	Aberrant seeds		Total goods	Percentage of
	Undeveloped ovules	Aborted seeds	Total seeus	aberrant seeds
wild type	11	4	962	1.6%
eda3	363	79	998	44.3%

Table S1. Seed development in the wild-type and *eda3* mutant plants.

Primer name	Sequence (5'-3')			
For qRT-PCR				
EDA3-QF	CTTCCTCAGAGACTACCCACAAAG			
EDA3-QR	GAACCTCCTGGTTTCTTGTCTAAAGC			
ACT2-QF	CCAACATATGCATCCTTCTGGTTCATCCCA			
ACT2-QR	TGGCTGAGGCTGATGATATTCAACCAATCG			
For expressing EDA3-EYFP				
EDA3-HF	TCGAATTCCTGCAGCCCGGGATGGCGGCATCATCATCTCATCTCT			
EDA3-ER	CCCTTGCTCACCATACTAGTTGAATCAGGAAGAAGCCGACCATTG			
For expressing EDA3 Δ cTP-EYFP				
EDA3-TrunF	TCGAATTCCTGCAGCCCGGGATGGCAGCTTTAATTAGCAATTCTT			
For expressing PIP2A-mCherry				
PIP2A-HF	TCGAATTCCTGCAGCCCGGGATGGCAAAGGATGTGGAAGCCGTTC			
PIP2A-ER	CCCTTGCTCACCATACTAGTGACGTTGGCAGCACTTCTGAATGAT			
For expressing PIP2A fused with the NLS of EDA3 and mCherry				
NLS-PIP2A-EYFP-F1	CTTCTTAGAAGGCCTGGTGCTCGTGAGCTAGCAAAGGATGTGGAAGCCGT			
NLS-PIP2A-EYFP-F2	TTAGGTACAGGTTTACCAAACAACAAAGGCCTTCTTAGAAGGCCTGGTGC			
NLS-PIP2A-EYFP-F3	GGTCGAGGTAAGCTTGTTTGTCCGGTCTGTTTAGGTACAGGTTTACCAAA			
NLS-PIP2A-EYFP-F4	TCGAATTCCTGCAGCCCGGGATGGGTCGAGGTAAGCTTGTTTGT			

Table S2. Primers used in this study.

Figure S1. The *eda3* mutant shows a retarded growth phenotype under normal conditions.

Bar = 3 cm.

MAASSSHLFALPSPASPFLSAPNRNRVRVLAKSCPENQSFDSNDSDSSSE	50
TTHKAQGDQKSVSRRQWMTACVCASAALISNSYTFVSVQSAAALDKKPGG	100
SCRNCQGSGAVLCDMCGGTGKWKALNRKRAKDVYEFTECPNCYGRGKLVC	150
<i>P</i> VCLGT GLPNNKGLLRRPGA RELLEKMYNGRLLPDS	186

Figure S2. Deduced amino acid sequence of EDA3.

Predicted chloroplast transit peptide is underlined. The nuclear localization signal is in italic. The peptide used as the antigen for raising antibody against EDA3 is in boldface.

Figure S3. Validation of the antibody against EDA3.

Seedlings of the wild-type (WT), *EDA3*-overexpression (*EDA3-OE*), and the T-DNA insertion mutant (CS445540) were grown under normal conditions. Leaves from different lines were harvested and used for immunoblot analysis using the antibody we raised against EDA3. Actin was probed as a reference.

>EDA3 (AT2G34860)

MAASSSHLFALPSPASPFLSAPNRNRVRVLAKSCPENOSFDSNDSDSSSE TTHKAQGDQKSVSRRQWMTACVCASAALISNSYTFVSVQSAAALDKKPGG SCRNCQGSGAVLCDMCGGTGKWKALNRKRAKDVYEFTECPNCYGRGKLVC

MSSLGRILSVSYPPDPYTWRFSQYKLSSSLGRNRRLRWRFTALDPESSSL DSESSADKFASGFCIIEGPETVQDFAKMQLQEIQDNIRSRRNKIFLHMEE VRRLRIQORIKNTELGIINEEOEHELPNFPSFIPFLPPLTAANLKVYYAT CFSLIAGIILFGGLLAPTLELKLGIGGTSYADFIQSLHLPMQLSQVDPIV ASFSGGAVGVISALMVVEVNNVKQQEHKRCKYCLGTGYLACARCSSTGAL VLTEPVSAIAGGNHSLSPPKTERCSNCSGAGKVMCPTCLCTGMAMASEHD

PVCLGTGLPNNKGLLRRPGARELLEKMYNGRLLPDS >ORANGE (AT5G61670)

>TsiP1 (AAD18030) MASSSTCTCSCRPIITAKSNIINRFVTPRGIQLIFHGNPRLKQVPRIFAV RASAVDSSSSFVERMEKAWLISKQPRPIVCSTCGSNGHVECKWCSGTGFF VLGDNMLCQVPSRNTSCVICAGKGSVCCTDCKGTGHRAKWLGEPPLPNPP

IAKE

PRIDPFD

>ANGULATA7 (AT5G53860)

MSRGPGRLIQNVTQFADAQFKQFSTRYGQQVIDILDFPIKLVLSPFTLAF DIAGSAPRGFGIPEFISKISYLSVFAVATLGTYDIALDLGKKVICQRDCK TCNGWOALRCTMCKGTGSVHYOIKDYNLRSGEKPTADCVADAIVENRAEL VHLPSSFNHSAPLPSKDCPTCDGTGAMSCTECKNKLQVRISADDIMEPPW KAYNVLKKMDYPYEHIVHSMKDPSIANFWLITLPOIVGGFDYDEDVKKKI WWQYELNLLNPHLGWFCYTNIVSIPYLDRFVLWNWRHLWDTDESMRYDQL RDLVAKRNPGWEYLQDALVSIDPVRAREDPVIVKNVPYYKAKKSLEAEVT KLNPPPRPONWGELNLPLNISSWSEEDLKNPAKLYEKTVLLNAQREIADK ILDAQWEAKWRQEKVEEMLEQKVRPYIQDSSMAVLPQPILLKSQKKAQKG SRQRKWWFF

Figure S4. Sequences of EDA3, ORANGE, TsiP1, and ANGULATA 7.

Conserved cysteine-rich DnaJ-like zinc finger domains are underlined.