or analyzed in the machine learning process. Because our models were trained purely
with radiomic features, future work may focus on studying the relationship between these quantitative
radiomic features and tumor heterogeneity across IDH1 genotypes.

In conclusion, training a XGBoost classifier while using multiparametric radiomic features derived
from DWI and FLAIR images discriminated IDH1 mutation status with accuracy > 90% and AUC > 0.95,
which may provide an approach for noninvasive assessment of IDH1 status in patients with gliomas.
Further studies with larger and more diverse MRI datasets are required to validate and improve upon
our findings.

4. Materials and Methods

The overall study design is summarized as a diagram in Figure 2.
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4.1. Patient Population

An institutional review board approved this retrospective study and informed consent was
waived. Patients with initial diagnosis of grade II, III, or IV glioma between January 2016 to September
2018 were reviewed (n = 151). Patients were included if they 1) had grade II, III, or IV glioma with
known IDH1 status from surgical pathology and 2) had preoperative MRI, including FLAIR, T1c+,
and diffusion within 30 days of biopsy or surgical resection. One patient was removed due to lack of
IDH1 status. 20 patients were excluded due to lack of preoperative DWI. The patients were excluded if
they had insufficient MR image quality (motion artifact, n = 8). Patients were excluded if they had prior
surgeries involving the tumoral bed (n = 8). Patients were excluded if they had prior radiotherapy
treatment (n = 4). In addition, 10 patients were excluded due to unavailable useable diffusion data.
This yielded, in total, a cohort of 100 patients (Figure 3). Assuming incidence of >15,000 new cases
of malignant gliomas per year in the United States [38], 5% margin of error, 90% confidence interval,
and estimated IDH mutation rate of 12% in literature [39], the recommended sample size is 114 [40].
With our sample size of 100, the margin of error is 5.33%.
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4.2. Histopathological Data

Tissue samples were obtained from patients undergoing MRI-guided tissue biopsy or tumor
resection, as part of routine clinical care and diagnostic neuropathology and molecular evaluation.
Hematoxylin and eosin (H&E) sections and immunohistochemistry (IHC) slides were re-reviewed by
pathologists (N.T) and (F.K). IHC was performed on 5 micron thick sections from paraffin embedded
tumor sections of all the evaluated patients. Cut sections were backed in 60 ◦C for one hour to
deparaffinize and enhance tissue adhesion; following deparaffinization, the sections were stained with
pre-diluted monoclonal anti-mIDH1 antibody, purified from culture supernatant in PBS (2% BSA,
0.05% NaN3, pH 7.4, DIA-H09L; Dianova, Hamburg, Germany), which has specificity for human
IDH1 R132H point mutation. The high frequency and distribution of the IDH1 R132H mutation allow
the highly sensitive and specific discrimination of higher-grade gliomas by immunohistochemistry.
The staining was performed using Ventana Benchmark XT stainer, (pretreated with CC1 mild, detection
DAB ultraview kit; Ventana Medical Systems, Tucson, Arizona). The majority of IDH1 mutations
in diffuse gliomas occur at a specific sites and they are characterized by a base exchange of guanine
to adenine within codon 132, resulting in an amino acid change from arginine to histidine (R132H).
Therefore, a monoclonal antibody has been developed in order to detect the consistent mutant iteration
site of IDH mutant protein, allowing for its use in paraffin-embedded specimens (mIDH1R132H).
The ability of the antibody to detect a small number of cells as mutant makes IHC more sensitive than
sequencing for identifying R132H mutant gliomas. However, mutations in IDH2 and other mutations
in IDH1 will not be detected using IHC. Next generation sequencing (NGS) was performed to confirm
an IDH1 R132H negative IHC results, and/or if the patient is less than 55 years old, as IDH mutations
in general are extremely rare in patients over 55 years, as per College of American Pathologists
(CAP) recommendations.

4.3. NGS Analysis

Clinical samples after the histological diagnoses of primary CNS glioma were tested for
prognostic molecular biomarkers, as outlined in the NCCN guidelines, depending on the clinical
and pathological context, NGS analysis was performed according to a licensed protocol in the
molecular pathology lab where histological evidence of tumor cellularity of >20% was considered to
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be acceptable. Extracted DNA was submitted to amplicon-based library preparation and sequencing
according to manufacturer’s procedures for the 50-gene Hotspot panel on a (Ion Personal Genome
Machine™ (PGM™) System, Thermo Fisher Scientific Inc. Waltham, MA). In each run, a low level
VAF (variant allelic frequency) control was included for both SNVs and indels. For each specimen,
an average minimum coverage of 500× was considered to be acceptable to proceed. Based on
the variants identified by the Torrent Variant Caller, a pipeline was applied to permit annotation,
filtering of variants with a VAF of >5% (unless clinically relevant and with a VAF of >10%), and the
exclusion of those in Genome Aggregation Database (gnomAD https://gnomad.broadinstitute.org/)
with a population frequency >0.05%. Read depths of IDH1, and IDH2 targets were confirmed in
all cases to be adequate to rule out false negatives. Molecular pathology workup of Gliomas also
included NGS based testing (IHC) of Isocitrate Dehydrogenase. If, through immunohistochemistry,
the IDH result was negative then, for those patients with >55 years, NGS was not performed,
unless clinically indicated. For patients <55 years, NGS was performed in order to identify other
IDH1 or IDH2 mutations.

4.4. Image Acquisition

MR imaging was obtained using seven MRI scanners (2 Skyra 3T and 2 Aera 1.5T from Siemens
Healthineers, Erlangen Germany; 2 Signa 1.5T and one Discovery 3T from GE Healthcare, Waukesha,
WI) within our Radiology Department. Image acquisition was performed using a standardized
preoperative brain tumor MRI protocol within our radiology department, including: FLAIR (TR/TE/TI,
8000–12,000/98–130/2400–2700 ms, voxel size: 0.5 × 0.5 × 1 mm3), DWI (TR/TE: 4025-4600/65-82 ms,
with b values of 0 and 1000 s/mm2, voxel size: 0.9 × 0.9 × 5.0 mm3), and post-contrast T1W imaging
(TR/TE, 600–1800/9–19 ms, voxel size: 0.5 × 0.5 × 1 mm3). A total volume of 0.1 mmol/kg of gadobenate
dimeglumine was intravenously injected for post-contrast T1W imaging.

4.5. Volume Acquisition and Texture Analysis

The tumors were manually segmented with volume-of-interest (VOI) analysis on commercially
available FDA-approved software (Olea Sphere software, Olea Medical SAS, La Ciotat, France).
T1c+, FLAIR and diffusion images (ADC/b1000) were coregistered on each examination using a 6-df
transformation and a mutual information cost function. Subsequently, a VOI was generated while using
a voxel-based signal intensity threshold method subsuming the entire region of FLAIR hyperintensity.
This VOI was then overlaid onto coregistered T1c+ and diffusion datasets. The segmentation
was conducted by 1 radiology resident (S.K) under supervision of an experienced board certified
neuroradiologist (K.N.), who made necessary adjustments before radiomic features were extracted.
One VOI was segmented from each patient.

Radiomic features were calculated from the VOIs using Olea Sphere software. A total of 92 texture
features were collected: 19 first-order metrics, including the mean, standard deviation, skewness,
and kurtosis, and 73 second-order metrics consisting of 23 gray level run length matrix [41], 16 gray
level run length matrix [42], 15 gray level size zone matrix [43], five neighboring gray tone difference
matrix [44], and 14 gray level dependence matrix [45]. Definitions and calculations of these features
are explained elsewhere [46].

4.6. Statistical Analysis and ML

All of the statistical analysis was performed using Python. (Python 3.7; Packages: scipy v. 1.3.0;
numpy 1.16.4; matplotlib 3.1.1; pandas 0.24.2; sklearn 0.21.2; imblearn 0.5.0; xgboost 0.90.)

https://gnomad.broadinstitute.org/
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4.6.1. Radiomic Features Analysis

MRI radiomic features were tested for normality by the Shapiro–Wilks test. Wilcoxon rank sum
test analysis was conducted in order to assess radiomic features with statistically significant (p < 0.05)
difference between IDH1 wildtype and mutants. Similarly, Wilcoxon rank sum test analysis was
conducted to assess radiomic features with a statistically significant (p < 0.05) difference between
glioblastomas and non-glioblastomas.

4.6.2. ML Classifier Procedure

Input: three datasets were created as inputs for our ML methods. (1) A table consisting of
FLAIR radiomic features and IDH1 genotype for each patient. (2) A table consisting of DWI radiomic
features and IDH1 genotype for each patient. Finally, (3) a third dataset combining the DWI and
FLAIR radiomic features was created. We refer to these as the (1) FLAIR dataset, (2) DWI dataset,
and (3) DWI-FLAIR dataset.

Sampling: the patients were divided into train, validation, and test sets with a 60:20:20 ratio,
thus resulting in 60 cases for the train set, 20 cases for the validation set, and 20 cases for the test set.
Stratified random sampling was employed in this process, thus approximately maintaining the ratio of
IDH1 wildtype to mutant across the subsets to be equal to the ratio in the original dataset.

Oversampling: the Synthetic Minority Oversampling Technique (SMOTE) was applied to the
train sets [47].

Training: three separate XGBoost classifiers [13] were trained: DWI, FLAIR, and DWI-FLAIR.
Hyperparameter tuning: XGBoost hyperparameters were tuned on the validation set, using exhaustive

grid search (scikit-learn GridSearchCV) with five-fold cross validation. The hyperparameters were
optimized for the highest receiver operating characteristic curve’s area under the curve (ROC AUC)
score. The following hyperparameters and ranges for exhaustive grid search were studied: eta, 0–100
with interval of 1; max_depth, 0–100 with interval of 1; min_child_weight, 0–1 with interval of 1/500;
gamma 0–1 with interval of 1/500, subsample 0–1 with interval of 1/500; colsample_by_tree, 0–1 with
interval of 1/500; colsample_bylevel, 0–1 with interval of 1/500; scale_pos_weight, 0–1 with interval of
1/500; leaning_rate, 0–1 with interval of 1/500; n_estimators, 0–500 with interval of 1; and, reg_alpha, 0–100
with interval of 1. The details of these parameters are accessible elsewhere [48]. Three final models were
collected: DWI, FLAIR, and DWI-FLAIR.

Feature importance by XGBoost: the importance of each radiomic feature was assessed and
collected, ordered by the average Gain across all splits, the feature was used in. The Gain was calculated
by taking each feature’s contribution for each tree in the XGBoost models and, thus, represents the
relative contribution of the feature to the model.

Testing: each of the final models were tested using the respective test sets: DWI test set, FLAIR
test set, and the DWI-FLAIR test set. For each model, a classification report containing the Accuracy,
Precision, Recall, and f1-score was collected. For each model, the confusion matrix depicting the
number of true positives, false positives, true negatives, and false negatives was collected. For each
model, a ROC curve was drawn and the AUC was calculated. For each AUC, the 95% confidence
interval was also calculated.
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Abbreviations

AUC Area Under the Curve
ADC Apparent Diffusion Coefficient
DWI Diffusion-Weighted-Imaging
FLAIR Fluid-Attenuated Inversion Recovery
GB Gradient Boosting
H&E Hematoxylin and eosin
IDH1 Isocitrate Dehydrogenase 1
IHC Immunohistochemistry
MRI Magnetic Resonance Imaging
NGS Next Generation Sequencing
RF Random Forest
ROC Receiver Operating Characteristic curve
SMOTE Synthetic Minority Oversampling Technique
SVM Support Vector Machine
T1c+ Post-contrast T1
XGBoost eXtreme Gradient Boosting

Appendix A

Table A1. DWI and FLAIR radiomic features with significant difference by Wilcoxon rank sum test
between IDH1 Wildtype and Mutant.

Radiomic Feature p-Value IDH1 Wildtype
Mean ± SD

IDH1 Mutant
Mean ± SD

FLAIR_Original Gray Level Run Length Matrix Short Run High
Gray Level Emphasis <0.001 1093.41 ± 372.49 1456.95 ± 376.78

FLAIR_Original Gray Level Size Zone Matrix Small Area High
Gray Level Emphasis <0.001 635.48 ± 187.18 824.98 ± 1 91.8

FLAIR_Original Gray Level Run Length Matrix High Gray Level
Run Emphasis <0.001 1201.22 ± 405.95 1602.17 ± 426.86

FLAIR_Original Gray Level Dependence Matrix High Gray
Level Emphasis <0.001 1209.73 ± 412.96 1613.11 ± 433.94

FLAIR_Original Gray Level Co-occurrence Matrix Cluster Shade 0.001 −167.45 ± 1997.12 −2819.29 ± 5053.17
FLAIR_Original Gray Level Co-occurrence

Matrix Autocorrelation 0.001 1228.14 ± 426.63 1619.82 ± 455.56

FLAIR_Original Gray Level Co-occurrence Matrix Joint Average 0.002 33.81 ± 6.42 39.06 ± 5.76
FLAIR_Original Gray Level Co-occurrence Matrix Sum Average 0.002 67.62 ± 12.85 78.12 ± 11.52

FLAIR_Original First Order Skewness 0.003 −0.02 ± 0.57 −56 ± 0.67
DWI_Original Gray Level Size Zone Matrix Small Area High Gray

Level Emphasis 0.005 546.7 ± 250.71 743.57 ± 287.76

FLAIR_Original Gray Level Run Length Matrix Long Run High
Gray Level Emphasis 0.006 1997.25 ± 716.52 2621.33 ± 982.83

DWI_Original Gray Level Run Length Matrix High Gray Level
Run Emphasis 0.007 831.51 ± 457.59 1205.94 ± 547.74

DWI_Original Gray Level Run Length Matrix Short Run High
Gray Level Emphasis 0.007 769.52 ± 434.1 1119.01 ± 509.77

DWI_Original Gray Level Dependence Matrix High Gray
Level Emphasis 0.007 825.3 ± 462.6 1201.58 ± 553.71

FLAIR_Original Gray Level Dependence Matrix Small
Dependence High Gray Level Emphasis 0.007 241.62 ± 118.86 316.36 ± 117.92

DWI_Original First Order Skewness 0.008 0.46 ± 1.06 −0.32 ± 0.9
FLAIR_Original First Order Range 0.010 1214.54 ± 671.87 989.59 ± 882

DWI_Original Gray Level Run Length Matrix Long Run High
Gray Level Emphasis 0.010 1211.61 ± 574.88 1710.77 ± 768.55

DWI_Original Gray Level Dependence Matrix Small Dependence
High Gray Level Emphasis 0.012 213.92 ± 161.61 312.42 ± 172.48

DWI_Original Gray Level Co-occurrence Matrix Autocorrelation 0.012 821.63 ± 471.38 1184.7 ± 570.82
DWI_Original Neighboring Gray Tone Difference Matrix Busyness 0.013 1.23 ± 1.02 0.68 ± 0.53

DWI_Original First Order Maximum 0.014 1174.11 ± 596.34 835.35 ± 453.04
FLAIR_Original Neighboring Gray Tone Difference

Matrix Busyness 0.014 4.04 ± 3.16 2.17 ± 1.59

DWI_Original Gray Level Co-occurrence Matrix Joint Average 0.015 26.59 ± 8.64 32.68 ± 8.43
DWI_Original Gray Level Co-occurrence Matrix Sum Average 0.015 53.18 ± 17.29 65.35 ± 16.86

DWI_Original First Order Uniformity 0.022 0.05 ± 0.02 0.04 ± 0.01
DWI_Original First Order Range 0.023 1101.2 ± 596.03 775.94 ± 454.76

DWI_Original Gray Level Dependence Matrix Gray
Level Variance 0.024 62.83 ± 36.88 78.73 ± 30.73
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Table A1. Cont.

Radiomic Feature p-Value IDH1 Wildtype
Mean ± SD

IDH1 Mutant
Mean ± SD

DWI_Original Gray Level Run Length Matrix Gray Level Non
Uniformity Normalized 0.024 0.05 ± 0.02 0.04 ± 0.01

DWI_Original Gray Level Run Length Matrix Gray Level Variance 0.024 64.79 ± 36.43 80.37 ± 30.18
DWI_Original Gray Level Run Length Matrix Gray Level

Non Uniformity 0.027 1106.8 ± 928.02 619.32 ± 481.82

DWI_Original Gray Level Dependence Matrix Gray Level
Non Uniformity 0.031 1403.34 ± 1300.29 728.69 ± 584.29

DWI_Original Neighboring Gray Tone Difference Matrix Contrast 0.032 0.1 ± 0.1 0.14 ± 0.11
DWI_Original Neighboring Gray Tone Difference

Matrix Coarseness 0.034 0.00 ± 0.0015 0.0013 ± 0.0016

DWI_Original Gray Level Dependence Matrix Large Dependence
High Gray Level Emphasis 0.034 15,902.19 ± 7204.39 21,277.99 ± 11,907.81

FLAIR_Original First Order Maximum 0.036 1461.66 ± 783.13 1223.18 ± 953.74
DWI_Original Gray Level Size Zone Matrix Small Area Emphasis 0.037 0.59 ± 0.05 0.62 ± 0.05

FLAIR_Original Gray Level Co-occurrence Matrix Informal
Measure of Correlation 2 0.037 0.77 ± 0.09 0.82 ± 0.09

FLAIR_Original Neighboring Gray Tone Difference
Matrix Strength 0.038 0.53 ± 1.08 0.51 ± 0.42

DWI_Original Gray Level Size Zone Matrix Size Zone Non
Uniformity Normalized 0.039 0.33 ± 0.05 0.36 ± 0.05

FLAIR_Original Neighboring Gray Tone Difference
Matrix Coarseness 0.039 0.0003 ± 0.0005 0.0003 ± 0.0002

FLAIR_Original First Order Standard Deviation 0.045 151.45 ± 77.39 132.06 ± 109.62
FLAIR_Original First Order Variance 0.045 28,850.28 ± 32,282.11 28,910.57 ± 43,752.27

FLAIR_Original First Order Total Energy 0.046 73,306,599,504.28 ±
90,074,867,196.59

78,905,231,446.5 ±
128,228,405,390.59

DWI_Original First Order Entropy 0.047 4.7 ± 0.49 4.95 ± 0.29
DWI_Original Gray Level Size Zone Matrix Gray Level Non

Uniformity Normalized 0.047 0.03 ± 0.01 0.03 ± 0.005

Table A2. DWI and FLAIR Radiomic Features with Significant Difference by Wilcoxon Rank Sum Test
between Glioblastoma and Non-glioblastoma.

Radiomic Feature p-Value Glioblastoma
Mean ± SD

Non-glioblastoma
Mean ± SD

FLAIR_Original Gray Level Run Length Matrix Short Run High
Gray Level Emphasis <0.001 1079.74 ± 349.33 1572.62 ± 367.53

FLAIR_Original Gray Level Size Zone Matrix Small Area High
Gray Level Emphasis <0.001 628.91 ± 172.61 882.89 ± 198.65

FLAIR_Original Gray Level Run Length Matrix High Gray Level
Run Emphasis <0.001 1187.83 ± 380.14 1722.54 ± 429.06

FLAIR_Original Gray Level Dependence Matrix High Gray
Level Emphasis <0.001 1195.65 ± 386.56 1736.83 ± 435.68

FLAIR_Original Gray Level Co-occurrence
Matrix Autocorrelation <0.001 1212.08 ± 398.97 1750.11 ± 460.47

FLAIR_Original Gray Level Dependence Matrix Small
Dependence High Gray Level Emphasis <0.001 233.31 ± 109.06 363.58 ± 120.84

FLAIR_Original Gray Level Co-occurrence Matrix Joint Average <0.001 33.62 ± 6.08 40.72 ± 5.82
FLAIR_Original Gray Level Co-occurrence Matrix Sum Average <0.001 67.23 ± 12.17 81.43 ± 11.65

FLAIR_Original First Order Skewness <0.001 −0.01 ± 0.57 −0.67 ± 0.63
FLAIR_Original First Order Range <0.001 1265.91 ± 713.65 735.05 ± 618.31

FLAIR_Original Gray Level Co-occurrence Matrix Cluster Shade <0.001 −219.28 ± 2123.23 −3017.05 ± 5179.56
FLAIR_Original Neighboring Gray Tone Difference

Matrix Busyness <0.001 4.1 ± 3.09 1.62 ± 1.13

FLAIR_Original First Order Standard Deviation 0.001 158.12 ± 82.19 100.57 ± 84.5
FLAIR_Original First Order Variance 0.001 31,674.63 ± 34,622.28 16,879.46 ± 34,301.7

FLAIR_Original First Order Mean Absolute Deviation 0.001 126.23 ± 67.02 78.74 ± 63.44
DWI_Original Gray Level Size Zone Matrix Small Area High Gray

Level Emphasis 0.001 544.01 ± 249.55 786.15 ± 274.83

FLAIR_Original First Order Interquartile Range 0.001 216.27 ± 124.42 128.84 ± 97.67
FLAIR_Original First Order Robust Mean Absolute Deviation 0.001 89.61 ± 50 54.64 ± 41.84

FLAIR_Original Gray Level Run Length Matrix Long Run Low
Gray Level Emphasis 0.001 0.0031 ± 0.0049 0.0022 ± 0.0031

DWI_Original Gray Level Run Length Matrix Short Run High
Gray Level Emphasis 0.001 764 ± 428.7 1197.72 ± 498.08

DWI_Original Gray Level Dependence Matrix High Gray
Level Emphasis 0.001 819.66 ± 457.07 1285.02 ± 542.64

DWI_Original Neighboring Gray Tone Difference Matrix Busyness 0.001 1.24 ± 1.01 0.55 ± 0.42
DWI_Original Gray Level Run Length Matrix High Gray Level

Run Emphasis 0.001 826.14 ± 452.35 1287.92 ± 536.33
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Table A2. Cont.

Radiomic Feature p-Value Glioblastoma
Mean ± SD

Non-glioblastoma
Mean ± SD

FLAIR_Original Neighboring Gray Tone Difference
Matrix Strength 0.001 0.5 ± 1.05 0.64 ± 0.48

DWI_Original Gray Level Dependence Matrix Small Dependence
High Gray Level Emphasis 0.001 210.01 ± 158.21 344.64 ± 170.11

DWI_Original First Order Skewness 0.002 0.46 ± 1.04 −0.46 ± 0.88
DWI_Original Gray Level Run Length Matrix Long Run High

Gray Level Emphasis 0.002 1206.58 ± 570.58 1811.05 ± 762.28

FLAIR_Original First Order Maximum 0.002 1510.64 ± 821.7 976.74 ± 703.15
DWI_Original Gray Level Co-occurrence Matrix Autocorrelation 0.002 814.72 ± 465.16 1271.48 ± 562.39

FLAIR_Original First Order Total Energy 0.002 78,837,906,831.01 ±
92,307,518,260.86

56,208,389,465.53 ±
124,951,899,957.93

FLAIR_Original First Order Energy 0.002 121,143,113,125.22 ±
174,604,200,352.47

93,788,946,398.58 ±
241,864,772,843.25

DWI_Original Gray Level Co-occurrence Matrix Joint Average 0.002 26.49 ± 8.51 34.04 ± 8.2
DWI_Original Gray Level Co-occurrence Matrix Sum Average 0.002 52.99 ± 17.02 68.07 ± 16.4

FLAIR_Original Neighboring Gray Tone Difference
Matrix Coarseness 0.003 0.0002 ± 0.0004 0.0004 ± 0.0003

DWI_Original Gray Level Run Length Matrix Gray Level
Non Uniformity 0.003 1119.88 ± 914.66 486.56 ± 346.9

DWI_Original Neighboring Gray Tone Difference
Matrix Coarseness 0.003 0.001 ± 0.0015 0.0015 ± 0.0017

FLAIR_Original Gray Level Dependence Matrix Large
Dependence Low Gray Level Emphasis 0.003 0.04 ± 0.04 0.02 ± 0.02

DWI_Original Gray Level Dependence Matrix Gray Level
Non Uniformity 0.003 1415.7 ± 1279.42 569.48 ± 421.22

DWI_Original Neighboring Gray Tone Difference Matrix Contrast 0.004 0.1 ± 0.1 0.16 ± 0.11
FLAIR_Original Gray Level Run Length Matrix Long Run High

Gray Level Emphasis 0.006 1989.38 ± 660.24 2753.4 ± 1121.6

DWI_Original Gray Level Size Zone Matrix Large Area Low Gray
Level Emphasis 0.006 48.74 ± 148.12 1.35 ± 3.01

FLAIR_Original Gray Level Run Length Matrix Run Length
Non Uniformity 0.006 78,567.04 ± 57,195.07 41,756.66 ± 37,247.69

FLAIR_Original Gray Level Size Zone Matrix Gray Level
Non Uniformity 0.006 719.94 ± 511.92 400.45 ± 299.7

DWI_Original Gray Level Run Length Matrix Gray Level Variance 0.007 64.37 ± 36.15 84.64 ± 28.49
FLAIR_Original Gray Level Dependence Matrix Low Gray

Level Emphasis 0.007 0.002 ± 0.0037 0.0016 ± 0.0026

DWI_Original Gray Level Dependence Matrix Gray
Level Variance 0.007 62.45 ± 36.62 82.85 ± 29.07

FLAIR_Original Gray Level Run Length Matrix Low Gray Level
Run Emphasis 0.007 0.002 ± 0.0039 0.0016 ± 0.0026

FLAIR_Original Gray Level Dependence Matrix Dependence
Non Uniformity 0.007 13,941.11 ± 9449.91 7721.06 ± 5691.44

DWI_Original First Order Uniformity 0.009 0.05 ± 0.02 0.04 ± 0.01
DWI_Original Gray Level Co-occurrence Matrix Contrast 0.009 41.76 ± 29.66 56.34 ± 27.96

DWI_Original Gray Level Size Zone Matrix Small Area Emphasis 0.009 0.59 ± 0.05 0.62 ± 0.05
FLAIR_Original Gray Level Size Zone Matrix Low Gray Level

Zone Emphasis 0.009 0.0025 ± 0.0059 0.0019 ± 0.0025

DWI_Original Gray Level Run Length Matrix Gray Level Non
Uniformity Normalized 0.009 0.05 ± 0.02 0.04 ± 0.01

DWI_Original Gray Level Size Zone Matrix Gray Level Non
Uniformity Normalized 0.010 0.03 ± 0.01 0.03 ± 0.004

DWI_Original Gray Level Size Zone Matrix Size Zone Non
Uniformity Normalized 0.010 0.33 ± 0.05 0.36 ± 0.05

FLAIR_Original Gray Level Run Length Matrix Short Run Low
Gray Level Emphasis 0.011 0.0019 ± 0.0038 0.0015 ± 0.0025

FLAIR_Original Gray Level Run Length Matrix Gray Level
Non Uniformity 0.011 3783.52 ± 3124.39 2072.1 ± 2363.18

DWI_Original Gray Level Co-occurrence Matrix
Difference Variance 0.012 20.13 ± 12.63 26.75 ± 11.87

DWI_Original Gray Level Co-occurrence Matrix Inverse
Difference Moment Normalized 0.012 0.99 ± 0.01 0.99 ± 0.01

FLAIR_Original Gray Level Run Length Matrix Run Variance 0.012 0.29 ± 0.15 0.22 ± 0.14
FLAIR_Original Gray Level Size Zone Matrix Size Zone

Non Uniformity 0.012 6324.41 ± 4176.75 4061.53 ± 2756.39

DWI_Original Gray Level Size Zone Matrix Gray Level Variance 0.013 91.84 ± 27.92 111.61 ± 32.95
DWI_Original Gray Level Run Length Matrix Run Length

Non Uniformity 0.013 16,416.98 ± 10,512.48 10,095.05 ± 6915.17

FLAIR_Original Gray Level Dependence Matrix Gray Level
Non Uniformity 0.014 4533.69 ± 3896.27 2487.02 ± 3005.24

DWI_Original Gray Level Size Zone Matrix Large Area Emphasis 0.015 5713.84 ± 17,261.49 559.63 ± 1038.73
DWI_Original Gray Level Size Zone Matrix Zone Variance 0.015 5669.15 ± 17,179.37 543.05 ± 1027.67
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Table A2. Cont.

Radiomic Feature p-Value Glioblastoma
Mean ± SD

Non-glioblastoma
Mean ± SD

DWI_Original Gray Level Co-occurrence Matrix Cluster Shade 0.017 657.55 ± 2804.84 −1369.51 ± 3597.59
DWI_Original First Order Maximum 0.018 1161.89 ± 588.37 833.97 ± 489.5

DWI_Original First Order Entropy 0.019 4.7 ± 0.48 5 ± 0.27
FLAIR_Original Gray Level Run Length Matrix Long

Run Emphasis 0.020 1.67 ± 0.3 1.52 ± 0.3

DWI_Original Gray Level Dependence Matrix Dependence
Non Uniformity 0.022 2986.94 ± 1884.99 1937.84 ± 1175.1

DWI_Original Gray Level Dependence Matrix Small
Dependence Emphasis 0.022 0.21 ± 0.09 0.26 ± 0.09

DWI_Original Gray Level Size Zone Matrix Gray Level
Non Uniformity 0.024 158.2 ± 101.68 101.38 ± 57.73

DWI_Original Gray Level Co-occurrence Matrix
Cluster Prominence 0.027 203,134.01 ±

165,799.16
285,344.44 ±
193,348.11

DWI_Original Gray Level Co-occurrence Matrix
Maximum Probability 0.028 0.02 ± 0.02 0.01 ± 0.01

DWI_Original First Order Range 0.029 1089.95 ± 588.32 772.8 ± 487.35
DWI_Original Gray Level Co-occurrence Matrix Joint Energy 0.030 0.01 ± 0.01 0.0038 ± 0.0017
DWI_Original Gray Level Run Length Matrix Run Variance 0.030 0.28 ± 0.22 0.18 ± 0.1

DWI_Original Gray Level Co-occurrence Matrix
Difference Average 0.031 4.08 ± 1.49 4.86 ± 1.48

DWI_Original Gray Level Size Zone Matrix Zone Percentage 0.031 0.24 ± 0.11 0.3 ± 0.11
FLAIR_Original Gray Level Size Zone Matrix Small Area Low

Gray Level Emphasis 0.031 0.0016 ± 0.0041 0.0012 ± 0.0017

DWI_Original Gray Level Run Length Matrix Long Run Emphasis 0.032 1.68 ± 0.47 1.45 ± 0.21
FLAIR_Original Gray Level Size Zone Matrix Zone Entropy 0.032 7.64 ± 0.27 7.5 ± 0.28

DWI_Original Gray Level Co-occurrence Matrix Sum of Squares 0.033 62.05 ± 36.14 77.43 ± 30.25
FLAIR_Original First Order 90th Percentile 0.034 1067.34 ± 552.14 837.61 ± 620.08

DWI_Original Gray Level Run Length Matrix Short Run Emphasis 0.035 0.91 ± 0.04 0.93 ± 0.02
DWI_Original Gray Level Co-occurrence Matrix Inverse

Difference Normalized 0.036 0.95 ± 0.02 0.94 ± 0.02

DWI_Original Gray Level Run Length Matrix Run Percentage 0.036 0.87 ± 0.05 0.9 ± 0.03
DWI_Original Gray Level Run Length Matrix Run Entropy 0.036 5.34 ± 0.31 5.51 ± 0.19

DWI_Original First Order Energy 0.038 5,208,217,032.98 ±
3,924,789,640.04

3,443,654,332.49 ±
3,458,647,338.81

DWI_Original Gray Level Dependence Matrix Large
Dependence Emphasis 0.038 28.71 ± 19.21 19.22 ± 9.25

DWI_Original Gray Level Dependence Matrix Large Dependence
Low Gray Level Emphasis 0.038 0.36 ± 0.98 0.07 ± 0.1

DWI_Original Gray Level Run Length Matrix Run Length Non
Uniformity Normalized 0.039 0.79 ± 0.07 0.83 ± 0.05

DWI_Original Gray Level Dependence Matrix Large Dependence
High Gray Level Emphasis 0.041 15,954.41 ± 7160.01 21,904.17 ± 12,525.77

DWI_Original Neighboring Gray Tone Difference
Matrix Complexity 0.042 4919.68 ± 1476.01 5651.97 ± 1458.46

DWI_Original Gray Level Dependence Matrix Dependence Non
Uniformity Normalized 0.043 0.14 ± 0.04 0.16 ± 0.05

DWI_Original Gray Level Co-occurrence Matrix Sum Entropy 0.046 5.55 ± 0.48 5.8 ± 0.3
DWI_Original Gray Level Co-occurrence Matrix

Difference Entropy 0.049 3.36 ± 0.45 3.58 ± 0.35

Table A3. Final Features Used by DWI-FLAIR XGBoost Model Ranked By Gain.

Radiomic Features (n = 88)

DWI_Original First Order Total Energy
DWI_Original First Order Mean Absolute Deviation

FLAIR_Original First Order 90th Percentile
FLAIR_Original Gray Level Dependence Matrix Small Dependence High Gray Level Emphasis

FLAIR_Original Gray Level Run Length Matrix High Gray Level Run Emphasis
FLAIR_Original Gray Level Size Zone Matrix Gray Level Non Uniformity

DWI_Original First Order Maximum
DWI_Original Gray Level Run Length Matrix Run Entropy

DWI_Original First Order Skewness
DWI_Original First Order 10th Percentile
DWI_Original First Order 90th Percentile
FLAIR_Original First Order Total Energy

DWI_Original Gray Level Size Zone Matrix Large Area Emphasis
DWI_Original Gray Level Size Zone Matrix Zone Variance

DWI_Original Gray Level Co-occurrence Matrix Informal Measure of Correlation 2
FLAIR_Original Gray Level Co-occurrence Matrix Joint Entropy

DWI_Original Gray Level Co-occurrence Matrix Correlation
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Table A3. Cont.

Radiomic Features (n = 88)

DWI_Original Gray Level Co-occurrence Matrix Contrast
FLAIR_Original Gray Level Run Length Matrix Long Run Low Gray Level Emphasis

DWI_Original Gray Level Co-occurrence Matrix Cluster Shade
FLAIR_Original Gray Level Co-occurrence Matrix Cluster Shade

DWI_Original Gray Level Co-occurrence Matrix Joint Entropy
DWI_Original Gray Level Size Zone Matrix Small Area High Gray Level Emphasis

DWI_Original Neighboring Gray Tone Difference Matrix Complexity
FLAIR_Original Gray Level Co-occurrence Matrix Joint Average

DWI_Original Gray Level Dependence Matrix Small Dependence Emphasis
FLAIR_Original Gray Level Co-occurrence Matrix Informal Measure of Correlation 1

DWI_Original Gray Level Size Zone Matrix Zone Entropy
FLAIR_Original First Order Energy
DWI_Original First Order Kurtosis

FLAIR_Original Gray Level Co-occurrence Matrix Sum Average
DWI_Original Gray Level Dependence Matrix Small Dependence High Gray Level Emphasis

FLAIR_Original First Order 10th Percentile
DWI_Original First Order Variance

FLAIR_Original Gray Level Size Zone Matrix Size Zone Non Uniformity
FLAIR_Original Gray Level Size Zone Matrix Gray Level Variance

FLAIR_Original First Order Skewness
FLAIR_Original Gray Level Dependence Matrix Dependence Non Uniformity

FLAIR_Original Gray Level Size Zone Matrix Small Area High Gray Level Emphasis
FLAIR_Original Gray Level Co-occurrence Matrix Informal Measure of Correlation 2

FLAIR_Original First Order Standard Deviation
FLAIR_Original Gray Level Size Zone Matrix Large Area Low Gray Level Emphasis

FLAIR_Original Gray Level Co-occurrence Matrix Sum of Squares
DWI_Original First Order Energy

FLAIR_Original Gray Level Co-occurrence Matrix Maximum Probability
FLAIR_Original Gray Level Co-occurrence Matrix Correlation

DWI_Original Gray Level Dependence Matrix Gray Level Non Uniformity
FLAIR_Original First Order Range

FLAIR_Original Gray Level Co-occurrence Matrix Cluster Tendency
FLAIR_Original Gray Level Dependence Matrix Large Dependence Low Gray Level Emphasis

DWI_Original First Order Entropy
DWI_Original First Order Uniformity

FLAIR_Original First Order Interquartile Range
DWI_Original Gray Level Dependence Matrix Dependence Entropy

FLAIR_Original Gray Level Dependence Matrix Large Dependence High Gray Level Emphasis
DWI_Original Gray Level Dependence Matrix Gray Level Variance

FLAIR_Original Gray Level Dependence Matrix Dependence Entropy
DWI_Original Gray Level Run Length Matrix Gray Level Variance

DWI_Original First Order Robust Mean Absolute Deviation
DWI_Original First Order Median

FLAIR_Original Gray Level Co-occurrence Matrix Difference Variance
FLAIR_Original Gray Level Run Length Matrix Gray Level Variance

FLAIR_Original First Order Minimum
FLAIR_Original Gray Level Run Length Matrix Long Run High Gray Level Emphasis

DWI_Original First Order Standard Deviation
DWI_Original Gray Level Size Zone Matrix Gray Level Non Uniformity Normalized

DWI_Original Gray Level Run Length Matrix Low Gray Level Run Emphasis
FLAIR_Original Gray Level Dependence Matrix Dependence Variance

DWI_Original Neighboring Gray Tone Difference Matrix Contrast
DWI_Original Gray Level Co-occurrence Matrix Inverse Difference

DWI_Original Gray Level Dependence Matrix Large Dependence Low Gray Level Emphasis
FLAIR_Original Gray Level Size Zone Matrix Gray Level Non Uniformity Normalized

DWI_Original Gray Level Run Length Matrix Run Variance
DWI_Original Gray Level Dependence Matrix Low Gray Level Emphasis

FLAIR_Original Gray Level Size Zone Matrix Zone Percentage
FLAIR_Original Gray Level Size Zone Matrix Small Area Low Gray Level Emphasis

DWI_Original Gray Level Co-occurrence Matrix Inverse Variance
DWI_Original First Order Minimum

DWI_Original Gray Level Co-occurrence Matrix Maximum Probability
DWI_Original Gray Level Size Zone Matrix Large Area Low Gray Level Emphasis

DWI_Original Gray Level Co-occurrence Matrix Joint Energy
FLAIR_Original Neighboring Gray Tone Difference Matrix Complexity

FLAIR_Original Gray Level Co-occurrence Matrix Contrast
FLAIR_Original Gray Level Run Length Matrix Run Entropy

FLAIR_Original Gray Level Co-occurrence Matrix Joint Energy
DWI_Original Gray Level Run Length Matrix Run Percentage
DWI_Original Gray Level Co-occurrence Matrix Joint Average

FLAIR_Original First Order Mean Absolute Deviation
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Table A4. Final Features Used by DWI XGBoost Model Ranked By Gain.

Radiomic Features (n = 71)

Original Gray Level Co-occurrence Matrix Autocorrelation
Original Gray Level Run Length Matrix Run Entropy

Original Gray Level Dependence Matrix Dependence Non Uniformity Normalized
Original Gray Level Dependence Matrix Gray Level Variance

Original Gray Level Co-occurrence Matrix Maximum Probability
Original Gray Level Run Length Matrix Long Run High Gray Level Emphasis

Original Gray Level Run Length Matrix Gray Level Non Uniformity
Original Gray Level Size Zone Matrix Small Area High Gray Level Emphasis

Original First Order Total Energy
Original Gray Level Co-occurrence Matrix Informal Measure of Correlation 2
Original Gray Level Size Zone Matrix Large Area High Gray Level Emphasis

Original Gray Level Size Zone Matrix Size Zone Non Uniformity
Original First Order 10th Percentile

Original First Order Root Mean Squared
Original Gray Level Co-occurrence Matrix Cluster Shade

Original First Order Kurtosis
Original Gray Level Size Zone Matrix Low Gray Level Zone Emphasis
Original Gray Level Run Length Matrix Run Length Non Uniformity

Original Neighboring Gray Tone Difference Matrix Coarseness
Original First Order Mean Absolute Deviation

Original First Order Skewness
Original Gray Level Run Length Matrix Short Run Low Gray Level Emphasis

Original Gray Level Co-occurrence Matrix Sum Average
Original First Order Robust Mean Absolute Deviation

Original Gray Level Dependence Matrix Dependence Non Uniformity
Original First Order Range

Original Neighboring Gray Tone Difference Matrix Busyness
Original First Order Maximum

Original Gray Level Co-occurrence Matrix Sum of Squares
Original Gray Level Co-occurrence Matrix Inverse Difference Normalized

Original First Order Standard Deviation
Original Gray Level Dependence Matrix Gray Level Non Uniformity

Original Neighboring Gray Tone Difference Matrix Strength
Original Gray Level Size Zone Matrix Size Zone Non Uniformity Normalized

Original Gray Level Dependence Matrix Dependence Entropy
Original Gray Level Size Zone Matrix Zone Entropy

Original Gray Level Dependence Matrix Low Gray Level Emphasis
Original Gray Level Co-occurrence Matrix Sum Entropy

Original Gray Level Size Zone Matrix Gray Level Non Uniformity Normalized
Original Gray Level Co-occurrence Matrix Difference Entropy

Original Gray Level Co-occurrence Matrix Informal Measure of Correlation 1
Original Gray Level Run Length Matrix Long Run Emphasis

Original Gray Level Run Length Matrix Long Run Low Gray Level Emphasis
Original First Order Minimum

Original Gray Level Run Length Matrix Low Gray Level Run Emphasis
Original Gray Level Size Zone Matrix Zone Percentage

Original Gray Level Co-occurrence Matrix Cluster Prominence
Original First Order Energy

Original Neighboring Gray Tone Difference Matrix Complexity
Original Gray Level Co-occurrence Matrix Correlation
Original Gray Level Co-occurrence Matrix Joint Energy

Original Gray Level Size Zone Matrix Gray Level Non Uniformity
Original Gray Level Size Zone Matrix Zone Variance

Original Gray Level Size Zone Matrix Small Area Emphasis
Original Gray Level Run Length Matrix High Gray Level Run Emphasis

Original Gray Level Run Length Matrix Gray Level Non Uniformity Normalized
Original Gray Level Co-occurrence Matrix Difference Average

Original First Order Median
Original First Order Uniformity

Original Gray Level Co-occurrence Matrix Joint Entropy
Original Gray Level Co-occurrence Matrix Joint Average

Original First Order Mean
Original First Order Interquartile Range

Original Gray Level Size Zone Matrix Large Area Low Gray Level Emphasis
Original Gray Level Size Zone Matrix Gray Level Variance

Original Neighboring Gray Tone Difference Matrix Contrast
Original Gray Level Run Length Matrix Short Run High Gray Level Emphasis

Original Gray Level Run Length Matrix Gray Level Variance
Original Gray Level Run Length Matrix Run Percentage

Original Gray Level Dependence Matrix Large Dependence High Gray Level Emphasis
Original Gray Level Co-occurrence Matrix Contrast
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Table A5. Final Features Used by FLAIR XGBoost Model Ranked By Gain.

Radiomic Features (n = 33)

Original Gray Level Run Length Matrix Short Run High Gray Level Emphasis
Original First Order Mean Absolute Deviation

Original Gray Level Co-occurrence Matrix Correlation
Original Gray Level Size Zone Matrix Gray Level Variance

Original Gray Level Size Zone Matrix Low Gray Level Zone Emphasis
Original Gray Level Co-occurrence Matrix Informal Measure of Correlation 2

Original Gray Level Co-occurrence Matrix Cluster Prominence
Original Gray Level Dependence Matrix Small Dependence High Gray Level Emphasis

Original Neighboring Gray Tone Difference Matrix Coarseness
Original First Order Range

Original Gray Level Size Zone Matrix Size Zone Non Uniformity
Original First Order Kurtosis

Original First Order Skewness
Original Gray Level Run Length Matrix Long Run High Gray Level Emphasis

Original First Order Interquartile Range
Original Gray Level Size Zone Matrix Gray Level Non Uniformity

Original Gray Level Run Length Matrix Gray Level Non Uniformity Normalized
Original Gray Level Co-occurrence Matrix Inverse Difference Moment Normalized

Original Gray Level Dependence Matrix Small Dependence Low Gray Level Emphasis
Original Gray Level Co-occurrence Matrix Cluster Shade

Original Gray Level Dependence Matrix Large Dependence Low Gray Level Emphasis
Original First Order Energy

Original Gray Level Co-occurrence Matrix Difference Entropy
Original Gray Level Run Length Matrix Run Entropy

Original Gray Level Run Length Matrix Low Gray Level Run Emphasis
Original Gray Level Size Zone Matrix Small Area High Gray Level Emphasis

Original Gray Level Run Length Matrix Run Percentage
Original Gray Level Co-occurrence Matrix Joint Average

Original Gray Level Run Length Matrix Long Run Emphasis
Original Gray Level Run Length Matrix Short Run Emphasis

Original First Order Robust Mean Absolute Deviation
Original Gray Level Run Length Matrix High Gray Level Run Emphasis

Original First Order Total Energy

Table A6. All Radiomic Features Listed By Feature Class.

Feature Class Radiomic Features

First Order Statistics Original First Order Energy
Original First Order Total Energy

Original First Order Entropy
Original First Order Minimum

Original First Order 10th Percentile
Original First Order 90th Percentile

Original First Order Maximum
Original First Order Mean

Original First Order Median
Original First Order Interquartile Range

Original First Order Range
Original First Order Mean Absolute Deviation

Original First Order Robust Mean Absolute Deviation
Original First Order Root Mean Squared
Original First Order Standard Deviation

Original First Order Skewness
Original First Order Kurtosis
Original First Order Variance

Original First Order Uniformity
Gray Level Co-occurrence Matrix Original Gray Level Co-occurrence Matrix Autocorrelation

Original Gray Level Co-occurrence Matrix Joint Average
Original Gray Level Co-occurrence Matrix Cluster Prominence

Original Gray Level Co-occurrence Matrix Cluster Shade
Original Gray Level Co-occurrence Matrix Cluster Tendency

Original Gray Level Co-occurrence Matrix Contrast
Original Gray Level Co-occurrence Matrix Correlation

Original Gray Level Co-occurrence Matrix Difference Average
Original Gray Level Co-occurrence Matrix Difference Entropy
Original Gray Level Co-occurrence Matrix Difference Variance

Original Gray Level Co-occurrence Matrix Joint Energy
Original Gray Level Co-occurrence Matrix Joint Entropy

Original Gray Level Co-occurrence Matrix Informal Measure of Correlation 1
Original Gray Level Co-occurrence Matrix Informal Measure of Correlation 2
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Table A6. Cont.

Feature Class Radiomic Features

Original Gray Level Co-occurrence Matrix Inverse Difference Moment
Original Gray Level Co-occurrence Matrix Inverse Difference Moment Normalized

Original Gray Level Co-occurrence Matrix Inverse Difference
Original Gray Level Co-occurrence Matrix Inverse Difference Normalized

Original Gray Level Co-occurrence Matrix Inverse Variance
Original Gray Level Co-occurrence Matrix Maximum Probability

Original Gray Level Co-occurrence Matrix Sum Average
Original Gray Level Co-occurrence Matrix Sum Entropy

Original Gray Level Co-occurrence Matrix Sum of Squares
Gray Level Run Length Matrix Original Gray Level Run Length Matrix Short Run Emphasis

Original Gray Level Run Length Matrix Long Run Emphasis
Original Gray Level Run Length Matrix Gray Level Non Uniformity

Original Gray Level Run Length Matrix Gray Level Non Uniformity Normalized
Original Gray Level Run Length Matrix Run Length Non Uniformity

Original Gray Level Run Length Matrix Run Length Non Uniformity Normalized
Original Gray Level Run Length Matrix Run Percentage

Original Gray Level Run Length Matrix Gray Level Variance
Original Gray Level Run Length Matrix Run Variance
Original Gray Level Run Length Matrix Run Entropy

Original Gray Level Run Length Matrix Low Gray Level Run Emphasis
Original Gray Level Run Length Matrix High Gray Level Run Emphasis

Original Gray Level Run Length Matrix Short Run Low Gray Level Emphasis
Original Gray Level Run Length Matrix Short Run High Gray Level Emphasis
Original Gray Level Run Length Matrix Long Run Low Gray Level Emphasis
Original Gray Level Run Length Matrix Long Run High Gray Level Emphasis

Gray Level Size Zone Matrix Original Gray Level Size Zone Matrix Small Area Emphasis
Original Gray Level Size Zone Matrix Large Area Emphasis

Original Gray Level Size Zone Matrix Gray Level Non Uniformity
Original Gray Level Size Zone Matrix Gray Level Non Uniformity Normalized

Original Gray Level Size Zone Matrix Size Zone Non Uniformity
Original Gray Level Size Zone Matrix Size Zone Non Uniformity Normalized

Original Gray Level Size Zone Matrix Zone Percentage
Original Gray Level Size Zone Matrix Gray Level Variance

Original Gray Level Size Zone Matrix Zone Variance
Original Gray Level Size Zone Matrix Zone Entropy

Original Gray Level Size Zone Matrix Low Gray Level Zone Emphasis
Original Gray Level Size Zone Matrix Small Area Low Gray Level Emphasis
Original Gray Level Size Zone Matrix Small Area High Gray Level Emphasis
Original Gray Level Size Zone Matrix Large Area Low Gray Level Emphasis
Original Gray Level Size Zone Matrix Large Area High Gray Level Emphasis

Neighboring Gray Tone Difference Matrix Original Neighboring Gray Tone Difference Matrix Coarseness
Original Neighboring Gray Tone Difference Matrix Contrast
Original Neighboring Gray Tone Difference Matrix Busyness

Original Neighboring Gray Tone Difference Matrix Complexity
Original Neighboring Gray Tone Difference Matrix Strength

Gray Level Dependence Matrix Original Gray Level Dependence Matrix Small Dependence Emphasis
Original Gray Level Dependence Matrix Large Dependence Emphasis
Original Gray Level Dependence Matrix Gray Level Non Uniformity

Original Gray Level Dependence Matrix Dependence Non Uniformity
Original Gray Level Dependence Matrix Dependence Non Uniformity Normalized

Original Gray Level Dependence Matrix Gray Level Variance
Original Gray Level Dependence Matrix Dependence Variance
Original Gray Level Dependence Matrix Dependence Entropy

Original Gray Level Dependence Matrix Low Gray Level Emphasis
Original Gray Level Dependence Matrix High Gray Level Emphasis

Original Gray Level Dependence Matrix Small Dependence Low Gray
Level Emphasis

Original Gray Level Dependence Matrix Small Dependence High Gray
Level Emphasis

Original Gray Level Dependence Matrix Large Dependence Low Gray
Level Emphasis

Original Gray Level Dependence Matrix Large Dependence High Gray
Level Emphasis
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