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Abstract: Interleukin-6 (IL-6) is a cytokine with multifaceted effects playing a remarkable role in
the initiation of the immune response. The increased level of this cytokine in the elderly seems to
be associated with the chronic inflammatory setting of the microenvironment in aged individuals.
IL-6 also represents one of the main signals in communication between cancer cells and their
non-malignant neighbours within the tumour niche. IL-6 also participates in the development of
a premetastatic niche and in the adjustment of the metabolism in terminal-stage patients suffering
from a malignant disease. IL-6 is a fundamental factor of the cytokine storm in patients with severe
COVID-19, where it is responsible for the fatal outcome of the disease. A better understanding of
the role of IL-6 under physiological as well as pathological conditions and the preparation of new
strategies for the therapeutic control of the IL-6 axis may help to manage the problems associated
with the elderly, cancer, and serious viral infections.

Keywords: tumour microenvironment; cancer ecosystem; ageing; COVID-19; IL-6; cytokine storm;
cytokine; cancer-associated fibroblasts

1. Introduction

Interleukin-6 (IL-6) is a bioactive protein known under numerous synonyms (Table 1). It is
a cytokine of a pro-inflammatory nature, and it can be produced by various cell types of the immune
system as well as by some nonimmune cells, including fibroblasts. Regarding the anatomical distribution
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of Il-6, it was identified in the lungs, urinary bladder, adipose tissue, muscles, vermiform appendix,
etc. (The Human Protein Atlas, [1]).

Table 1. Synonyms for interleukin-6 (IL-6).

Name Author

Interferon β-2 Zilberstein et al., 1986 [2]
26K factor Haegeman et al., 1986 [3]

B-cell stimulatory factor Hirano et al., 1985 [4]
Hybridoma growth factor Brakenhoff et al., 1987 [5]

Plasmacytoma growth factor Nordan et al., 1987 [6]
Hepatocyte stimulatory factor Gauldie et al., 1987 [7]

Haematopoietic factor Ikebuchi et al., 1987 [8]
Cytotoxic T-cell differentiation factor Takai et al., 1988 [9]

The main cell types acting as producers of IL-6 are shortlisted in Table 2.

Table 2. Examples of cells producing IL-6.

Type of cell Author

Keratinocyte Groeger and Meyle, 2019 [10]
Enterocyte Pritts et al., 2002 [11]
Urothelium Uehling et al., 1999 [12]
Hepatocyte Schmidt-Arras and Rose-John, 2016 [13]

Pneumocyte and bronchial epithelial cell Cheung, 2005 [14]
Smooth muscle Kyotani et al., 2019 [15]
Skeletal muscle Barbalho et al., 2020 [16]

Osteoblast Kovács et al., 2019 [17]
Adipocyte Xie et al., 2019 [18]

Macrophage Shapouri-Moghaddam et al., 2018 [19]
Neuron Shapouri-Moghaddam et al., 2018 [19]

IL-6 is recognised by its transmembrane receptor (IL-6R), which forms a complex with glycoprotein
130 (gp130). This receptor has tyrosine kinase activity and activates signal transducer and activator of
transcription 3 (STAT3) via phosphorylation. On the other hand, the extracellular portion of IL-6R
can be cleaved from the intramembranous domain of the receptor by membrane protease ADAM-17.
Soluble IL-6R without tyrosine kinase activity interacts with gp130 outside the cell and forms a complex
of IL-6, soluble IL-6R and gp130, which is docked back to the cell membrane [20]. This arrangement of
the IL-6–IL-6R axis can be functionally variable when the actual function of IL-6 signalling is dependent
on the type of cell and the type of interacting receptor. While the interaction of IL-6 with transmembrane
IL-6R and gp130 participates in anti-inflammatory pro-cancerogenic signalling, the interaction of IL-6
with soluble IL-6R and gp130 stimulates inflammation [20].

In this review, we aim to highlight the molecular similarity between apparently distinct phenomena
and their mechanisms such as physiological ageing, formation of the cancer niche ecosystem and
severe inflammatory conditions, including viral infections such as COVID-19. In all of them, we can
invariably observe deregulation of the IL-6–IL-6R axis. Therefore, our more in-depth insight into
the IL-6 function in the context of ageing, tumourigenesis and infections may bring new therapeutic
strategies for the treatment of age-related disorders, cancer and transmissible, e.g., viral, diseases.

2. Physiological Functions of IL-6

The family of IL-6-related proteins consists of members with remarkable and distinct biological
activities that are structurally similar to IL-6, such as IL-11, IL-31, cardiotrophin-1, ciliary neurotrophic
factor (CNTF), cardiotrophin-like cytokine (CLC), granulocyte colony-stimulating factor (G-CSF),
leptin, leukaemia inhibitory factor (LIF), neuropoietin, and oncostatin [21]. This cytokine family
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is defined by sharing common IL-6 family signalling receptor gp130 more than by any structural
homology of its members. It is therefore not surprising that the IL-6 family cytokines not only display
partially overlapping, but also, more significantly, very different biological activities [22].

IL-6 knockout mice are available for research purposes [23]. Interestingly, their embryonic and
foetal development is not hampered, and knockout animals do not have any apparent developmental
abnormalities. On the other hand, these mouse strains were highly susceptible to several pathogens,
and they failed to generate acute-phase responses [24].

IL-6 contributes to the host defence by stimulation of the acute phase immune response, including
elevation of body temperature [25]. In this context, IL-6 positively influences the maturation of B
lymphocytes and cytotoxic T lymphocytes [26,27]. In the same motion, IL-6 deficiency in an experimental
model leads to protection against triggering autoimmune encephalomyelitis [28]

IL-6 also belongs to the family of myokines such as IL-8, IL-15, irisin, myostatin, fibroblast growth
factor (FGF)21, leukemia inhibitory factor (LIF), brain-derived neurotrophic factor (BDNF), and insulin
like growth factor-1 (IGF-1) that influence the function of skeletal muscle with metabolic impacts on the
whole organism [16], namely by interaction with adipocytes and factors produced by these cells [29].
In knockout mice, surviving animals had reduced age-related obesity development [30].

The role of IL-6 in the bone metabolism was also confirmed by the stimulation of osteoclast
activity [31]. This is in good agreement with the observed protection against the bone loss after
ovariectomy in a mouse knockout model [32].

These few examples demonstrate the complex and multifaceted role of IL-6 both in physiological
and pathological conditions in the human body.

3. IL-6 and Ageing

3.1. “Inflammaging” as a Developmentally Controlled Process

In the last seventy years, the life expectancy of citizens dramatically increased in many countries
across the world. In a number of developed countries, it now reaches around 80 years of age.
This represents an increase in life expectancy from the beginning of the 20th century by approximately
30 years. Unfortunately, this trend is associated with numerous age-related phenomena such as
cardiovascular diseases, cognitive function impairment, sarcopoenia, metabolic disorders, cachexia,
and also an increased incidence of cancer [33]. “Adding years to life and life to years” [34] has become
an appealing manifesto of health care-providing authorities in recent times. It urges in-depth insights
into the mechanisms typical of healthy longevity.

Even in the absence of any disease, chronologically aged cells differ from juvenile cells.
Bioinformatic analysis of events associated with the ageing of tissues and organs in otherwise
healthy seniors highlighted specific developmentally regulated mechanisms. Surprisingly, age-induced
changes are typical of inflammation [35]. This finding correlates well with an increasing number
of neutrophils—cells of innate immunity. On the other hand, lymphocytes—the principal cells of
adaptive immunity—are significantly reduced during ageing [36]. One of the typical humoral markers
of inflammation, namely in the early stage, is IL-6. The serum concentration of IL-6 increases during
ageing, and it is independent of ethnicity [36–38]. The moderately elevated serum concentration
of IL-6 in aged people plays a significant role in functional impairment, including low locomotion,
cognitive and mental functions, and depression [39]. The highly elevated level of this cytokine can
even predict increased mortality in very old individuals [40]. On the other hand, a low level of IL-6
representing lower “inflammaging” was typical of successful centenarians [41].

Ageing in itself is not a disease [42]. However, it is a condition that allows or induces the emergence
of some diseases. Even healthy senescent tissue, devoid of clinically apparent disease, exerts some
alarming molecular features. This might be exemplified by the study of the expression profiles of
the dermal fibroblasts isolated from very old donors. These fibroblasts demonstrated a remarkable
similarity to cancer-associated fibroblasts (CAFs), including a high expression of mRNA encoding
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IL-6 [43]. Indeed, transcriptional profiling of facial dermal fibroblasts from children, healthy adults,
photodamaged dermal fibroblasts of patients suffering from basal cell carcinoma, and CAFs directly
from basal and cutaneous squamous cell carcinomas revealed striking similarities in the expression
of downstream components of the IL-6 signalling pathway [44] between aged fibroblasts and CAFs.
Notably, Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) displayed
a clear rising trend from very low activity in child fibroblasts, through to intermediate activity in
photoaged dermal fibroblasts, and then to elevated activity in CAFs (Figure 1), indicating an increasing
degree of “inflammaging”

As stated above, ageing is not a disease. However, ageing and disease are frequently tightly
associated. As noted by the WHO, health shall not be understood as an absence of disease [34]. Hence,
the tie of ageing and disease is sometimes so close that it is obviously challenging at this level to draw
a sharp demarcation line separating “healthy yet aged tissue” from already precancerous or even
cancerous tissue.
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Figure 1. Multiple genes of the interleukin-6 (IL-6) signalling pathway display gradual changes
in transcription activity, differing among facial dermal fibroblasts from children (DF_FC), healthy
adults (DF_FA), photodamaged dermal fibroblasts (DF) of patients suffering from basal cell carcinoma,
and cancer-associated fibroblasts (CAFs) from basal cell carcinomas (BCCF) and cutaneous squamous
cell carcinomas (SCCF).

Our understanding of “inflammaging” and the significance of elevated IL-6, C-reactive
protein (CRP) and tumour necrosis factor (TNF)-α concentrations is not yet complete. The role
of a developmentally programmed genetic process is hypothesised. Still, other processes, such as
chronic viral infection (cytomegalovirus), a high volume of visceral fat, altered gut permeability,
ineffective immune response in the elderly and the accumulation of senescent cells in the body may
also be responsible for “inflammaging” [45]

3.2. Non-Steroid Anti-Inflammatory Drugs as “Inflammaging” Therapy in Ageing

Upon broadly accepted medical advice, the aged population frequently uses low-dose
acetylsalicylic acid (ASA). It acts as prevention of thromboembolism and cardiovascular diseases,
mainly because of its anticlotting effect. It was observed in many studies that this prophylactic
application also has a significant anti-cancer effect, at least for cancer of the prostate, lung, colorectum,
ovary, uterus, and stomach [46–48]. ASA is a member of the non-steroid anti-inflammatory drug
family. The molecular mechanism of ASA activity is well known, and it is explained by irreversible
acetylation of cyclooxygenase (COX) enzymes, resulting in the anti-inflammatory effect. It seems
that the anti-cancer effect of non-steroid anti-inflammatory drugs is not strictly dependent on the
abovementioned molecular mechanism. It was confirmed that other non-steroid anti-inflammatory
drugs affecting other molecular mechanisms are also beneficial in cancer prevention, as exemplified in
breast cancer [49,50]. ASA and other non-steroid anti-inflammatory drugs can successfully reduce
“inflammaging” in the tissue/organ microenvironment. Such inhibition can adversely impact the cancer
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ecosystem and thus consequently inhibit the probability of successful cancer initiation and growth
in this niche. In the context of this article, it should be mentioned that these substances reduce the
actual levels of IL-6 and TNF-α, factors known for their supporting role in tumour growth and spread,
as discussed above [49,50]. Moreover, ASA has a direct effect on the production of IL-6 by adipocytes,
and so it has an indirect effect on cancer [51]. ASA also stimulates apoptosis in cancer cells [52].
Its effect on blood platelets has also demonstrated the role of non-steroid antirheumatic drugs in cancer.
The anti-platelet activity of low doses of ASA in combination with COX in suppressing tumourigenesis
was clearly established [53]. However, ASA and other non-steroid anti-inflammatory drugs display
side effects, namely in the gastrointestinal system, where they induce gastric erosions, ulcerations,
and bleeding. According to the U.S. Preventive Services Task Force Recommendation [54], the risk
of bleeding is minimal after low-dose use, and the benefits, including colorectal cancer prevention,
prevail. The data about ASA and other non-steroid anti-inflammatory drugs in cancer prevention
by modulation of the cancer microenvironment may be an inspiration for the development of novel
preventive strategies for cancer incidence reduction in the elderly.

3.3. Summary of the Role in IL-6 in Ageing

Ageing is associated with a proclivity to inflammation. At the cellular level, accumulating
evidence shows that senescent cells may have deleterious effects on the tissue microenvironment [55].
The elevation of IL-6 notably accompanies this developmental programme of ageing. Apart from
its orderly physiological functions, the IL-6 cytokine plays a fundamental role in the intercellular
communication between various cells across tissues harbouring a potentially cancerogenic mutational
burden. IL-6 acts as a key messenger between cancerous and non-cancerous cell populations at
the tumour site. It strengthens their local interactions, but it also has a prominent systemic effect
after leakage to the circulation. Terminal stages of disease in the elderly and malignant diseases
share outstanding similarities. Both in ageing-related and cancer-induced cachexia, IL-6 alone, or in
combination with other factors, plays a critical role [56]. Evidence suggests that long-term prophylactic
systemic therapy by recently available non-steroid anti-inflammatory drugs in the elderly can be
beneficial for these individuals. Apart from improved cardiovascular outcomes, this therapy can lead
to a reduction in the incidence of malignant tumours in aged patients. However, even this therapy
should be carefully individualised. It was revealed in recent years that the ASA effects on several
condition outcomes, including cancer, also showed interactions particularly with body mass [57].
Therefore, the simplistic “one-dose-fits-all” strategy of prevention is unlikely to be optimal.

4. IL-6 and Chronic Inflammatory Diseases

Human pathology and clinical medicine describe a plethora of chronic inflammatory systemic
diseases [58]. In recent years, many of these conditions have been classified as autoimmune disorders,
namely rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis, and should
be associated with tumour formation. In agreement with the topic of this article, participation of
chronic inflammation in experimentally induced inflammatory bowel disease induces tissue fibrosis,
which promotes cancer in the treated animals [59]. Because of the critical role of IL-6 in the control of
inflammation, it is not surprising that this cytokine is essential in the chronic, frequently autoimmune
inflammations listed above. Notably, in rheumatoid arthritis, the blocking of the IL-6–IL-6R axis can
be successfully controlled in clinical practice, for example, by tocilizumab [60]. However important,
all these conditions originating from the immune cell aggression against the organism, in principle,
represent very different issues that are relatively remote to the scope of our review. Therefore, we decided
not to follow this aspect and focus primarily on the oncological and developmental implications.
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5. Cancer and IL-6

5.1. Cancer as a Complex Tissue/Organ

The incidence of malignant tumours in humans is significantly increasing. This phenomenon
seems to be associated with population ageing in developed countries, where it is traditionally
attributed to advanced medical care. We may expect that each third or even every other citizen is at
risk of encountering cancer in the course of his or her life [61]. Therefore, all knowledge improving
our understanding of cancer biology is critically important because it can establish a basis for new
therapeutic strategies. The scientific interest, as well as therapeutic efforts, have primarily focused on
cancer cells. This population is usually widely genetically altered [62] because of the attenuation of
the gene repair machinery in the elderly [63]. This concept was successful many times and allowed
for even highly efficient, personalised treatment, as exemplified in everyday practice on the case of,
e.g., BRAF-mutated melanoma. However, a tumour is a complex tissue and contains highly important
yet non-cancerous components, usually described as the stroma. In a broader view, the tumour can
be described using the terminology and principles of classical ecology. This approach allows for the
identification of some previously neglected functional interactions. In this concept, the tumour cells
reside in a suitable niche that can support them via nutrients and oxygen, and that also provides
protection against predators such as anti-cancer immunity [64]. In parallel, it is known that normal
adult stem cells also require a similar specific environment for their life-long stemness maintenance [65].
This suggests an intriguing similarity between some aspects of cancer and regenerative biology. It is not
surprising that cancer was tentatively compared to chronic wounds [66], and remarkable similarities
between the wound repair mechanisms and cancer were indeed identified based on the molecular
architecture of the healing process [67].

Except for cancer cells, the cancer ecosystem contains cancer-associated fibroblasts (CAFs)
and infiltrating immune cells ((natural killer (NK) cells, Treg lymphocytes, CD8+ T lymphocytes,
tumour-associated macrophages, myeloid-derived immunosuppressive cells, etc. [68]) (Figure 2).
From this point of view, a tumour, for example, cancer of the breast, can be seen as a parallel of a specific
organ. It requires highly orchestrated regulation that improves the tumour growth and consequently
allows its spread [43]. It is critically important to identify individual components of the tumour, but it
is even more important to be able to identify all the interactions that they are undergoing.
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Figure 2. Positive immunohistochemical detection of IL-6 in human cutaneous malignant melanoma.
Nests of melanoma cells are highly positive for IL-6 (in brown). Stromal cells, including representatives
of CAFs (arrows), are also somewhat positive in this staining. The bar is 100 µm.
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5.2. CAFs as Producers of IL-6

The cancer ecosystem is quite uniform in different types of tumours. Apart from the cancer cells
and immune cells, it contains large numbers of fibroblasts, the CAFs. These cells seem to be important
in the control of coordination of the whole cancer ecosystem [69–71]. However, these cells differ
from normal tissue fibroblasts in many aspects. Functionally, CAFs are highly activated, and they
frequently express α-smooth muscle actin in the majority of tumours (Figure 3A). No unique or
universal marker of CAFs has been described thus far. CAFs express several characteristic proteins
such as fibroblast-activating protein (FAP), tenascin-C, periostin, Thy-1, podoplanin, and caveolin-1 [72].
In practice, we usually have to rely on a combination of several markers. Therefore, distinguishing
them exactly from normal fibroblasts, namely in tissue sections, is not simple. In research practice,
several markers should be detected to estimate their quantity and activity.

The origin of CAFs is not entirely clear. It is most likely that CAFs are formed from the local
mesenchyme, namely fibroblasts. Similarly, their origin in other mesenchymal cell populations,
e.g., adipocytes, pericytes, or endothelial cells, was also hypothesised [71].

Alternatively, CAFs may originate from the bone marrow mesenchymal stem cells chemoattracted
to the tumour site, which is less likely via epithelial-to-mesenchymal transition [73,74].

It is known that CAFs are formed from their precursors by factors such as transforming growth
factor β (TGF-β)1/3, inflammatory signals such as IL-6, and proteins such as platelet-derived growth
factor (PDGF), FGF and galectin-1. The damage to DNA by previous chemo/actinotherapy and reactive
oxygen species (ROS) can also enhance CAF formation [71,75,76].

CAFs are not a homogeneous population, and they can be further stratified to several subgroups.
Such clustering would slightly differ according to the type of tumours and the stage of the disease.
However, it can be concluded that part of CAFs usually produce the extracellular matrix (Figure 3)
and others secrete bioactive proteins that influence the biological properties of cancer cells [72].
CAFs are frequently characterised by their senescence-associated secretory phenotype (SASP) [55,77].
This feature is also seen in aged fibroblasts [78]. Despite a general similarity in the expression of SASP
components [79], several genes of the SASP signature differ in their expression between CAFs from
cutaneous squamous cell carcinoma, basal cell carcinoma, and photodamaged facial fibroblasts of the
same patient (Figure 3D).

CAFs from basal or squamous cell carcinoma (all from the head and neck) are bioactive in normal
epithelial cells, where they control their low differentiation status [69,70]. Interestingly, CAFs from the
basal cell carcinoma, squamous cell carcinoma, breast cancer, and melanoma significantly influenced
the phenotype of the breast cancer cell line to the more aggressive appearance close to the breast
cancer stem cells [80], which underlines the non-specific character of the crosstalk between the cancer
cells and CAFs within the cancer ecosystem. CAFs prepared from malignant cutaneous melanoma
significantly improve in vitro migration of glioblastoma cells [81]. However, CAFs are also able to
influence the phenotype of fibroblasts in their vicinity, which consequently acquire the phenotype and
differentiation plasticity of mesenchymal stem cells [82]. This observation may help to explain the
observation of ectopic cartilage or bone in the stroma of some soft tissue tumours or even in epithelial
cancers, e.g., pilomatrixoma. Notably, in some cancers, it is accepted as a marker of poor prognosis.

Modern, robust genomic procedures can gently trace transcriptional differences between normal
fibroblasts and CAFs. The latter usually present upregulated expression of IL-6 (frequently accompanied
by upregulation of IL-8) [20,83]. Very similar findings were confirmed across several types of tumours
(Figure 2, Table 3), indicating a general role of IL-6 in cancer biology.
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Figure 3. Cultured cancer-associated fibroblasts from basal cell carcinoma and normal skin. Part of
fibroblasts isolated from the tumour exhibit α-smooth muscle actin (SMA; green signal). All cells
produce fibronectin (red signal). Nuclei were counterstained with 4’,6-diamidino-2-phenylindole
(DAPI; blue signal) (A). Cultured normal dermal fibroblasts (DF) from the face of an aged donor (B)
and CAFs from basal cell carcinoma (BCCF) from the face of the same donor (C) contain a very high
proportion of senescent fibroblasts positive for senescence-associated acid β-galactosidase. The bar is
100 µm. While the senescent phenotype is present in both fibroblast groups, the cells differ in gene
expression of several senescence-associated secretory phenotype (SASP) markers (D). The same genes
are strongly expressed in CAFs from cutaneous squamous cell carcinoma (SCCF).

Table 3. Examples of production of IL-6 by CAFs in different types of cancer and its effect on cancer.

Type of Cell Effect on Tumour
Growth and Spreading Author

Prostate + Heneberg, 2016 [84]
Adenocarcinoma of pancreas + Heneberg, 2016 [84]

Liver + Li et al., 2019 [85]
Colorectal + Nagasaki et al., 2014 [86]
Stomach + Wu et al., 2017 [87]

Lung + Wang et al., 2017 [88]
Head and neck squamous cell carcinoma + Plzák et al., 2019 [83]

Basal cell carcinoma of skin + Omland et al., 2017 [89]
Squamous cell carcinoma of skin + Depner et al., 2014 [90]
Cutaneous malignant melanoma + Jobe et al., 2018 [91]

Urinary bladder + Goulet et al., 2019 [92]

5.3. Local and Systemic Effect of IL-6 in Cancer Progression

Factors of paracrine signalling participating in the crosstalk between cancerous and non-malignant
cells of the cancer ecosystem profoundly influence the biological behaviour of the tumour [20].
Abundant production of IL-6 by CAFs and other cell types (e.g., adipocytes in breast cancer) in different
types of tumours indicates the importance of this factor in cancer cell biology. IL-6 stimulates cancer
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cell proliferation [93] and epithelial-to-mesenchymal transition [92]. The experimental blockade of
IL-6 with the simultaneous inhibition of IL-8 significantly attenuated the invasiveness of cancer cells
in vitro [94,95]. The activation of STAT3, JAK/STAT, mTOR, sonic hedgehog and nuclear factor κ B
(NFκB) signalling is important for the IL-6 effect on cancer cells and supports the metastatic spreading
of malignant disease [96]. The role of IL-6 in cooperation with IL-8 in neovascularisation and thus
in the progression of cancer was also confirmed [97]. As demonstrated in Figure 2 and extensively
discussed by Lacina and co-workers [20], cancer cells, including the cells of CMM, also produce IL-6.
The combination of the paracrine and autocrine routes of production of this cytokine and their complex
regulation influencing the CMM cell biology must therefore be expected.

Factors of the intercellular crosstalk from the cancer site can also cross the capillary wall and thus
enter systemic blood circulation. Consequently, these bioactive molecules can be detected in the blood
serum of cancer patients [98]. This observation suggests that these molecules might serve as biomarkers
and can be potentially used to estimate the progression of the disease. However, problems might
come from the specificity of these findings. Moreover, the general health status of the patients must be
carefully reflected, because, for example, even a mild respiratory infection before the examination can
completely change the serum profile. These factors, produced by the cancer ecosystem and transported
by circulation, seem to participate in shaping the premetastatic tissue landscape, a safe niche serving
as a suitable cradle for cancer cell homing and later development of metastases, as was demonstrated
in the case of breast cancer and malignant melanoma [99,100].

Finally, high concentrations of IL-6, IL-10 and TNF-α in the serum can even predict the mortality
of patients with an advanced stage of malignant disease [101].

Cancer patients frequently die in the terminal, therapy-refractive stage of the disease due to cancer
cachexia and wasting. This process seems to be strongly influenced by IL-6 and TNF-α, which affect
adipocytes, hepatocytes and striated muscle fibres, where both factors induce skeletal muscle atrophy,
lipolysis, the “browning” of white adipocytes and ketogenesis in the liver [20,102,103]. It seems
that there is a direct association between the high level of IL-6 produced by the malignant tissue,
low skeletal muscle mass, and the survival of the patient [104]. In addition to these severe metabolic
problems, IL-6 can cross the blood–brain barrier, where it is recognised by groups of hypothalamic
and hippocampal neurons controlling food intake and causing depression [105,106]. A high level of
IL-6 even correlates with an increased risk of suicide [107]. The combination of metabolic and central
nervous system-related issues seems to be fatal in the terminal stage of the disease when anti-cancer
therapy has failed.

5.4. Summary of the Role of IL-6 and Cancer

IL-6 represents an important factor of intercellular communication in the cancer cell niche. It also
participates in cancer progression, including formation of the premetastatic niche and the process
of metastatic dissemination itself. IL-6 has a remarkable systemic effect, culminating, by the failure
of metabolism, in severe psychological and mental problems, and finally leading to the death of the
cancer patient.

6. COVID-19

6.1. Covid-19 and IL-6

In contrast to the slow rate of progression of ageing and cancer, the course of acute infectious
diseases is associated with an uncontrolled and excessive flare of inflammation. Surprisingly,
many molecular players of these clinically distinct conditions remain identical. This offers a useful
insight into the regulation of the involved mechanisms.

COVID-19 is a transmissible respiratory disease caused by coronavirus SARS-CoV-2. The majority
of infected persons are, fortunately, asymptomatic, or their symptoms are only mild. Unfortunately,
some of the patients develop severe pneumonia accompanied by a risk of damage to other organs
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such as the liver, heart, digestive system, brain, etc. This severe progression leads to acute respiratory
distress syndrome (ARDS), and the illness may result in the failure of respiration and the death of the
patient [108,109].

COVID-19 is usually accompanied by an elevation of numerous bioactive factors such as
IL-1β, TNF-α, IL-2, IL-7, IL-8, IL-9, IL-17 G-CSF, interferon (IFN)-γ, XXC-10, CCL-2 CCL-3, CCL-4,
and especially IL-6, which is produced predominantly by macrophages [110,111]. The severe and
frequently fatal character of the disease is characterised by a high level of IL-6 and CRP in the
blood or plasma of the patients [112–115]. IL-6, in collaboration with other factors, influences the
endothelial cells of lung capillaries, increasing their permeability for serum proteins and improving
the transmigration of inflammatory cells [116]. Interestingly, similar findings were noted in earlier
serious coronavirus outbreaks, severe acute respiratory syndrome (SARS) and middle east respiratory
syndrome (MERS). Both conditions were associated with a severe complication: cytokine storm [117].
This finding demonstrates similarity across serious coronaviral infections. Another well-known
respiratory infection, influenza, underlines the role of IL-6 in late immune problems in the patients
suffering from these infections. This immune dysregulation can be described as cytokine storm/cytokine
released syndrome, where cells such as Tregs, decreasing the level of inflammation, are also reduced.
The leading role of IL-6 in this process was also demonstrated in COVID-19. To be characterised as
causal for cytokine storm, it should meet the following criteria: 1. rapid and extensive viral replication;
2. infection of airways or alveolar cells; 3. delayed IFN-γ response; 4. monocyte–macrophage and
neutrophil accumulation [117]. These conditions are sufficiently accomplished in the COVID-19 disease.

6.2. Summary of the Role of IL-6 in COVID-19

IL-6 plays a fundamental role in the advanced stage of COVID-19, where it is associated with
the initiation and progression of cytokine storm, which frequently has fatal consequences for the
infected person.

7. Targeting the IL-6/IL-6R/gp130-Dependent Signalling

As exemplified above, IL-6 signalling is very important in ageing-related disorders, cancer,
and severe viral diseases such as SARS, MERS and COVID-19. From this aspect, therapeutic targeting
of the IL-6-dependent axis may be vitally important for the treatment of these diseases. The IL-6
pathway-regulating agents can be classified, concerning the biotechnology of their manufacturing,
as antibodies and small-molecule inhibitors.

7.1. Antibodies

The prominent representatives of antibodies targeted to IL-6, IL-6R and gp130 are summarised
in Table 4. These antibodies are predominantly used for therapy in autoimmune diseases such
as rheumatoid/psoriatic arthritis, but their employment as therapeutics for certain tumours is also
approved (Table 4). The in vitro anti-migratory effect of some of these antibodies such as tocilizumab
suggests the possible employment of IL-6–IL-6R targeting as in migrastatic drugs [118,119] (Figure 4).
Unfortunately, the therapeutic effect of migrastatics in anti-cancer treatment is much lower than
previously anticipated [120,121]. Perhaps migrastatics in combination with the targeting of other
signalling cascades could be more promising. The combination of anti-IL-6 and anti-IL-8 targeting
seems to be useful [94,95]. The combination of in vitro and bioinformatic approaches demonstrated
that a simultaneous blockade of bascular endothelial growth factor A (VEGF-A) and milk fat globule
epidermal growth factor –E8 (MFGE-8) signalling could offer satisfactory results [83]. As summarised
by Johnson and co-workers [121], the combination of targeting the IL-6 axis with therapy influencing
immune checkpoints can be introduced into clinical practice.
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Table 4. Examples of antibodies designed to target IL-6, IL-6R and gp130.

Antibody Target Main Application Producer

Siltuximab * IL-6
Renal + prostate cancer

Castleman’s disease
COVID-19

EUSA Pharma

Sirukumab + IL-6 Rheumatoid arthritis
COVID-19 Janssen Biotech

Olokizumab + IL-6 Rheumatoid arthritis R-Pharm Group

Clazakizumab + IL-6 Psoriatic arthritis
COVID-19

Bristol Myers Squibb and Alder
Biopharmaceuticals

Elsilimomab + IL-6 Lymphoma
Myeloma Diaclone

Tocilizumab * IL-6R

Rheumatoid arthritis
Multiple myeloma

Prostate cancer
COVID-19

Hoffmann-La Roche and Chugai

Sarilumab * Gp130 Rheumatoid arthritis Regeneron Pharmaceuticals and Sanofi

* used in clinical practice, + experimental or under clinical trial.
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Figure 4. Migration of G361 melanoma cells from spheroids. G361 melanoma cells migrate from the
heterogeneous spheres constructed from G361 melanoma cells and juvenile fibroblasts in 3D collagen
gels without (A) and after tocilizumab application (B). Migration of melanoma cells was strongly
reduced by the therapeutic humanised monoclonal antibody. Bar is 1 mm.

New data have also demonstrated that antibodies targeting IL-6/IL-6R/gp130 such as tocilizumab,
siltuximab and clazakizumab could be employed for the therapy of COVID-19 [122–125], as was also
recommended by the National Institute of Health (NIH COVID-19 Treatment Guidelines, 2020) [126].
The testing of other therapeutic antibodies influencing IL-6 signalling for the treatment of COVID-19
can be expected.

7.2. Natural and Synthetic Small Molecules as IL-6 Receptor Complex Inhibitors

7.2.1. Oestrogen Analogues—Experimental Drugs for Inhibition of IL-6 Signalling

An interesting molecule with a documented potential to block IL-6R is a synthetic analogue of
oestrogens, bazedoxifene. This clinically available drug was designed and later approved for the
therapy of postmenopausal osteoporosis [127]. Another substance with a very similar structure was
prepared for the same purpose: raloxifene [128] (Figure 5). These therapeutics are also able to interact
with gp130 and thus inhibit docking of IL-6 to its receptor [129,130]. Because of their low price and
minimal adverse effects, these substances were tested for the therapy of some malignant tumours such
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as rhabdomyosarcoma [129], head and neck cancer [131], adenocarcinoma of the pancreas [132,133],
colorectal cancer [134], and hepatocellular carcinoma [135]. They were also proposed for the treatment
of cytokine storm in patients suffering from COVID-19 [136–138]. Moreover, bazedoxifene also reduces
the replication of SARS-CoV-2 in susceptive cells [139].
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7.2.2. Other Small Molecules—Experimental Drugs

Recently, it was demonstrated that targeting the IL-6 receptor by monoclonal antibodies
is a promising therapy for a number of diseases associated with increased inflammation.
However, monoclonal antibodies have some limitations (high cost, invasive route of administration,
and appreciable rate of immunogenicity) to their clinical benefit [140]. Therefore, the development of
low-molecular weight inhibitors is highly demanded for their superiority in oral absorption, low toxicity,
and low antigenicity. Despite the immense importance of this task and the invested efforts, the IL-6
axis-influencing compounds are only few [141–149].

For example, natural compounds (madindolines A and B) (Figure 6) produced by Streptomyces
sp. displayed vigorous inhibition activity against the growth rate of IL-6-dependent cell lines [141,145].
It was observed that the addition of higher IL-6 levels repressed this phenomenon, and the growth
rate of IL-6-independent lines was not affected, implying that these compounds could target the
IL-6 receptor complex. However, subsequent studies showed that the effect of madindoline is based
on its binding to gp130 [142]. Madindoline A did not affect osteoclast formation controlled by the
heterodimer type of gp130 (LIF-induced) or cAMP (IL-1), but, in this case, the homodimer types of
gp130 (induced by IL-6 and Il-11) were found to be significantly efficient.
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In the C3H-HeJ mouse model (lipopolysaccharide-insensitive), secretion of serum amyloid
induced by IL-6 was inhibited by madindoline A in a dose-dependent manner. However, the secretion
of serum amyloid induced by lipopolysaccharide-sensitive C3H-HeN mice) was not reduced by
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madindoline A [144]. These facts also ignited the development of a novel synthetic madindoline
analogue. For example, Yamamoto and co-workers [146] prepared a library of candidate structures
and tested their effect on the growth of 7TDI cells (IL-6-dependent cell line). These authors proposed
that hydrophobic substitution by acyl chains can sometimes improve madindoline inhibition activity.

A promising therapeutic application of madindoline analogues such as MDL-101 (Figure 7) for the
treatment of neurodegenerative diseases was also demonstrated by Aqel et al. [147]. These compounds
can also interfere via IL-17 production (induced by STAT 3 signalling) in myelin-specific CD4 T
lymphocytes in a dose-dependent manner.
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Other compounds targeting the IL-6 receptor are bufadienolide derivatives. These natural
anti-cancer compounds are isolated from a Chinese toad skin extract—the Ch’an Su drug [150].
It contains active components such as 20S,21-epoxy-resibufogenin-3-formate (ERBF, Figure 8) [142].
This compound did not affect IL-2-, IL-3- and IL-5-dependent cell growth. However, in the case of
IL-6-dependent cell lines, the effect of this molecule was notable. In a co-culture of osteoblasts and
bone marrow cells, similar to madindoline A, the repression of IL-6 induced osteoblast formation.
The effect of substances such as LIF and 1-25(OH)2D3 vitamin was not compromised. Enomoto and
colleagues [143] demonstrated that the mechanism of its effect on the IL-6 signalling axis is based on
the blockade of IL-6 interaction with its receptor. This finding is substantial because ERBF could treat
pathologies such as cancer cachexia, which is associated with IL-6 overactivity. This was demonstrated
in an experimental model of colon cancer-induced cachexia. ERBF markedly inhibited body weight
loss, but, unfortunately, did not affect tumour growth.
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Figure 8. 20S,21-Epoxy-resibufogenin-3-formate (ERBF) inhibitor.

The relationship between the structure of bufadienolide derivatives and their inhibition activity
was studied using IL-6-dependent and independent MH-60 cell lines [143]. Both epoxides at the C-14,
C-15 and C-20, C-21 positions in the structure are required to exhibit the inhibitory activity, and the
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C-16 position must be unsubstituted. The introduction of aliphatic organic acid in the C-3 position
increased the inhibition activity in IL-6-dependent cells. This inhibition activity decreased according
to the increase in the carbon chains of fatty acids at the C-3 position, such as propionate, butyrate
and isobutyrate, whereas a carbonyl group at the C-3 position exhibited cytotoxic activity for both
types of MH-60 cells. The above facts inspired Kino et al. [145] to study the effects of bufadienolide
derivatives such as TB-2-081 (3-O-formyl-20R,21 epoxyresibufogenin) on the IL-6 signalling in the
hepatocyte cell lines. As expected, the authors observed a reduced expression of IL-6-controlled
genes (e.g., α1-antichymotrypsin, α1-acid glycoprotein, α2-macroglobulin, and β-fibrinogen) and low
secretion of C-reactive protein. Nevertheless, because IL-11-induced α1-antichymotrypsin expression
was also repressed, this implies that the effect of the tested compounds is based on the inhibition of
gp130 and not directly on the level of IL-6R.

Another interesting inhibitor targeting gp130, LMT-28 (Figure 9), was designed by Hong and
co-workers [148]. It interacts with gp130 and subsequently reduces the affinity of the receptor complex
for the binding of available IL-6. In agreement with this mechanistic explanation, this leads to a
reduction in STAT3 phosphorylation, stimulated by IL-6 in permissive cells. This observation was
further confirmed in a mouse model.
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In general terms, certain structural motives (e.g., bufadienolide and madindoline derivatives) are
suitable for targeting IL-6 receptors and the suppression of IL-6 pathway signalling activity. They were
shown to display low toxicity. Consequent studies performed in vitro and in vivo offered some
therapeutic potential, for example, for the treatment of inflammatory, neurodegenerative, and also
oncological diseases. Their biological effects are summarised in Supplementary Table S1. Nevertheless,
to progress towards their clinical application, and a more in-depth understanding of the relationship
between their molecular structure and biological effect must first be achieved. Notably, it is crucial to
improve their in vivo delivery to suitable cells.

Other examples of synthetic/natural small-molecule inhibitors that affect IL-6 production, docking
and signalling, including the description of the molecular mechanism, are excellently provided
in a recent review by Kaur and co-workers [151].

As an example, we show the efficiency of the experimental substance TBMS47, developed in our
laboratory. The substance was designed to be active in micromolar concentrations, such as is requested
of modern low-molecular weight anticancer drugs [152]. However, the therapeutic concentration in
clinics could has not yet been estimated. TBMS47 recognises the biding site of IL-6R that blocks the
interaction between IL-6 and IL-6R. In vitro application of this molecule has a significant effect on the
growth of melanoma cells, and the effect is concentration dependent (Figure 10).

Until now, numerous studies focused on the association of the chemical structure of the
inhibitor and its biological effect. However, several essential issues still remain open. For example,
the inhibition effect of ERBF is dependent on the blocking of the interaction of IL-6 with its receptor.
Other bufadienolide derivatives (e.g., TB-2-081)—against expectation—inhibit the interaction of gp130
with the complex of IL-6 and IL-6R [145]. It is well known that some types of cancer are associated with
the mutation of proteins of the IL-6 axis that can significantly influence IL-6 signalling [13,153,154].
The strict requirement to employ a distinct inhibitor to receive a correct biological response is still valid.
Robust and mechanistically clear studies of the IL-6 signalling cascade and its specific inhibition are
highly desirable before clinical application of the novel inhibitors.
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In the case of small molecules, low solubility remains one of the greatest issues. In particular,
poorly soluble ones suffer from insufficient selectivity for the target organs and tissues, and their
half-life in the blood is short. Currently, numerous suitable drug delivery systems for these types of
compounds are being developed or are already available, for example, cyclodextrins, silica nanoparticles,
and liposomes [155–157]. Notably, these systems can be successfully used for drug transport across
the blood–brain barrier. This can significantly enhance the therapeutic potential of these small IL-6
receptor inhibitors for the treatment of brain tumours or neurological diseases.
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Figure 10. Inhibitor TBMS47 (A—structure, B—model). Chemical structure of experimental substance
TBMS47 (arrow) was designed to interact with IL-6R and its docking to the binding site of IL-6R
recognizing IL-6. (C) TBMS47 inhibits in vitro proliferation of PaTu cells from pancreatic adenocarcinoma
(represented here as Confluence %) in a concentration-dependent manner measured using Incucyte
instrumentation (each line represents six technical replicates; error bars represent standard deviation of
six wells).

8. Direct Targeting of CAFs

In the case of malignant tumours with a prominent role in CAFs, therapy targeting different
molecules in these cells is in the phase of clinical trials, as summarised in a recent review by Sahai
and co-workers [71]. Suitable targets are FGF receptor (FGFR), hedgehog, TGF-β, CXC-chemokine
receptor 4 (CXCR-4), RHO kinase (ROCK), focal adhesion kinase (FAK), lysyl oxidase-like 2 (LOXL-2),
connective tissue growth factor (GTF), hyaluronic acid, and FAP. The targeting of CAFs using
a synthetic antibody analogue (iBody) directed to FAP by a sensitive substrate appears to be rather
promising [158,159]. Despite the prominent role of IL-6 in tumour biology, this aspect of stromal
biology seems to have been somewhat neglected until now. Nevertheless, it is too early to evaluate the
therapeutic relevance of these approaches and determine their position among other recently available
treatment options.



Int. J. Mol. Sci. 2020, 21, 7937 16 of 25

9. Concluding Remarks

IL-6 is a multifaceted cytokine with a remarkable role in the initiation of inflammation and
immune response. On the other hand, the failure of regulation and increased levels of this cytokine in
a patient’s body are influenced by ageing, cancer progression and fatal complications of serious viral
infections. The high level of IL-6 and abnormal activation of the IL-6–IL-6R axis are associated with
the severe progression of disease and may be responsible for the failure of therapy and, eventually,
fatal complications. A detailed understanding of the biology of IL-6, the IL-6R receptor and its
signalling axis can bring new information essential for the amelioration of the problems of ageing
and offer an efficient therapy for malignancies and viral infections. A panel of therapeutic antibodies
influencing IL-6 signalling is available, but their use has various biological and economic limitations.
Another potential modality is represented by the class of small-molecule inhibitors. Nevertheless,
in-depth knowledge of the biology of IL-6 signalling along with the precise determination of the
relationship between the inhibitor’s chemical structure and the IL-6–IL-6R complex are prerequisites
for its rapid addition to the therapeutic arsenal.
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Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ASA Acetylsalicylic acid
ARDS Acute respiratory distress syndrome
BCC Basal cell carcinoma
BCCF Basal cell carcinoma-associated fibroblasts
BDDF Brain-derived neurotrophic factor
CNTF Ciliary neurotrophic factor
CAFs Cancer-associated fibroblasts
CLC Cardiotrophin-like cytokine
COX Cyclooxygenase
CRP C-reactive protein
CXCR-4 CXC-chemokine receptor 4
DAPI 4’,6-Diamidino-2-phenylindole
DF Dermal fibroblast
ERBF 20S,21-Epoxy-resibufogenin-3-formate
FAK Focal adhesion kinase
FAP Fibroblast-activating protein
FGF Fibroblast growth factor
FGFR Fibroblast growth factor receptor
GTF Connective tissue growth factor
G-CSF Granulocyte colony-stimulating factor
Gp130 Glycoprotein 130
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IFN Interferon
IGF-1 Insulin growth factor-1
IL Interleukin
IL-6R Receptor for IL-6
LIF Leukaemia inhibitory factor
LOXL-2 Lysyl oxidase-like 2
MFGE8 Milk fat globule epiderma drowth factor E8
MERS Middle east respiratory syndrome
NFκB Nuclear factor κ B
NK cells Nature killer cells
PDGF Platelet-derived growth factor
ROCK RHO kinase
ROS Reactive oxygen species
SARS Severe acute respiratory syndrome
SASP Senescence-associated secretory phenotype
SCC Squamous cell carcinoma
SCCF Squamous cell carcinoma-associated fibroblasts
sHH Sonic hedgehog
SMA α-Smooth muscle actin
Treg Regulatory T lymphocytes
TGF-β Transforming growth factor β
TNF Tumour necrosis factor
VEGFA Vascular endothelial growth factor A
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cancer. Anticancer Res. 2016, 36, 5009–5017. [CrossRef]

62. Moraes, M.C.S. DNA repair mechanisms protect our genome from carcinogenesis. Front. Biosci. 2012,
17, 1362. [CrossRef]

63. Edifizi, D.; Schumacher, B. Genome instability in development and aging: Insights from nucleotide excision
repair in humans, mice, and worms. Biomolecules 2015, 5, 1855–1869. [CrossRef]

64. Kareva, I. What can ecology teach us about cancer? Transl. Oncol. 2011, 4, 266–270. [CrossRef]
65. Birbrair, A. Stem cell microenvironments and beyond. In Advances in Experimental Medicine and Biology;

Springer New York LLC: New York, NY, USA, 2017; Volume 1041, pp. 1–3.
66. Flier, J.S.; Underhill, L.H.; Dvorak, H.F. Tumors: Wounds That Do Not Heal. N. Engl. J. Med. 1986,

315, 1650–1659. [CrossRef] [PubMed]
67. Smetana, K.; Szabo, P.; Gál, P.; André, S.; Gabius, H.J.; Kodet, O.; Dvořánková, B. Emerging role of tissue
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76. Dvořánková, B.; Szabo, P.; Lacina, L.; Gal, P.; Uhrova, J.; Zima, T.; Kaltner, H.; André, S.; Gabius, H.-J.;
Sykova, E.; et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production
of extracellular matrix: Potential application in tissue engineering and wound repair. Cells Tissues Organs
2011, 194, 469–480. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1532-5415.2007.01548.x
http://www.ncbi.nlm.nih.gov/pubmed/18179487
http://dx.doi.org/10.1016/S0140-6736(18)31133-4
http://dx.doi.org/10.1093/emph/eow001
http://dx.doi.org/10.1124/jpet.119.259382
http://dx.doi.org/10.3390/ijms21155238
http://dx.doi.org/10.21873/anticanres.11069
http://dx.doi.org/10.2741/3992
http://dx.doi.org/10.3390/biom5031855
http://dx.doi.org/10.1593/tlo.11154
http://dx.doi.org/10.1056/NEJM198612253152606
http://www.ncbi.nlm.nih.gov/pubmed/3537791
http://www.ncbi.nlm.nih.gov/pubmed/25310363
http://www.ncbi.nlm.nih.gov/pubmed/28849859
http://dx.doi.org/10.1111/j.1365-2133.2006.07728.x
http://dx.doi.org/10.1080/09553000701694343
http://dx.doi.org/10.1038/s41568-019-0238-1
http://dx.doi.org/10.1111/cas.14537
http://dx.doi.org/10.1007/s00418-014-1293-z
http://dx.doi.org/10.18632/oncotarget.20265
http://dx.doi.org/10.1159/000324864
http://www.ncbi.nlm.nih.gov/pubmed/21494018


Int. J. Mol. Sci. 2020, 21, 7937 21 of 25

77. Acosta, J.C.; Banito, A.; Wuestefeld, T.; Georgilis, A.; Janich, P.; Morton, J.P.; Athineos, D.; Kang, T.W.;
Lasitschka, F.; Andrulis, M.; et al. A complex secretory program orchestrated by the inflammasome controls
paracrine senescence. Nat. Cell Biol. 2013, 15, 978–990. [CrossRef] [PubMed]

78. Lewis, D.A.; Travers, J.B.; Machado, C.; Somani, A.K.; Spandau, D.F. Reversing the aging stromal phenotype
prevents carcinoma initiation. Aging (Albany. NY) 2011, 3, 407–416. [CrossRef] [PubMed]

79. Hernandez-Segura, A.; de Jong, T.V.; Melov, S.; Guryev, V.; Campisi, J.; Demaria, M.
Unmasking Transcriptional Heterogeneity in Senescent Cells. Curr. Biol. 2017, 27, 2652–2660. [CrossRef]
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