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Abstract: Conjunctiva-associated tissue (CALT) is assumed to play a crucial role in the immune
system of the ocular surface. Its function in several ocular surface diseases (OSD) is still not fully
understood. This study investigates the function of CALT in mouse models of dry-eye disease and
ocular allergy. Since antigen-presentation is the central similarity in the pathologies, this study focuses
on antigen-presentation in CALT Morphology and the expression of CALT, which was investigated in
mice after induction of dry-eye, ocular allergy, topical antigen-stimulation, and after local depletion
of phagocytic cells. Antigen uptake was investigated after the application of fluorescent ovalbumin
(OVA). OSD influences the appearance and morphology of CALT in a disease-dependent manner.
Ocular allergy leads to an increase and dry-eye disease to a decrease in number and size of CALT.
The development of CALT is dependent on the presence of APCs. Professional APCs are present in
CALT, and soluble antigen is transported into the follicle. CALT appearance is disease-specific and
indicative of differing functions. Although the specific involvement of CALT in OSD needs further
study, the existence of functional APCS and antigen-uptake supports the hypothesis that CALT is an
immunological key player at the ocular surface.

Keywords: conjunctiva-associated lymphoid tissue; CALT; antigen presentation; dry-eye disease;
ocular allergy

1. Introduction

Dry eye disease and ocular allergy are ocular surface inflammatory pathologies with high clinical
relevance. Dry eye disease is a T-cell driven disease in which autoantigens (although still not fully
identified) are discussed to play a significant role [1–3], whereas ocular allergy is a hypersensitivity
reaction against widespread antigens known as allergens. Although the pathologies are different,
antigen presentation is a key mechanism in the inflammation that develops in both diseases [4–6].
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Antigen-presenting cells (APCs) with their ability to take up, process, and present antigens, in association
with MHC II-molecules, play a key role in immunological defense and tolerance mechanisms. APCs are
activated by inflammatory stimuli and generate local immune responses, e.g., in secondary lymphoid
tissues, like mucosa-associated lymphoid tissue (MALT), to protect the body against antigens and
to prevent pathological conditions. The conjunctiva presents immunological similarities with other
mucosal tissues, and organized lymphoid follicles can be found as conjunctiva-associated lymphoid
follicles (CALT) [7,8]. CALT is a regular component of healthy conjunctival tissue with an age-related
expression, and several studies indicated its central role in the ocular surface immune system (reviewed
in [9]). In mice, CALT develop exclusively in the nictitating membrane, but extensive histological studies
described a similar morphology of CALT with B- and T-cells in the core, a lymphoepithelium containing
M-cells, and high endothelial venules in humans and mice [7,8,10]. Furthermore, non-invasive in vivo
two-photon microscopy revealed dynamic cellular processes and the ability to transport particles
within the follicles [11].

Bacterial or viral infections can lead to hyperplasia of conjunctival follicles [12]. Moreover, biopsies
of human conjunctivas revealed that in ocular allergy and dry eye disease, follicles change in number
and size [13,14]. Additionally, hyperreflective cells were observed in confocal microscopy of CALT
in patients with preservative-induced dry eye [9]. Morphological alteration of CALT was observed
in patients with advanced stages of dry eye disease and discussed, leading to deregulation of CALT
and contributing to chronic inflammation in dry eyes [14,15]. However, although the crucial role of
CALT in inflammatory ocular surface diseases has been postulated, it is yet to be determined if a
significant part of the central antigen presentation in these ocular surface diseases takes place in CALT
or induces its assembly. Furthermore, modulations of the cellular structure of CALT itself by different
inflammatory stimuli are to be expected.

The goal of this study was to investigate a pathology-specific presence and morphology of CALT
in mice, the analysis of professional APCs in this process, and their potential antigen-uptake and
–presentation in CALT.

2. Results

2.1. Ocular Allergy and Dry Eye Disease Changes the Appearance of CALT in Mice

Using several mouse models of ocular surface diseases, differences in the appearance of CALT
were observed. Ocular SRW (short ragweed) allergy leads to an increase in the presence and the
number of CALT follicles in the stimulated eyes, but not in the unchallenged control eyes, compared
to naïve mice. Compared to OVA/CtB (ovalbumin/Choleratoxin B) stimulated CALT, no differences
in the presence or the number of CALT per eye were detected (Figure 1A). Compared to naïve mice,
stimulation with OVA/CtB or SRW, pollen both lead to a significant increase in the average size of CALT
(Figure 1B). The size of CALT in unchallenged control eyes of SRW immunized mice was increased by
trend compared to naïve CALT (p = 0.057). In contrast, EDE (experimental dry eye disease) did not
change the presence of CALT compared to naïve mice, but resulted in a significant reduction of the size
compared to naïve mice, but also SRW, and OVA/CtB treated mice (Figure 1B). After topical stimulation
with SRW, follicles presented the highest density of APCs compared to naïve or unchallenged control
eyes. In EDE eyes, only a few APCs were present in CALT (Figure 2C, schematic drawing of CALT
based on detailed histological analyses).
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Figure 1. The appearance of conjunctiva-associated tissue (CALT). (A) Number of CALT in naïve (n = 8),
OVA/CtB (ovalbumin/Choleratoxin B) stimulated (n = 12), short ragweed (SRW) allergy (T-treated;
NT non-treated eye) (n = 15), and experimental dry-eye (EDE) (n = 17) mice. The number provided in
the bars show the number of eyes investigated. Topical stimulation with OVA/CtB or SRW pollen leads
to a significant increase in the number of follicles compared to naïve mice. Topically unchallenged eyes
of immunized mice demonstrated significantly less CALT than stimulated SRW eyes, but no differences
compared to naïve mice. (B) Average cell number per follicle. OVA/CtB and SRW mice had significantly
bigger follicles compared to naïve. There was no difference between stimulated and non-stimulated
SRW eyes (Kruskal-Wallis p = 0.0001, * p ≤ 0.05; ** p < 0.001; *** p < 0.0001).

Figure 2. Antigen-presenting cells within CALT. (A) Immunohistochemistry of acetone-fixed
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cryosections. In naïve, OVA-CBt, SRW stimulated, and EDE mice CD11c+, CD11b+, and F4/80+

cells co-localized with MHC II+ were detectable. (bar = 25 µm; green: MHC II+; red: CD11c+,
CD11b+, F4/80+; blue: nuclei). (B) The relative number of MHC II+ cells (in % of total cells per
follicle). In OVA/CtB and SRW, the number of MHC II+ cells was decreased compared to naïve
(Kruskal-Wallis p = 0.05, *p ≤ 0.05). (C) Schematic drawing of the cellular composition of CALT based
on histological analysis.

2.2. Antigen-Presenting Cells in CALT

CD11b+, CD11c+, F4/80+ positive, and B-cells were identified in CALT histologically. CALT
follicles were examined regarding the spatial organization of these cells. B-cells were organized
in a central zone, whereas CD11c+ cells were randomly distributed within the B-cell zone. In the
periphery F4/80+ and CD11b+ cells were present (Figure 2A,C). These cells revealed MHC II+ signals
(Figure 2A). Although the number and size of CALT were increased in OVA/CtB and SRW stimulated
eyes, no differences in the total number of MHC II+ cells were found compared to naïve mice.
Compared to naïve mice, the relative number of MHC II+ cells (related to the total cell number per
follicle) was significantly decreased after OVA/CtB and SRW stimulation (Figure 2B).

To confirm histological results and cell characteristics, isolated nictitating membranes/CALT were
analyzed by flow cytometry. Dead cells, doublets, and CD45-cells (non-leukocytes) were excluded
from the analysis. Data were analyzed following the gating strategy, as presented in Figure 3A. In SRW
stimulated mice, an increase of CD45+ leukocytes compared to naïve mice reflected the increase
in expression and size of CALT, as seen in histology. In OVA/CtB stimulated mice, the number of
CD45+ cells was trended towards an increase as compared to naïve mice (Figure 3B). Flow cytometry
data further confirmed the general expression of dendritic cells, macrophage-like cells, and CD11b+

myeloid cells in CALT of naïve, SRW, and OVA/CtB stimulated mice. Neither the total number of
MHC II+ APCs, nor the median fluorescence intensity (MFI) of MHC II+ cells was influenced by
topical stimulation compared to naïve mice (Figure 4C). In further analysis, no differences in the
amount of CD11b+ cells, macrophage-like, or dendritic cells in CALT were found (data not shown).
No flow cytometry could be performed in EDE, since the number of relevant cells was below the
detection range.
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Figure 3. Flow cytometry analysis of isolated nictitating membrane tissues (CALT). (A) Gating strategy.
(B) After SRW stimulation, the number of CD45+ cells was increased compared to naïve mice, reflecting
the increased number and size of CALT. In OVA/CtB stimulated mice, the number of CD45+ cells was
increased by trend (p = 0.07). (C) Median fluorescence intensity (MFI) of MHC II+ cells within the
CD45+ non-neutrophils gate. No differences were found. (n = 3 independent experiments, n = 5 mice
pooled/sample; * p < 0.05).
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Figure 4. The development of CALT depends on the presence of APCs. (A + B) Immunohistochemistry
of acetone-fixed cryosections (A): green: MHC II; red: CD11b, CD11c, F4/80; (B): green: CD45RB220
(B cells); red: CD4 (T cells); blue: nuclei; bar = 100 µm). After sub-conjunctival clodronate injections,
only diffuse cellular infiltration without functional MHC II+ cells were present in the nictitating
membrane (upper rows), whereas in PBS injected control mice, organized and functional CALT was
present (lower rows). (C) The depletion of APCs by sub-conjunctival clodronate injection leads to a lack
of CALT after OVA/CtB or SRW stimulation. (D) APC depleted mice suffered from severe blepharitis
compared to PBS control mice, after OVA/CtB stimulation (8×/2 weeks).

2.3. Antigen-Presenting Cells Are Crucial for the Development of CALT

Mice were treated with sub-conjunctival injections of clodronate liposomes to deplete conjunctival
mononuclear phagocytes (MNPs) and subsequently stimulated with topical OVA/CtB or SRW.
Clodronate induced depletion of the MNPs inhibited CALT formation, whereas control mice receiving
PBS liposomes developed CALT in 100 % (Figure 4C). Mice treated with clodronate showed only sparse
cellular infiltration without a spatial, defined structure of CALT. Few CD11b+, CD11c+, or F4/80+ cells
were present, all without MHC II (Figure 4A,B: upper row). PBS (phosphate-buffered saline) injected
control mice developed regular CALT follicles, with a distinct B-cell and T-cell zone (Figure 4B: lower
row) and MHC II+ APCs (Figure 4A: lower row). Moreover, after CALT depletion, mice developed
severe blepharitis after topical stimulation with OVA/CtB. PBS injected control mice treated with topical
OVA/CtB were protected and maintained a healthy lid phenotype (Figure 4D).

2.4. Antigen-Uptake and Presentation in CALT

To investigate the ability of CALT to uptake soluble and particulate antigen and a possible
presentation by APCs, fluorescent OVA was applied to the ocular surface of KLH/CtB (keyhole limped
hemocyanin/Choleratoxin B) stimulated mice. Fluorescent OVA was detected as a gradient constructed
predominantly above the lymphoepithelium 15–30 min after application (Figure 5A). 60 min after
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application, OVA was detectable within CALT, 120 min after application, the visual quantity of OVA
was declined, and 360 min after the application antigen was no longer detectable in CALT. Furthermore,
a co-localization of OVA with CD11b+, CD11c+, as well as F4/80+ cells, was demonstrated (Figure 5B).
Epithelial cells did not express MHC II (Figure 5C).

Figure 5. Uptake of soluble antigen in CALT. (A) Upper row. Topically applied, fluorescent OVA was
transported via the lymphoepithelium into KLH/CtB induced CALT. OVA was detectable 60–120 min
after application within CALT (see inlay). Three hundred and sixty minutes after the application, OVA
was no longer detectable. Arrows show OVA accumulated above and within CALT. (B) Image stacks
proved a co-localization of F4/80+, CD11b+, CD11c+ cells in CALT with OVA. Arrows indicate OVA
uptake by APCs in CALT. (C) Epithelial cells above CALT do not express MHCII (green). (green: OVA;
red: CD11b, CD11c, F4/80, pan-cytokeratin; blue-nuclei; bar = 25 µm).

3. Discussion

CALT is a physiological component of the healthy ocular surface and appears under optical
examination as a conjunctival follicle. Inflammatory ocular surface diseases change the number and
size of CALT follicles in humans [9], which was also demonstrated in this study. In ocular allergy,
a significant increase of CALT, together with bigger follicles was detected. The reason for this is the
infiltration of APCs and the development of a massive B-cell zone in CALT after SRW stimulation.
Conjunctival CD11b+ cells are described as crucial in the development of ocular allergy [5,6], which
explains the increase of these cells in CALT. It is also known that B-cell-derived plasma cells are
found preferably in the germinal centers of lymphatic tissues (like CALT) in the context of allergy [16].
In contrast, EDE leads to a decrease of CALT in this study. This is contrary to published results
investigating human biopsies from patients with advanced dry eye disease [17]. This may be because
patients, in contrast to the controlled environmental conditions of experimental models, are exposed
to various risk factors and different antigens every day and may suffer from additional diseases
(e.g., ocular allergy). In patients, the ocular surface challenge during dry eye disease is a complex
process. Therefore, the increased presence of the follicles in patients with dry eye disease might be
un-related to the pathology itself, and it has to be considered that the follicles are not pathognomonic
for dry eye disease.

Mucosa-associated lymphoid tissues (MALT) are described to be both, effector, as well as
inductive sites of the adaptive immune system. The development of follicles and a subsequent antigen
presentation occurs in intestinal MALT to protect the body, e.g., after microbial infections and to prevent
a systemic antigen uptake, and thus, infection or sepsis [18]. However, the development of MALT can
also maintain the inflammatory response in autoimmune disorders [19]. The existence of regulatory
T-cells in CALT, as shown previously by our group [10], also supports both immunosuppressive
and immunoregulatory mechanisms in CALT. Therefore, the pathology-specific differences in CALT
expression might be due to the diverse functions of CALT in different diseases. Another possible
explanation for the decrease of CALT in EDE could be systemically applied scopolamine. Scopolamine
leads to an inhibition of acetylcholine-mediated stimulation by blocking muscarinic acetylcholine
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receptors. This leads to a reduction of tear secretion, but also an increase of CD4+, CD11b+, and CD11c+

cells in the lacrimal glands [20]. On the other hand, scopolamine can also result in immunological
inhibition of leukocyte infiltration [21]. Furthermore, different mouse strains are used to induce ocular
allergy or EDE. It is known that, for example, Balb/c and C57BL/6 mice present strain-related differences
in the pro-inflammatory cytokine profile of the ocular surface [22]. Own unpublished observations
also indicate less frequent follicles in C57BL/6 mice compared to Balb/c (see Figure S1). This is similar
to the MALT of the gut. Here, C57BL/6 mice were also shown to express fewer and smaller follicles
compared to Balb/c mice [23,24]. In conclusion, the reason for the reduction of CALT in the context of
EDE in this study remains unclear.

The study presented investigated APCs in CALT in the context of the most common chronic ocular
surface diseases: ocular allergy, and dry-eye. The results of the study demonstrated the existence of
different and functional APCs within murine CALT. Clodronate injections erased CALT and further
proved the existence of APCs to be a key factor for follicle formation and maintenance. The spatial
organization of the APCs in CALT follicles thereby was congruent to other MALT. B-cells reside in the
center of the follicle in MALT and form a B-cell zone [25]. Such an arrangement of B-cells in CALT was
described previously in humans [7] and mice [10], and was also found in this study. The existence of a
B-cell-zone was demonstrated for all examined animal models except for EDE.

CD11c, CD11b, and F4/80 positive cells were detected in CALT. CD11c is commonly considered
as one marker of dendritic cells (DCs), whereas cells with a high expression of F4/80 are regarded as
macrophages. CD11b is a universal surface marker, unmasking myeloid cells, including monocytes and
macrophages [26], as well as dendritic cells [6]. A limitation of the study was that the analysis of classic
APCs in CALT based on immunohistochemistry was complicated by the fact that most APC types
and -subtypes share expression of common surface markers on the one hand and are characterized
by a range of markers with different expression levels on the other hand [27]. Therefore, a definite
association of histologically detected cells to a certain cell population was difficult. Moreover, flow
cytometry of CALT was challenging because of the extremely low number of relevant cells. Especially
in EDE, the number of cells was too low to be further analyzed. However, taking the established spatial
arrangement of the APCs in other MALT and the immunohistochemical results of this project into
account, an interpretation of the detected cells to a cell type in CALT was possible.

The organization of APCs in CALT appears to be particularly useful upon consideration of the
individual APC function. DCs are considered the most potent stimulators of T-cells, among other things,
due to the fact that MHCII complexes occur more often on mature DCs compared to other APCs [28,29].
Therefore, the localization mainly in the T-cell zone of CALT appears as a logical consequence,
since there may occur a direct and efficient T-cell stimulation. Macrophages are characterized by a high
phagocytotic potential, but a lower MHCII expression and ability for antigen presentation compared
to DCs [26]. Depending on their M1 or M2 phenotype, they are involved in steady-state tissue
homeostasis, the induction or resolution of inflammation, and tissue remodeling. In other secondary
lymphoid organs, the most prominent macrophage subsets are CD169+ (Siglec1) macrophages mainly
involved in immune regulation, but also antigen presentation to B-cells [30]. In CALT, macrophages
were present predominantly outside the T- and B-cell zone, and no Siglec1 positive cells were detected.
Comparably, macrophages were also considered to be not present in the germinal centers of Peyer’s
Patches (PP) in the gut [31]. Only very recently, it was shown that this was only due to the lack of
specific markers for these unique, atypical macrophage populations [32]. Macrophages in the PP
lack “classical” macrophage marker like F4/80, CD169, MMR/CD206, or FcGR1/CD64. Depending
on the localization, and due to local variation of the microenvironment, different sub-populations
of macrophages with different functions, gene expression profiles, and phenotypes exist in the PP.
It is possible that different macrophage populations might also exist within CALT, but could not be
detected so far.

Most APCs in CALT expressed MHC II, such they can be considered as activated. However,
also MHC II negative APCs were identified in CALT. It could be hypothesized that immature, tolerogenic
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APCs would be represented by MHC II negative, but the activated, immunogenic APCs by MHC II
positive cells. Thereby a balanced state between immunity and tolerance would be ensured. This would
guarantee a reliable immune response, but also prevention of excessive inflammation. This, in turn,
enables immunoregulation in CALT in terms of peripheral tolerance. Experimental depletion of
CALT in this study then resulted in disbalance and loss of tolerance leading to severe blepharitis.
In contrast, animals with intact CALT follicles were protected against such local inflammation after
antigen stimulation. Moreover, immunoregulatory or immunosuppressive mechanisms most likely
take place as CD4+CD25+FoxP3+ regulatory T-cells in CALT has been shown previously by our
group [10]. Overall, through co-existence of such immune inductive and regulatory mechanisms, CALT
is seen as an immunoregulating site of the mucosa comparable to MALT in other mucosal surfaces.

The ocular surface is constantly exposed to antigens. To avoid excessive inflammation and tissue
damage, immune tolerance mechanisms are crucial. Goblet cell-associated passage of antigens through
the conjunctiva and controlled processing plays a crucial role in the induction of the local immune
tolerance, but is disturbed in dry eye disease and age-related ocular surface inflammation [33,34].
Previously we demonstrated that particles and bacteria are also directly transported into CALT [10,11].
This study further demonstrated that uptake and presentation of soluble antigen take place in CALT.
Soluble ovalbumin could be detected 60 min after topical application within the follicles co-localized
to APCs. This is congruent with the results of [35,36], who demonstrated phagocytosis of antigens into
CALT in guinea pigs and turkeys between 5-60 min after application. [36] also proved an accumulation
of antigen over time. To induce an immune response in MALT, the present antigen has to penetrate
the epithelial barrier and entrance the follicles. Epithelial cells can be involved in antigen uptake,
and an expression of MHCII by intestinal epithelial cells was described in humans, rats, and mice [37].
The transport of ovalbumin by epithelial cells has been demonstrated in the intestine. Here the antigen
was detectable as soon as 10 min after exposure [38]. This suggests that epithelial cells, particularly
under pathological conditions, can act as APCs. In this study, however, no antigen-presenting
properties of epithelial cells above CALT were found. CALT forms a lymphoepithelium containing
cells with ultrastructural properties of M-cells, which transport antigen across the barrier [10,39,40].
Fluorescent-labeled antigen could then be visualized in APCs located directly below the epithelial
barrier in CALT. Although the presented data does not provide a mechanism of how the antigen is
processed and which exact immune response follows antigen exposure within CALT, we conclude that
the APCs within CALT contain antigen to either induce a local immune response or carry antigens
into the draining lymph node. As fluorescent-labeled ovalbumin within CALT was absent as early
as two to six hours after application, this leads to the conclusion of drainage of soluble antigen or
antigen-containing APCs to the lymph node.

In conclusion, the results presented support the hypothesis that CALT is a key player in the
immunology of the ocular surface, both for the initiation and regulation of immune response. Murine
CALT was described as an effective vaccine delivery route, protecting mice by the increase of specific
IgA antibodies in the mucosa, but also systemic IgG production against lethal viral or bacterial
infections [40]. We, therefore, suggest including CALT into current concepts of the ocular surface
disease, in particular, the understanding of afferent and efferent immune responses. Furthermore,
the results of the basic research study presented will form a basis for more detailed studies aiming at
antigen-presentation in CALT as a potential treatment option. Current topical, therapeutic approaches
mostly aim to treat already existing inflammation, e.g., by targeting the T-cell-driven response in dry eye
disease [41,42]. However, the induction of the inflammation takes place at a distinct earlier time point,
starting with the presentation of antigen. Using substances that influence the antigen-presentation in
CALT at the very beginning might decrease the severity of the inflammation.

Depending on the disease, targeting antigen-presentation could be used as a preventive approach
regarding the exacerbation of the disease. In dry eye disease, targeting of antigen-presentation
could prevent the repeated generation of autoreactive T-cells, which trigger sequelae of inflammation,
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often trough phases of increased desiccation or eye surgery. For ocular allergy, in particular, seasonal
forms, the disruption of allergen processing through APCs could reduce disease activity.

For this, more detailed studies are needed, to better understand the disease-, time- and
antigen-depending role of specific APC subtypes in CALT in ocular surface diseases. Furthermore,
nothing is known about the interplay between the APCs (namely DCs) in CALT, in MALT of the tear
ducts and nasopharynx, and the regional lymph nodes. Also, the role of co-stimulatory molecules
(B7.1 or B7.2) for the effective antigen-presentation in CALT needs to be investigated, e.g., by using
knockout mouse models.

4. Methods

4.1. Animal Experiments

Female Balb/c and C57BL/6 were purchased from Charles River Laboratories (Sulzfeld, Germany)
and housed under standard conditions. The mice were screened for ocular abnormalities (corneal
opacity, scarring, lid edema, etc.) before the experiments. No abnormalities were observed. No animals
were excluded from the study, and no unexpected deaths of animals occurred during the study.
The treatment of the animals was undertaken following the regulations of the University of Cologne
and the local committees of North Rhine-Westphalia (Germany). All procedures were approved by the
German animal welfare authorities (approval code: 84-02.04.2013.A098, approval date: 18.11.2013)
and were performed following the ARVO statement for the use of animals in ophthalmic and
vision research.

Ocular allergy was induced in Balb/c as published, using short ragweed pollen (SRW, Hollister
Stier, Spokane, DC, USA) [43]. Mice were immunized i.p. with 50 µg SRW in Imject® alum adjuvant
(Thermo Fisher Scientific, Schwerte, Germany) and PBS. Ocular allergy was induced in the right eyes
by topical administrations of 1.5 mg SRW in 10 µl PBS per eye for seven consecutive days. The left eye
remained as a control without topical allergen stimulation. Mice were examined 20 min after each SRW
application for symptoms of conjunctivitis (tearing, lid edema, conjunctival vasodilatation, chemosis).

Experimental dry eye disease (EDE) was induced using a (modified) desiccating stress protocol,
as previously published [44,45]. C57BL/6 mice were exposed to reduced humidity (<25%) and a
constant airflow for 14 days. Additionally, scopolamine (Sigma Aldrich, Germany) was administered
subcutaneously using Alzet® pumps (0.7 mg in 110 µL PBS).

Non-pathological CALT was stimulated by the topical application of either Ovalbumin (OVA,
Sigma Aldrich, Germany) or keyhole limpet hemocyanin (KLH, Calbiochem®Merck, Germany)
together with Choleratoxin B (CtB, Sigma Aldrich, Taufkirchen, Germany) at eight times as previously
published [10,11]. Naïve mice were used as a control. To track the up-take of soluble antigen in CALT,
5 µL of fluorescent-labeled OVA (Thermo Fisher Scientific, Schwerte, Germany) was applied topically
to anesthetized mice with OVA/CtB stimulated CALT. Mice were sacrificed 15, 30, 60, 120, and 360 min
after application. Whole eyes, including the nictitating membranes, were dissected and fresh frozen in
liquid nitrogen for further analysis.

To deplete mononuclear phagocytes (MNPs), mice were treated with two sub-conjunctival
injections of clodronate-loaded liposomes (Clodrosome®, Encapsula NanoSciences LLC, TN, USA)
before topical OVA/CtB or SRW stimulation. Control mice received PBS containing liposomes. Injections
were given under short-term narcosis with Ketamine (Ketanest®S, Pfizer, Berlin, Germany) /Xylazine
(Rompun®, Bayer Health Care, Leverkusen, Germany). During the injection, the eye was additionally
anesthetized with a drop of Conjuncain EDO® (Bausch & Lomb, Heidelberg, Germany).

4.2. Immunohistochemistry

Fresh frozen tissue was acetone-fixed and sectioned using a Leica CM3050 Cryostat (Leica,
Germany). Sections (8–12 µm) were incubated with antibodies according to the manufacturer’s
instructions. The specific antibodies used for immunocytochemistry are described in detail in Table S1
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of the supplemental part of the manuscript. For all antibodies, positive control stainings (primary
and secondary antibody) and negative control stainings (secondary antibody only) using either tissue
sections of lymph nodes (cytokeratin, CD4, CD8) spleen (MHCII, LYVE1, CD11b, CD11c, CD45RB220)
or Peyer’s patches (F40/80) were carried out. Nuclei were stained with Hoechst-dye or DAPI. Images
were recorded with a Zeiss LSM Metaconfocal 510 (Zeiss, Jena, Germany) confocal microscope and
analyzed using Zeiss LSM Image Examiner (version 3.5) and ImageJ (1.48v) software containing the
“cell counter“ plugin.

To prove the existence of defined CALT follicles, sections were analyzed for the expression of
CD4+, CD8+ T-cells, B-cells, and surrounding blood- and lymph vessels according to the definition
published previously [11,39] (Figure S2). Only follicles with defined characteristics of CALT were
included in further histological analysis. To estimate the size of CALT, the total number of cells was
calculated. The number of all cells was added, and the result was divided by the number of slides
analyzed. For the calculation of specific APCs, the most central section of each follicle was chosen.
The number of APC was related to the average total cell number of the follicle. To compare CALT in
the different models, the number of antigen-presenting cells (APC) was related to the total cell number
of the follicles.

4.3. Flow Cytometry

Nictitating membranes of naïve, OVA stimulated, and allergic mice were dissected. Because of the
small amount of tissue, the eyes of five mice each were pooled into one sample for analysis. Tissues
were digested with 2 mg/mL collagenase D and 0.1 mg/mL DNAse I (Roche, Germany) in HBSS. Cells
were transferred to FACS buffer (0.5% BSA, 1% FBS, EDTA 1:50 in PBS), and blocked with Fc block
anti-mouse CD16/32 (eBioscience, Germany). Cells suspensions were incubated with CD11b, CD11c,
Ly6G, Ly6C, CD45, CD64 (BioLegend, Germany), MHCII, SiglecF (BD Bioscience, Germany), and F4/80
(eBioscience, Germany) antibodies according to the manufacturer’s instructions for 30 min on ice
and protected from light. After washing the cells, the pellet was resuspended in PBS, and eFluor450
fixable viability dye staining was performed (BD Bioscience, Germany). Cells were then washed and
fixed in stabilizing fixative (BD Bioscience, Germany). FACS analyses were performed using either
an LSR Fortessa (BD Bioscience) or Guava easyCyte (Merck Millipore) cytometer. Raw data were
analyzed using FlowJo software (FlowJo LLC, Ashland, OR, USA). Three independent experiments
were conducted.

4.4. Statistics

Data were tested for Gaussian distribution and equality of the variances using the
Kolmogorov-Smirnov and Levene test. Depending on the results, either one-way ANOVA (post hoc
test: least significant difference LSD) for multiple comparisons or the Student’s t-test and Welsh’s-test
for two groups, were used to analyze statistical differences. A p-value < 0.05 was considered to
be significant. All statistical analyses were performed using SPSS (vs.25) software (IBM Corp.,
Armonk, NY, USA).
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