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Abstract: HER2 transactivation by the HER3 ligand heregulin (HRG) promotes an endocrine-resistant
phenotype in the estrogen receptor-positive (ER+) luminal-B subtype of breast cancer. The underlying
biological mechanisms that link them are, however, incompletely understood. Here, we evaluated
the putative role of the lipogenic enzyme fatty acid synthase (FASN) as a major cause of HRG-driven
endocrine resistance in ER+/HER2-negative breast cancer cells. MCF-7 cells engineered to stably
overexpress HRG (MCF-7/HRG), an in vitro model of tamoxifen/fulvestrant-resistant luminal
B-like breast cancer, showed a pronounced up-regulation of FASN gene/FASN protein expression.
Autocrine HRG up-regulated FASN expression via HER2 transactivation and downstream activation
of PI-3K/AKT and MAPK-ERK1/2 signaling pathways. The HRG-driven FASN-overexpressing
phenotype was fully prevented in MCF-7 cells expressing a structural deletion mutant of HRG that is
sequestered in a cellular compartment and lacks the ability to promote endocrine-resistance in an
autocrine manner. Pharmacological inhibition of FASN activity blocked the estradiol-independent
and tamoxifen/fulvestrant-refractory ability of MCF-7/HRG cells to anchorage-independently grow in
soft-agar. In vivo treatment with a FASN inhibitor restored the anti-tumor activity of tamoxifen and
fulvestrant against fast-growing, hormone-resistant MCF-7/HRG xenograft tumors in mice. Overall,
these findings implicate FASN as a key enabler for endocrine resistance in HRG+/HER2- breast
cancer and highlight the therapeutic potential of FASN inhibitors for the treatment of endocrine
therapy-resistant luminal-B breast cancer.
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1. Introduction

Patients with estrogen receptor (ER)-positive (ER+) breast cancer can benefit from long-term
endocrine treatment. However, specific tumor phenotypic traits are important in determining the
prognosis of women with ER+ breast cancer undergoing treatment with selective ER modulators
(SERMs) and down-regulators (SERDs) such as tamoxifen and fulvestrant (formerly ICI 182,780),
respectively [1–5]. In this context, the expression levels of proliferation-related genes can define
two clinically distinct molecular subtypes of ER+ breast carcinoma—low-proliferative luminal-A
and high-proliferative luminal-B—that differ in treatment response and clinical outcome [6–10].
When treated with tamoxifen, patients with luminal A-like tumors have a better prognosis than those
with luminal B-like tumors.

Investigations into the biological basis for these clinical observations by gene set enrichment
analyses revealed that, independently of HER2 overexpression, growth factor signaling is significantly
enriched in luminal B-tumors [11]. Specifically, ligand-induced transactivation of HER2 or other
members of the epidermal growth factor receptor family in tumors with low levels of HER2 generates
a gene signature strongly overlapping with that of the poor prognosis, luminal B-type of ER+ breast
carcinomas, suggesting that HER-activating growth factors are significant contributors to the endocrine
therapy-resistant phenotype. Accordingly, luminal A MCF-7 breast cancer cells, which are normally
highly sensitive to tamoxifen in vitro, can overcome the anti-proliferative effects of tamoxifen when
exogenously treated with the HER3 ligand heregulin (HRG) by enriching for the growth factor
signaling gene set and activating a proliferative signature similar to that of tamoxifen-resistant ER+

luminal B-type tumors [11]. Further, previous studies from our laboratory revealed that transfection
of tamoxifen-sensitive MCF-7 cells with an HRGβ-2 cDNA triggers the persistent activation of the
HER2/3/4 receptors, and cells become estrogen-independent and resistant to anti-estrogens both in vitro
and in vivo [12–14]. Beyond the expected hyperactivation of downstream signaling pathways such as
ERK/MAPK and PI-3K/AKT, there remains a paucity of research into identifying prominent molecular
targets that could be of therapeutic benefit in tamoxifen-refractory HRG+/HER2− luminal B-like
breast carcinoma.

Recent studies have revealed that lipid metabolism-related traits can be key drivers of breast
cancer resistance to endocrine therapies including tamoxifen and aromatase inhibitors. For example,
transcriptional profiling analysis followed by candidate gene expression and functional studies in
long-term estrogen-deprived variant breast cancer cell lines has identified shared activation of sterol
regulatory element-binding protein 1 (SREBP1) and of several SREBP1 downstream targets involved in
fatty acid synthesis, including fatty acid synthase (FASN) [15]. Indeed, a significant association has
been observed between the increase of SREBP1 expression in clinical specimens and the lack of clinical
response to neo-adjuvant endocrine therapy, providing support for a role of SREBP1-related lipogenic
programs in endocrine resistance in breast cancer [15]. The splicing factor epithelial splicing regulatory
protein 1 has been shown to promote endocrine resistance and confer poor prognosis to patients with
ER+ breast carcinoma by affecting lipid metabolism including the expression of FASN [16]. In this
line, we recently reported the specific ability of FASN signaling to regulate the degree of sensitivity of
breast cancer cells to estrogen-stimulated breast cancer cell growth and survival [17].

Here, using MCF-7 cells engineered to stably overexpress HRG as an experimental model of
estrogen-independent cancer cell growth and endocrine resistance, we evaluated the autocrine capacity
of HRG-driven HER2/HER3 signaling to stimulate FASN expression as part of the endocrine resistance
program that is activated in certain subgroups of ER+ breast carcinomas. We present evidence that
FASN is a key enabler for endocrine resistance in HRG+/HER2− breast cancer and highlight the
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therapeutic potential of FASN inhibitors for the treatment of endocrine therapy-resistant luminal B-like
breast cancer.

2. Results

2.1. Heregulin Up-Regulates FASN Gene Expression by Autocrine Transactivation of HER2 Signaling

We first evaluated whether HRG overexpression and autocrine transactivation of HER2,
independently of HER2 overexpression, might lead to the up-regulation of tumor-associated FASN
in an in vitro model of endocrine resistant, luminal B-like breast cancer (Figure 1A, top panel).
We evaluated FASN protein expression in an HRG-overexpressing model of biologically aggressive,
endocrine-resistant ER+ breast cancer developed in our laboratory by transducing MCF-7 breast
cancer cells with a retroviral vector containing the HRG cDNA (MCF-7/HRG cells [18]). To validate
the autocrine requirement of HRG on HER2 signaling to activate FASN expression in the context of
endocrine resistance, we re-evaluated FASN protein levels in MCF-7 cells engineered to overexpress an
HRG structural deletion mutant incapable of promoting tumorigenicity and, more importantly for
this study, incapable of establishing endocrine resistance [19]. The HRG-M4 deletion mutant lacks
N-terminal sequences including a putative nuclear localization signal and the cytoplasmic-membrane
domain (Figure 1A, bottom panel). Consequently, HRG-M4 protein is sequestered in the cellular
compartment and cannot be secreted into the extracellular milieu, thereby preventing the autocrine
activating action of HRG on HER receptors and the downstream activation of PI-3K/AKT and MAPK
ERK1/2 signaling [18,19].

When the cellular pattern of FASN protein expression was assessed by indirect immunofluorescence
microscopy, it was apparent and highly reproducible that cytoplasmic accumulation of FASN
was notably higher in MCF-7/HRG cells than in MCF-7/pBABE control cells (Figure 1B, left
microphotographs). In comparison with the pronounced cytoplasmic accumulation of FASN in
MCF-7/HRG cells, immunofluorescence analyses suggested that MCF-7/HRG-M4 cells showed
similar levels of FASN protein to those of HRG-negative MCF-7/pBABE control cells (Figure 1B,
left microphotographs). When FASN fluorescence was semi-quantitatively analyzed by densitometry,
the data indicated that FASN protein level was approximately 2.5-fold higher in MCF-7/HRG cells than
in MCF-7/pBABE control cells. MCF-7/HRG-M4 cells, however, failed to up-regulate FASN protein
expression (Figure 1B, middle panel).

To test whether HRG overexpression impacted FASN gene transcription downstream of
HER2 transactivation, we transfected MCF-7/pBABE, MCF-7/HRG and MCF-7/HRG-M4 cells with
a reporter construct containing a 178-bp FASN promoter fragment harboring all the elements
necessary for high-level expression of FASN, including a complex SREBP-binding site [22–24]. FASN
promoter-luciferase activity in MCF-7/HRG cells was significantly increased (~3-fold) relative to
baseline levels in MCF-7/pBABE cells (Figure 1B, right panel). By contrast, FASN promoter-luciferase
activity in MCF-7/HRG-M4 cells was equivalent to that observed in HRG-negative MCF-7/pBABE cells
(Figure 1B, right panel).
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Figure 1. Luminal breast cancer cells engineered to overexpress the HER3 ligand heregulin up-regulate
FASN expression. (A) The structural deletion mutant HRG-M4 suffers a cytoplasmic sequestration
that impedes the natural autocrine capacity of full-length HRG to promote the trans-phosphorylation
of the HER3 receptor within HER2:HER3 heterodimers. (B) Left microphotographs. MCF-7/pBABE,
MCF-7/HRG, and MCF-7/HRG-M4 cells were subjected to immunofluorescence staining with an
anti-FASN specific antibody as described in “Materials and methods”. Middle panel. FASN fluorescence
intensities in MCF-7/pBABE, MCF-7/HRG, and MCF-7/HRG-M4 cells were semi-quantitively analyzed
by densitometry. Each experimental value represents the mean FASN fluorescence (arbitrary units,
columns)± S.D. (bars) for all the cells in the images on the left. Right panel. MCF-7/pBABE, MCF-7/HRG,
and MCF-7/HRG-M4 cells were transiently transfected with a plasmid containing a Luciferase reporter
gene driven by a 178-bp FASN gene promoter fragment harboring a SREBP-binding site, flanked by
auxiliary NF-Y and Sp-1 sites (Figure 2). After 48 h, luciferase assays were performed as previously
described [20,21]. Each experimental value represents the mean fold-increase (columns) ± S.D. (bars)
from at least three separate experiments in which triplicate wells were measured. ** p < 0.005; n.s. not
significant. (Scale bar is 10 µm).
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Figure 2. PI-3K/AKT and MAPK ERK1/2 signaling cascades mediate heregulin-driven activation of
FASN gene expression in a SBREP-dependent manner. MCF-7/HRG cells were transiently transfected
with a plasmid containing a Luciferase reporter gene driven by a 178-bp FASN gene promoter fragment
harboring a SREBP-binding site, flanked by auxiliary NF-Y and Sp-1 sites. The next day, cells
were treated with 20 µg/mL of trastuzumab (Tzb) (A), LY294002 (B), or U0126 (C). Alternatively,
MCF-7/pBABE and MCF-7/HRG cells were transiently transfected with a plasmid containing a
Luciferase reporter gene driven by a 178-bp FASN promoter fragment harboring a SREBP-binding site
or with a similar construct with the SREBP-binding site deleted (D). After 24 h, cells were lysed and
Luciferase activity was measured. Luciferase assays were performed as previously described [19,20].
Each experimental value represents the mean fold increase (columns) ± S.D. (bars) from at least three
separate experiments in which triplicate wells were measured. ** p < 0.005; n.s. not statistically
significant. (E) HRG-triggered regulatory cascade actively links upstream HER2 transactivation
and increased activation of PI-3K/AKT-MAPK/ERK1/2 signaling transduction with downstream
(SREBP-dependent) transcriptional activation of the FASN gene promoter.

2.2. PI-3K/AKT and MAPK ERK1/2 Signaling Pathways Drive Heregulin-Stimulated, SBREP-Dependent
FASN Gene Expression in Breast Cancer Cells

To further corroborate that HRG-driven HER2 transactivation is involved in FASN accumulation
in HRG-overexpressing MCF-7 cells, we employed a monoclonal antibody directed against the
extracellular domain of HER2 (trastuzumab) that has been shown to inhibit HRG-induced HER2/3
phosphorylation and fully deactivate HER2-driven PI-3K/AKT and MAPK signaling in MCF-7/HRG
cells [18]. Exposure to trastuzumab notably suppressed the hyperactive status of the FASN reporter
construct in MCF-7/HRG cells (Figure 2A).

We next tested the contribution of the PI-3K/AKT signaling pathway to the FASN-overexpressing
phenotype in MCF-7/HRG cells. Previous studies from our laboratory demonstrated that active
AKT was significantly higher in MCF-7/HRG cells than in matched control MCF-7/pBABE cells,
while the level of total AKT remained unchanged; a similar result was found for active MAPK [18].
Treatment with LY294002, a cell permeable inhibitor of PI-3K capable of suppressing hyperactive AKT
signaling without affecting the active MAPK status in MCF-7/HRG cells [18], drastically decreased
the activity of the FASN reporter in MCF-7/HRG cells to levels similar to those in MCF-7/pBABE cells
(Figure 2B). We also investigated whether interfering with the MAPK signaling pathway prevented
HRG-driven up-regulation of FASN by using U0126, a potent inhibitor of the MAPK-ERK1/2 pathway
that was found to exclusively and completely suppress phospho-MAPK without affecting the status of
phospho-AKT in MCF-7/HRG cells [18]. U0126 suppressed the stimulatory effects of HRG on FASN
reporter activity, which returned to baseline control levels (Figure 2C). When MCF-7/HRG cells were
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transiently transfected with a FASN gene promoter construct with a deleted SREBP-binding region,
HRG-driven stimulation of the FASN reporter was completely abolished (Figure 2D).

2.3. Pharmacological Blockade of FASN Activity Reverses HRG-Promoted Estrogen Independence and
Endocrine Therapy-Resistance In Vitro

Because MCF-7 cells overexpressing HRG are estradiol-independent and acquire an anti-estrogen
therapy-resistant phenotype [12–14], we explored whether exacerbated FASN activity might serve as
part of the HRG-driven endocrine resistance program in breast cancer cells. To do this, we first measured
anchorage-independent growth as an in vitro metric of tumorigenicity in response to estradiol and/or
tamoxifen and fulvestrant. We found that MCF-7/pBABE control cells failed to form colonies in soft-agar
in the absence of estradiol, whereas MCF-7/HRG cells showed a strong anchorage-independent capacity
to form colonies (Figure 3A). The estrogen-independent tumorigenic phenotype of MCF-7/HRG cells
was fully suppressed in a dose-dependent manner by treatment with the mycotoxin cerulenin or
its semi-synthetic derivative C75, which are two widely employed small-molecule FASN inhibitors
(Figure 3A).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 13 

 

 
Figure 3. Pharmacological inhibition of FASN activity impedes estrogen-independent and 
antiestrogen-refractory cell growth of MCF-7/HRG cells. Estradiol (E2)-depleted cells were plated in 
soft agarose containing E2 (10−9 mol/L) (A), cerulenin (2.5, 5, and 10 µg/mL), C75 (2.5, 5, and 10 µg/mL), 
tamoxifen (10−7 mol/L) (B), fulvestrant (10−7 mol/L) (C), their combinations, or ethanol (v/v) or DMSO 
(v/v) vehicle only for 7–10 days. Colony formation (≥50 µm) was assessed using a colony counter. Each 
experimental value represents the mean colony number (columns) ± S.D. (bars) from at least three 
separate experiments in which triplicate dishes were counted. (* p < 0.05; ** p < 0.005; n.s. not 
statistically significant). (D) Pharmacological inhibition of FASN activity blocked the estradiol-
independent and tamoxifen/fulvestrant-refractory ability of MCF-7/HRG cells to anchorage-
independently grow in soft-agar. FASNi: FASN inhibitor; TAM: Tamoxifen; FVT: Fulvestrant;º 2D: 
Two-dimensional; 3D: Three-dimensional. 
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independent growth, and this was prevented by tamoxifen (Figure 3B) and fulvestrant (Figure 3C). 
Estradiol treatment failed to further stimulate anchorage-independent colony formation in MCF-
7/HRG cells and neither tamoxifen nor fulvestrant prevented the strong colony formation capacity of 
MCF-7/HRG cells. By contrast, when used in combination with tamoxifen, cerulenin and C75 dose-
dependently suppressed the ability of MCF-7/HRG cells to form anchorage-independent colonies. 
Such sensitizing effects of the FASN blockers were more evident when cerulenin and C75 were 

Figure 3. Pharmacological inhibition of FASN activity impedes estrogen-independent and
antiestrogen-refractory cell growth of MCF-7/HRG cells. Estradiol (E2)-depleted cells were plated in
soft agarose containing E2 (10−9 mol/L) (A), cerulenin (2.5, 5, and 10 µg/mL), C75 (2.5, 5, and 10 µg/mL),
tamoxifen (10−7 mol/L) (B), fulvestrant (10−7 mol/L) (C), their combinations, or ethanol (v/v) or DMSO
(v/v) vehicle only for 7–10 days. Colony formation (≥50 µm) was assessed using a colony counter.
Each experimental value represents the mean colony number (columns) ± S.D. (bars) from at least three
separate experiments in which triplicate dishes were counted. (* p < 0.05; ** p < 0.005; n.s. not statistically
significant). (D) Pharmacological inhibition of FASN activity blocked the estradiol-independent
and tamoxifen/fulvestrant-refractory ability of MCF-7/HRG cells to anchorage-independently grow
in soft-agar. FASNi: FASN inhibitor; TAM: Tamoxifen; FVT: Fulvestrant; 2D: Two-dimensional;
3D: Three-dimensional.
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As anticipated, exposure of MCF-7/pBABE cells to estradiol induced robust anchorage-independent
growth, and this was prevented by tamoxifen (Figure 3B) and fulvestrant (Figure 3C). Estradiol
treatment failed to further stimulate anchorage-independent colony formation in MCF-7/HRG cells
and neither tamoxifen nor fulvestrant prevented the strong colony formation capacity of MCF-7/HRG
cells. By contrast, when used in combination with tamoxifen, cerulenin and C75 dose-dependently
suppressed the ability of MCF-7/HRG cells to form anchorage-independent colonies. Such sensitizing
effects of the FASN blockers were more evident when cerulenin and C75 were combined with the pure
anti-estrogen fulvestrant (Figure 3C), which antagonizes the hormone-dependent activation of ER but
lacks the mixed antagonist/agonist effects of tamoxifen.

2.4. FASN Inhibition Reverses HRG-Mediated Resistance to Tamoxifen and Fulvestrant In Vivo

We finally determined whether pharmacological inhibition of FASN activity might overcome
HRG-determined resistance to tamoxifen and fulvestrant in animal models. Ovariectomized
nude mice were transplanted subcutaneously with endocrine-responsive MCF-7/pBABE cells and
tamoxifen/fulvestrant-refractory MCF-7/HRG counterparts, and then were randomized into five groups
(vehicle, tamoxifen, fulvestrant, C75, tamoxifen plus C75, and fulvestrant plus C75) following estrogen
withdrawal (Figure 4A) or with continued estrogen supplementation (Figure 4B).
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Figure 4. FASN inhibition restores anti-tumor activity of tamoxifen and fulvestrant against MCF-7/HRG
tumors. Mean tumor volumes (mm3) (columns) ± S.D. (bars) on day 50 of MCF-7/pBABE and
MCF-7/HRG xenograft tumors in athymic female mice treated with the FASN inhibitor C75 in
the absence (A) or presence (B) of estrogen, tamoxifen (TAM), and/or fulvestrant (FVT) (n = 10
mice/experimental group). (C) In vivo treatment with the FASN inhibitor C75 restores the anti-tumor
activity of TAM and FVT against hormone-resistant MCF-7/HRG xenograft tumors in mice.

On day 50 after inoculation of cells, treatments with tamoxifen and fulvestrant were found to
significantly prevent estrogen-stimulated tumor growth of MCF-7/pBABE control cells; treatment with
C75 was not as efficient as tamoxifen and fulvestrant at preventing estrogen-driven MCF-7/pBABE tumor
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growth and failed to enhance the anti-estrogenic efficacy of tamoxifen and fulvestrant (Figure 4A).
Estrogen supplementation was not required to establish MCF-7/HRG xenograft tumors in mice,
thereby indicating a bona fide estrogen independency. The fast-growing pattern of MCF-7/HRG
tumors remained unaltered upon treatment with tamoxifen and fulvestrant regardless estrogen
withdrawal or estrogen supplementation. Treatment with the FASN inhibitor C75 drastically decreased
the hormone-independent growth of MCF-7/HRG xenograft tumors, particularly when combined
with tamoxifen and fulvestrant upon estrogen supplementation (Figure 4B). Taken together, these
results provide evidence for FASN activity as a biological determinant that enables HRG-driven
hormone-independence and refractoriness to SERMs (tamoxifen) and SERDs (fulvestrant) in ER+

breast cancer cells (Figure 4C).

3. Discussion

FASN is known to be differentially upregulated by the HER2 oncogene in breast epithelial cells [25–
28]. By triggering PI-3K/AKT and MAPK signaling pathways, HER2 overexpression activates the FASN
gene promoter and ultimately stimulates endogenous fatty acid synthesis. Indeed, the HER2-driven
lipogenic phenotype might represent a biomarker for the sensitivity of pharmacological FASN
blockade [20]. Here, we provide evidence that overexpression of the HER3 ligand HRG suffices
to up-regulate the expression of cancer-associated FASN independently of HER2 overexpression.
These findings confirm and extend earlier studies showing that the formation of a hyperactive
heterodimer between HER2 and HER3 and the downstream activation of PI-3K/AKT and MAPK-ERK1/2
signaling cascades are essential traits for HRG-mediated elevation of FASN in breast cancer cells [29].
Perhaps more importantly, we now show that FASN is a key biological determinant of the molecular
program through which HRG overexpression promotes the acquisition of an endocrine-resistant
phenotype in ER+/HER2− breast cancer cells.

Activation of growth factor signaling pathways, independently of HER2 overexpression, has been
suggested to contribute to the poor prognosis of the luminal B ER+ breast cancer subtype [11]. Our study
provides evidence that activation of FASN signaling might operate as one of the dysfunctional biological
pathways driving the highly proliferative [30], tamoxifen-resistant, phenotype of those tumors. This is
not surprising, as many downstream growth factors activate PI-3K/AKT and MAPK-ERK1/2 signaling,
and FASN activation therefore overlaps with phenotypic traits observed in breast cancer cell lines that
overexpress HER2 [25–29]. In the present study, we utilized a structural mutant of HRG that, despite
containing the EGF-like domain associated with most of the biological outcomes of ligand engagement
with HER receptors, cannot be secreted to the extracellular milieu, thereby preventing the autocrine
activating effects on HER2 [21]. Overexpression of the HRG structural mutant, which prevents the
ability of full-length HRG to promote estradiol independence and antiestrogen resistance [18,19],
failed to trigger PI-3K/AKT and MAPK-ERK1/2 signaling to transactivate the FASN gene. Crucially,
our study might help to validate FASN as a predominant therapeutic target in certain subgroups
of poor prognosis luminal-type breast carcinomas that would not require the inhibition of multiple
pathways to produce clinical benefit. Accordingly, therapeutic blockade of FASN activity may be
effective in the prevention of refractoriness to endocrine therapy in HER2-negative breast carcinomas
subtypes where FASN overexpression results from HER2/HER3 signaling.

Endocrine-resistant MCF-7/HRG cells, which mimic a biological scenario of persistent HER2
pathway activation in luminal B-like tumors with low HER2 levels, lose their strong ability
to form colonies in soft-agar under estrogen-depleted and/or anti-estrogen (tamoxifen and
fulvestrant)-containing conditions in response to pharmacological blockade of FASN activity. The exact
reason why FASN facilitates resistance to endocrine therapy in HRG-overexpressing, ER+/HER2−
luminal B-like breast cancer cells needs to be explored in depth; however, it is clear that FASN
pro-survival signaling [27,28,31] is co-opted to support the cross-talk between HRG-driven HER2/HER3
pathway activation and ER signaling, thereby enabling estrogen-independence and resistance to
SERMs/SERDs (Figure 5). Importantly, in vivo treatment with the FASN inhibitor C75 notably
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restored the anti-tumor activity of tamoxifen and fulvestrant against fast-growing, hormone-resistant
MCF-7/HRG xenograft tumors in mice. The capacity of anti-FASN therapy to restore the sensitivity
to tamoxifen and fulvestrant in MCF-7/HRG xenograft tumors certainly suggests that certain
subgroups of HRG-overexpressing, ER-positive/HER2-negative patients who phenotypically behave
as triple-negative breast carcinomas and are resistant to endocrine therapy could greatly benefit from
adding clinical-grade FASN inhibitors [31–33] to combined treatments with SERMs/SERDs.
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Figure 5. FASN is part of the endocrine resistance program in HRG-positive/HER2-negative breast cancer
cells. The most predominant mechanisms of endocrine therapy resistance in estrogen receptor-positive
(ER+) breast cancer include interaction between ER signaling and various growth factor pathways such as
HRG-driven transactivation of HER signaling in the absence of HER2 overexpression. These alterations
facilitate adaptation from estradiol-dependent to estradiol-independent ER activation, which is further
triggered by cross-talk with growth factor receptors (e.g., HRG-driven HER2:HER3 heterodimerization).
We now provide evidence that FASN is a key mediator in promoting HRG-driven endocrine-resistant
breast cancer.

4. Materials and Methods

4.1. Materials

LY294002 and U0126 (Calbiochem, San Diego, CA, USA) were dissolved in DMSO and stored in
the dark as stock solutions (10 mmol/L) at −20 ◦C until use. Control cells were cultured in medium
containing the same concentration of DMSO (v/v) as was used in treated samples. Trastuzumab
(Herceptin®) was solubilized in bacteriostatic water for injection containing 1.1% benzyl alcohol
(stock solution 21 mg/mL), stored at 4 ◦C and used within one month. The primary antibody for
FASN immunostaining was a mouse IgG1 FASN monoclonal antibody (clone 23) from BD Biosciences
Pharmingen (San Jose, CA, USA).
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4.2. Heregulin Constructs and Retroviral Infection of Cell Lines

The HRG-M4 deletion mutant was generated by PCR using the HRGβ2 cDNA (accession
number 183996) as a template, as described [19]. Full-length HRGβ2 cDNA and HRG-M4 cDNA
were cloned into the retroviral vector pBABE (kindly provided by J. Campisi, Lawrence Berkeley
National Laboratory, University of California, Berkeley, CA, USA), and each was transfected into a
high efficiency transient packaging system using FuGENE (Roche Biochemicals, Indianapolis, IN,
USA). Medium from transfected cells containing infectious retrovirus was collected after 48 h, filtered,
and used to infect MCF-7 cells (originally obtained from the American Type Culture Collection,
Manassas, WV, USA) for 24 h in the presence of 4 µg/mL polybrene (Sigma, St. Luis, MO, USA).
Infected MCF-7 cells were grown for an additional 24 h in standard medium and stable cell lines
(MCF-7/pBABE, MCF-7/HRG and MCF-7/HRG-M4) were selected and expanded in the presence of
2.5 µg/mL puromycin (Sigma). MCF-7/pBABE, MCF-7/HRG and MCF-7/HRG-M4 cells were routinely
maintained in phenol red-containing improved MEM (Biosource International, Camarillo, CA, USA)
containing 5% (v/v)-heat-inactivated fetal bovine serum and 2 mmol/L l-glutamine. Cells were
maintained at 37 ◦C in a humidified atmosphere of 95% air and 5% CO2.

4.3. Immunofluorescence Staining

Anti-FASN immunofluorescence was performed as described elsewhere [20]. Fluorescence
intensities from regions of interest (ROIs) representing each cell were semi-quantitatively analyzed
by densitometry (Image J software, which can be readily downloaded from the NIH website https:
//imagej.nih.gov/ij/download.html), and the individual intensity values were employed to derive an
average intensity for all the cells in the image.

4.4. FASN Promoter Activity

Cells were trypsinized and re-plated in 24-well plates at a density of 50,000 cells/well. Cells were
incubated for 18 h to allow for attachment and were then transfected with 300 ng/well of the
pGL3-Luciferase construct (Promega, Madison, WI, USA) containing a Luciferase reporter gene driven
by a 178-bp FASN promoter fragment using FuGENE 6 transfection reagent (Roche Biochemicals).
An internal control plasmid pRL-CMV (30 ng/well) was used to correct for transfection efficiency.
After 18 h, transfected cells were washed and then incubated with trastuzumab, LY294002, or U0126
as specified, or vehicles as controls. Approximately 24 h after treatments, Luciferase assays were
performed as previously described [19,20].

4.5. Xenograft Studies

Animal care was in accordance with institutional guidelines. Xenografts were established
by injecting 2 × 106 (MCF-7/pBABE and MCF-7/HRG) cells subcutaneously into ovariectomized
3- to- 4-week old athymic female nude-Doxn1nu mice (Harlan Sprague Dawley, Madison, WI,
USA) that had been implanted with slow-release estrogen pellets (Innovative Research) implanted
subcutaneously around left forearm using a trocar. When tumors reached a size of approximately 100
mm3, mice bearing MCF-7/pBABE and MCF-7/HRG tumors were randomly allocated to continued
estrogen treatment or to estrogen withdrawal (by removal of the estrogen pellets) with vehicle alone
(untreated group), single-agent tamoxifen, single-agent fulvestrant, single-agent C75 (30 mg/Kg
b.w.; i.p.), or their combinations (i.e., tamoxifen plus C75 or fulvestrant plus C75) for seven weeks
(n = 10 animals/experimental group). Tumor volume was calculated by 3D measurements using
the formula: tumor volume (mm3) = (length × width × height)/2. Tumor volume values (mean ±
S.D.) were calculated using a Vernier caliper in a blinded manner to minimize experimental bias.
Mice were euthanized at completion of the experiment (50 days post-inoculation) or when tumors
reached a volume of 1000 mm3, and tumor tissues were removed and maintained at −190 ◦C for
later analyses. Animal studies were conducted in accordance with the Guide for the Care and Use
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of Laboratory Animals and the Mayo Clinic Institutional Animal Care and Use Committee (IACUC)
approved this study (protocol numbers A40611-12, 15 February 2012 -initial approval and A00004567-19,
16 December 2019 -last approval).

4.6. Statistical Analysis

For all experiments, at least three independent experiments were performed with n ≥ 3 replicate
samples per experiment. Investigators were blinded to animal data allocation. Experiments were not
randomized. Data are presented as mean ± S.D. Comparisons of means of ≥3 groups were performed
by one-way ANOVA and Dunnett’s t-test for multiple comparisons using GraphPad Prism (GraphPad
Software, San Diego, CA, USA). In all studies, p-values < 0.05 and <0.005 were considered to be
statistically significant (denoted as * and **, respectively). All statistical tests were two-sided.

5. Conclusions

With the exception of the HER2 subtype, there has been little research into the pathogenic
mechanisms responsible for the intrinsic molecular subtypes of breast cancer. Elucidation of the
underlying biological mechanisms contributing to the luminal-B/poor prognostic ER+ breast cancer
phenotype is critical for developing novel and effective therapeutic strategies aimed to circumvent
endocrine resistance. We propose that lipid-metabolic traits such as FASN, which is becoming
increasingly important as a potential biomarker of poor prognosis and therapeutic target in several
human malignancies [19,34–37], contribute to the highly proliferative, hormone therapy-insensitive
phenotype of luminal breast cancer carcinomas in a HER2 overexpression-independent manner. As a
new generation of FASN inhibitors has recently entered the clinic, our study suggests that targeting
FASN could be therapeutically exploited for the clinico-molecular management of the poor prognosis
luminal-B subtype of ER+ breast cancer patients.
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