PssJ is a terminal galactosyltransferase involved in the assembly of the exopolysaccharide subunit in *Rhizobium leguminosarum* bv. *trifolii*

Małgorzata Marczak^{1*}, Magdalena Wójcik^{1**}, Kamil Żebracki^{1**}, Anna Turska-Szewczuk¹, Kamila Talarek¹, Dominika Nowak¹, Leszek Wawiórka², Marcin Sieńczyk³, Agnieszka Łupicka-Słowik³, Kamila Bobrek⁴, Marceli Romańczuk¹, Piotr Koper¹ and Andrzej Mazur¹

¹ Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University

² Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University

³ Department of Organic and Medical Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology

⁴ Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences

* corresponding author

** contributed equally to this work

Supplementary files

Table S1. PssJ homologs revealed by ProtBLAST/PSI-BLAST similarity searches. Selected top records not described as "hypothetical" were summarized and chosen for the alignment shown in Figure 2.

Accession number	Subject amino acid range	Predicted function	Organism or group of organisms (in case of metagenomic data)	Percentage of identity/covera ge between query and subject
RYH00067.1	3-266	galactosyl transferase	Alphaproteobacteria	50/97
TAN00599.1	1-205	galactosyl transferase, partial	Rhizobiaceae	65/75
PZU46882.1	4-264	galactosyl transferase	Sphingomonas sp.	50/96
TAA47749.1	22-268	galactosyl transferase	Corallincola spongiicola	46/91
WP_143103296.1	4-266	galactosyl transferase	Albimonas pacifica SFI10148.1	47/97
TIY02532.1	126-268	galactosyl transferase, partial	Mesorhizobium sp.	72/53
WP_158720787.1	3-244	galactosyl transferase	Xenophilus sp. L33	47/89
WP_134680296.1	4-264	glycosyltransferase family 2 protein	Paracoccus sp. YJ057	44/94
WP_155999281.1	1-266	galactosyl transferase	Thioalkalivibrio sp. ALJ16	44 /96

Table S2. Top ten top templates used to model PssJ structure with Phyre2.

PDB	%	Confidence =	Template information
number	coverage	probability	-
	of query	that	
		sequences	
		are	
		homologous	
d1xhba2	91	100	Superfamily: Nucleotide-diphospho-sugar transferases;
			Family: polypeptide N-acetylgalactosaminyltransferase 1,
			N-terminal domain
c2z86D	84	100	Molecule: chondroitin synthase; PDB title: crystal structure
			of chondroitin polymerase from Escherichia coli complexed
			with UDP-GlcUA and UDP
c6h4mA	95	100	Molecule: probable ss-1,3-N-
			acetylglucosaminyltransferase
c5tz8C	95	100	Molecule: glycosyltransferase; PDB title: crystal structure
			of <i>S. aureus</i> TarS
c6e4rB	89	100	Molecule: polypeptide N-acetylgalactosaminyltransferase
			9; PDB title: crystal structure of the <i>Drosophila melanogaster</i>
			polypeptide N-2 acetylgalactosaminyltransferase
			PGANT9B
c2ffuA	86	100	Molecule: polypeptide N-acetylgalactosaminyltransferase
			2; PDB title: crystal structure of human ppGalNAcT-2
			complexed with UDP and EA2
c5nqaA	89	100	Molecule: polypeptide N-acetylgalactosaminyltransferase
			4; PDB title: crystal structure of GalNAc-T4 in complex
			with the monoglycopeptide 3
с6рхиА	90	100	Molecule: polypeptide N-acetylgalactosaminyltransferase
			12; PDB title: crystal structure of human GalNAc-T12
			bound to a diglycosylated peptide, Mn2+, and UDP
c1xhbA	89	100	Molecule: polypeptide N-acetylgalactosaminyltransferase
			1; PDB title: the crystal structure of UDP-
			GalNAc:polypeptide N-acetylgalactosaminyltransferase
			11
c2d7iA	78	100	Molecule: polypeptide N- acetylgalactosaminyltransferase
			10; PDB title: crystal structure of pp-GalNAc-T10 with
			UDP, GalNAc and Mn2+

Table S3. Results of sensitivity test of RtTA1, $\Delta pssJ$ and $\Delta pssJ(pssJ)$ towards ethanol (1-6%), pH of the medium (5.3-7.2) and sodium dodecyl sulfate concentration (0.01-0.05%).

			WT	$\Delta pssJ$	$\Delta pssJ(pssJ)$
		1%			
		2%			
		3%			
	1	4%			
	nanc	5%	0 0 0		
$_{\rm sc}$	Εt	6%		0.0	
varc		5.3	*	•	
y tov		5.7			
ivity		6.2			
ensil	F	6.7			00009
Š	pF	7.2			
		0.01%			
		0.02%			
		0.03%			
	S	0.04%			
	SL	0.05%			

Table S4. Activity of β -galactosidase in *E. coli* DHM1 carrying two plasmids encoding bait and prey Pss proteins, either glycosyltransferases (PssA, PssC, PssD, PssE, PssS, PssF, PssG, PssH, PssI, and PssJ) or translocation/polymerization proteins PssT, PssP, PssL, and PssP2. Presented values are the means of three independent experiments with two technical repeats each. Values marked in blue represent 2-fold increase in activity relative mean value of negative controls (94.8 ± 5.1 Miller units), which is considered a positive interaction. Mean activity of β -galactosidase in positive control, i.e. for pUT18C-zip + pKT25-zip pair was 727.1 ± 43.0 Miller units.

	T25-PssA	PssA-T25
PssJ-T18	112.2 ± 26.9	100.6 ± 1.3
T18-PssJ	865.5 ± 56.3	100.3 ± 2.9
T25-PssJ	101.3 ± 12.2	197.6 ± 24.4
PssJ-T25	103.9 ± 7.2	139.0 ± 13.0
	PssA-T18	T18-PssA

	T25-PssC	PssC-T25
PssJ-T18	187.0 ± 18.2	238.7 ± 25.4
T18-PssJ	967.8 ± 69.6	117.7 ± 12.5
T25-PssJ	851.2 ± 98.9	293.6 ±28.0
PssJ-T25	356.9 ±67.2	103.2 ± 6.4
	PssC-T18	T18-PssC

	T25-PssD	PssD-T25
PssJ-T18	131.2 ± 31.2	104.8 ± 13.0
T18-PssJ	219.0 ± 15.0	120.0 ± 22.4
T25-PssJ	165.5 ± 15.3	123.9 ± 9.0
PssJ-T25	175.1 ± 11.2	112.3 ± 7.8
	PssD-T18	T18-PssD

	T25-PssE	PssE-T25
PssJ-T18	109.0 ± 4.0	111.7 ± 13.4
T18-PssJ	94.0 ± 10.0	121.6 ± 4.0
T25-PssJ	94.4 ± 2.2	103.5 ±2.5
PssJ-T25	106.3 ± 13.4	101.8 ± 9.8
	PssE-T18	T18-PssE

	T25-PssS	PssS-T25
PssJ-T18	101.5 ± 2.8	96.8 ± 3.3
T18-PssJ	102.9 ± 3.0	88.8 ± 17.2
T25-PssJ	105.9 ± 3.8	97.7 ± 7.0
PssJ-T25	97.8 ± 8.7	104.8 ± 7.6
	PssS-T18	T18-PssS

	T25-PssF	PssF-T25
PssJ-T18	102.4 ± 10.8	107.1 ± 10.9
T18-PssJ	428.0 ± 10.9	272.3 ± 53.7
T25-PssJ	104.4 ± 10.6	398.4 ± 77.7
PssJ-T25	101.9 ± 7.3	106.3 ± 9.2
	PssF-T18	T18-PssF

	T25-PssG	PssG-T25
PssJ-T18	83.6 ± 11.0	107.4 ± 5.9
T18-PssJ	732.7 ± 42.7	100.2 ± 7.1
T25-PssJ	180.3 ± 12.1	107.8 ± 5.8
PssJ-T25	150.9 ± 18.9	105.7 ± 9.9
	PssG-T18	T18-PssG

	T25-PssH	PssH-T25
PssJ-T18	100.1 ± 4.3	97.3 ± 6.3
T18-PssJ	230.9 ± 29.4	125.5 ± 14.7
T25-PssJ	132.2 ± 12.1	160.0 ± 33.1
PssJ-T25	108.4 ± 8.4	100.8 ± 6.7
	PssH-T18	T18-PssH

	T25-PssI	PssI-T25
PssJ-T18	130.2 ± 11.2	296.3 ± 38.6
T18-PssJ	503.5 ± 43.0	91.6 ± 3.5
T25-PssJ	440.5 ± 51.1	312.1 ± 26.3
PssJ-T25	384.0 ± 93.3	211.7 ± 105.9
	PssI-T18	T18-PssI

	T25-PssJ	PssJ-T25
PssJ-T18	132.9 ± 4.0	133.6 ± 14.0
T18-PssJ	317.3 ± 56.6	326.3 ± 78.6

	T25-PssP
PssJ-T18	95.7 ± 4.8
T18-PssJ	93.4 ± 2.3
T25-PssJ	104.6 ± 5.7
PssJ-T25	98.1 ± 6.7
	T18-PssP

	T25-PssT	
PssJ-T18	216.1 ± 16.5	
T18-PssJ	129.9 ±26.1	
T25-PssJ	104.2 ± 1.2	114.9 ± 15.8
PssJ-T25	98.3 ± 3.4	106.1 ± 7.4
	PssT-T18	T18-PssT

	T25-PssL	
PssJ-T18	100 ± 1.3	
T18-PssJ	100.6 ± 4.4	
T25-PssJ	101.7 ± 9.1	100.4 ± 1.5
PssJ-T25	107.9 ± 7.7	122.1 ± 0.7
	PssL-T18	T18-PssL

	T25-PssP2	
PssJ-T18	154.6 ± 9.3	
T18-PssJ	98.0 ± 2.2	
T25-PssJ	110.4 ± 4.0	112.3 ± 11.9

PssJ-T25	100.4 ± 3.7	193.9 ± 22.0
	PssP2-T18	T18-PssP2

Table S5.	List of	primers	used i	in this	work
-----------	---------	---------	--------	---------	------

Name	Sequence (5'–3')	Tm (°C)	Application
pssJ-U_FwNde	aaacatatgGCAGATCATCCAGTTCCCGC AGTC	65	amplification of genomic fragments for $\Delta yssI$ mutant
pssJ-U_RvNde	aaacatatgCGAATGACCCCCTTAAGCCC GCAA	67	construction
pssJ-D FwApa	aagggcccGCGCCGATCCCATTCGAACA	64	
pssJ-D_RvSac	agagctcCCCAGACTTTCGTCGGGTCACA CG	67	
pssJ-C_FwApa	aagggcccCTCGCTCGAGGACGGAATAG A	61	amplification of genomic fragments for $\Delta pssJ$ mutant
pssJ-C_RvXba	aatctagaTTGGTGAAGTCGAAAGAGAA AAGC	58	complementation
pssJ-C- His6_FwApa	aagggcccCTCGCTCGAGGACGGAATAG AGTGG	66	
pssJ-C- His6_RvXba	aatctagattaatgatgatgatgatggtgCGCGGGG GTCGACCGCGTCT	72	
pCMFw1	GGGTTCCGCGCACATTTC	61	validation of cloning and
pCMRv1	GCTGCGTTCGGTCAAGGT	62	sequencing of the pCM351
pCMFw2	CCTAACAATTCGTTCAAGCCGA	58	derivatives
pCMRv2	CGCGCGAACGACATGGAG	63	
M13pUCf	CCCAGTCACGAAGTTGTAAAACG	59	validation of cloning and
M13pUCr	AGCGGATAACAATTTCACACAGG	58	sequencing of the pBBR1-MCS2 derivatives
pUT18CFwSeq	CGGCGTGGCGGGGAAAAG	67	Sequencing of BTH plasmids
pUT18RvSeq	CGTGCGCCCGCCTGTTCA	69	derivatives
pKT25FwSeq	CAAGGGCGGCGACGATTTC	63	
pKNT25RvSeq	CCACCCCTTCGGCAATCA	61	
pssAFwBTH	AAATCTAGAAGTGACAGGGTTAACC ATTGA	56	BTH cloning of <i>pssA</i> gene
pssARvBTH	AAAGGTACCCCGAAGCCTTTACCACC GGTCA	63	
pssCFwBTH	AAATCTAGAAAATCAGCAACAGACTT TTCC	53	BTH cloning of <i>pssC</i> gene
pssCRvBTH	AAAGGTACCCCGTGGGCGGCATTGGG TTTGT	69	
pssDFwBTH	AAATCTAGAAGCTGAGAAAAAATTG AAGGT	52	BTH cloning of <i>pssD</i> gene
pssDRvBTH	AAAGGTACCCCAAGGACAGCTCCTGC GTAGT	65	
pssEFwBTH	AAATCTAGAAATTCTCGTCACCGTCG GAAC	60	BTH cloning of <i>pssE</i> gene
pssERvBTH	AAAGGTACCCCGACGGCGGCAATAT AATTTT	59	
pssFFwBTH	AAATCTAGAATTGAAATTATCGGTGC TTAT	49	BTH cloning of <i>pssF</i> gene
pssFRvBTH	AAAGGTACCCCTGACTGTCCTCTCCG CAGCA	67]

pssGFwBTH	AAATCTAGAAACGGATCCGAGAATT	56	BTH cloning of <i>pssG</i> gene
	AGTGT		
pssGRvBTH	AAAGGTACCCCATGCACGACCTCCTG	68	
	CGCTA		
pssHFwBTH	AAATCTAGAAAGCAAAGTCAAGGTT	52	BTH cloning of <i>pssH</i> gene
	ACAAT		
pssHRVBTH	AAAGGTACCCCTTTGGCGCCGACCTG	68	
	AGAGT		
pssIFwBTH	AAATCTAGAATCGGATCTCTTCGTCA	56	BTH cloning of <i>pssI</i> gene
	GCGT		
pssIRVBTH	AAAGGTACCCCTGCGTCATCGTCTG	62	
	AGAAA		
pssJ-BTH_FwPst	AAACTGCAGAACACTTGTCACCTTCA	51	BTH cloning of <i>pssJ</i> gene
	TTAT		
pssJ-	AAACTGCAGAAACACTTGTCACCTTC	51	
pKT25_FwPst	ATTAT		
pssJRvBTH	AAAGGATCCCCCGCGGGGGGTCGACC	72	
	GCGTCT		
pssSFwBTH	AAATCTAGAAAAAAAAGCCGTTATTT	47	BTH cloning of <i>pssS</i> gene
	ATGT		
pssSRvBTH	AAAGGATCCCCAGTCCGACCCCGGCT	70	
	GGAAA		
pssJpET30Fw	AAAGGATCCTGACACTTGTCACCTTC	57	Cloning of <i>pssJ</i> gene in pET30c
	ATTATCC		vector
pssJpET30Rv	AAACTCGAGTTACGCGGGGGGTCGAC	61	

Figure S1. Lipopolysaccharide profiles of RtTA1 strain and its derivatives: $\Delta pssJ$ and $\Delta pssJ(pssJ)$ separated by SDS-PAGE and visualized by silver staining after oxidation with periodate. LPSI, high-molecular-weight LPS with O-antigen, LPSII, low-molecular-weight LPS, representing the lipid A-core oligosaccharide species.

Figure S2. Refolding trial of His₆-PssJ from solubilized inclusion bodies. Protein eluted form the Ni-NTA resin was subjected to refolding through overnight dialysis. No refolding was observed and 100% of protein was precipitated from the solution (insoluble fraction).

Figure S3. Development of antigen-specific IgY antibodies. (A) Analysis of the production of specific IgY antibodies isolated from egg yolks performed for the screening purposes (isolates from individual hens are marked with colors). Weeks of immunization are marked with arrowheads. The plate was coated with His-PssJ protein (0.5 µg/ml) and free binding sites were blocked with 5% skimmed milk in PBST. Subsequently, wells were incubated with IgYs diluted in 0.5% skimmed milk in PBST (1:100). Detection of the resulting complexes was performed using rabbit anti-IgY IgG-HRP antibodies (1:5000) with *o*-phenylenediamine as a substrate. Results from different plates are expressed as absorbance values (Abs 490). The assigned points for specific weeks represent the mean absorbance of the measurements performed in duplicate for the eggs collected from hen in particular week. (B) Western blot analysis of the anti-His6-PssJ IgYs was performed after electrophoretic separation of His6-PssJ protein (100 ng/well, SDS-PAGE 4-12%, reducing conditions) and electrotransfer to a nitrocellulose membrane. After blocking the membrane, the strips were incubated with anti-His6-PssJ IgY antibodies or with control antibodies (cIgY; isolated from eggs collected from chickens after injection only with Freund's adjuvant) diluted 100-times in 0.5% skimmed milk in PBST. Rabbit anti-IgY IgG-HRP antibodies (1:5000) were used for detection. The images were visualized with a chemiluminescent substrate and a molecular imaging system equipped with a CCD camera. The blue arrowhead indicates bands from the His6-PssJ protein.

Figure S4. His6-PssJ protein-highly reactive IgYs were purified via affinity chromatography in order to enrich the antibody fraction with antigen-specific immunoglobulins. For this purpose, cyanogen bromide activated resin (Thermo Scientific, Gdańsk, Poland) was modified with His6-PssJ protein based on the manufacturer protocol. Firstly, the resin (500 mg) was preactivated with 1 mM HCl and washed with an affinity chromatography coupling buffer (100 mM sodium hydrogen carbonate, 500 mM sodium chloride, pH 8.0). Then, the solution of His6-PssJ protein in an affinity chromatography coupling buffer and 5% DMSO was added to the resin (500 μ g, 1 ml) and incubated at room temperature (2 h) and then at 4°C (overnight). Subsequently, the resin was incubated with Tris buffer for 2 h at room temperature in order to block the reactive groups of the resin and then washed alternately with Tris and acetate buffers. Affinity column was stored in PBS buffer at 4°C. In order to purify antibodies. The crude isolate of anti- His-PssJ IgY antibodies (150 μ l) was diluted with PBS (1:1, v/v) and incubated with the resin for 1 h at room temperature. Unbound antibodies were removed by gravity flow (A, FT) and the resin was extensively washed with PBS-T (A, W1-W10), and PBS (A, P1-P5). Specific anti- His6-PssJ IgY antibodies were eluted from the resin with citrate buffer and immediately neutralized with 1M Trisbase (A, K1-K5). The column was used repeatedly, each time thoroughly rinsed with PBS and stored at 4°C. K1-K5 fractions were pooled and concentrated with the use of centrifugal concentrators and their reactivity was compared in the standard Western blot (B) to the reactivity of the crude specific IgYs isolate (1 µg/ml in 0.5% skimmed milk in PBST) with the use of rabbit anti-IgY IgG-HRP antibodies.