## **Supplemental Data**



**Fig. S1.** Concentration of unbound structures against over time plot for HVEM (dark red line) and peptide (light blue line) with restrains based on crystal structure of BTLA/HVEM complex and peptide (green) simulated with restrains based on the NMR structure; second order equation corresponding fitted curves to obtained data for HVEM (red) and for peptide with restrains based on crystal structure of BTLA/HVEM complex (cyan) and for peptide with restrains based on NMR structure of this peptide (green).



Fig. S2. The HN-H $\alpha$  region of NOESY spectra (range 7.7 to 8.8 ppm) with the sequential assignments of all residues and numbered crosspeaks of the HVEM(14-39) peptide in phosphate buffer at 25°C.



**Fig. S3.** The NOE effects corresponding to interproton distances (the height of the bar is proportional to the signal volume) in phosphate buffer at 25°C for the HVEM(14-39) peptide.



**Figure S4.** The peptide stability (mean  $\pm$  SEM) in A) PBS buffer, B) medium was determined using RP-HPLC. The analysis was done by comparing the area under peaks in a control sample (peptide dissolved in water, time=0) and a sample after incubation in PBS or medium at time points: 0 h, 2 h, 3 h, 6 h, 24 h at 4 and 37°C. The experiments were performed for the three different peptide concentrations: 0.1, 1 and 5 mg/ml. For all concentrations of HVEM(14-39) peptide at 4° and 37°C the results were very similar (here the data for concentration 1 mg/ml at 4°C are presented).



uV





Figure S5. Chromatograms registered for HVEM(14-39) peptide incubated in A) PBS, B)

medium at time points (from the bottom) = 0h, 2h, 3h, 6h and 24h (gradient 5-100%B in 60 min).



**Figure S6.** 293T cells expressing human BTLA were incubated with different concentrations (0.1, 1 and 5 mg/ml) of peptide HVEM(14-39) prior labeling with rhHVEM-Fc and AF647-conjugated anti-human IgG antibody.



**Fig. S7.** Cytotoxic assay. PBMC from 3 healthy donors were incubated with HVEM(14-39) peptide at 0, 0.1 and 5 mg/ml in culture medium for 6 and 24h. Cells were subsequently counted and labelled with a dead cell marker. Statistical analysis: one-way ANOVA (Kruskal-Wallis) followed by Dunn's test to compare each concentration to the control (0 mg/mL).



**Fig. S8.** Superimposed structures of complexes of BTLA protein (purple) with peptides (cyan and green) and with HVEM (red). Complex structures were superimposed after the structure of the BTLA protein.

| protein. |           |           |                    |
|----------|-----------|-----------|--------------------|
| No       | k1 (1/Ms) | k-1 (1/s) | K <sub>D</sub> (M) |
| 1.       | 1,06E+05  | 1,37E-03  | 1,30E-08           |
| 2.       | 2,84E+04  | 4,23E-03  | 1,49E-07           |
| 3.       | 1,31E+04  | 2,83E-03  | 2,17E-07           |
| 4.       | 1,59E+05  | 4,85E-03  | 3,06E-08           |
| Average  | 7,64E+04  | 3,32E-03  | 1,02E-07           |
| StdDev   | 6,81E+04  | 1,55E-03  | 9,74E-08           |

**Table S1.** Kinetics parameters for the interactions between HVEM(14-39) peptide and BTLA protein.

Table S2. The amino acid sequences of the peptides.

| PEPTIDE                                 | AMINO ACID SEQUENCE                           |  |
|-----------------------------------------|-----------------------------------------------|--|
| HVEM(14-39)                             | Ac-ESCPKCSPGYRVKEACGELTGTVCEP-NH <sub>2</sub> |  |
| HVEM(14-39) <sup>C16-C19, C29-C37</sup> | Ac-ESCPKCSPGYRVKEACGELTGTVCEP-NH <sub>2</sub> |  |
| HVEM(14-39) <sup>C16-C37,C19-C29</sup>  | Ac-ESCPKCSPGYRVKEACGELTGTVCEP-NH <sub>2</sub> |  |
| HVEM(14-39) <sup>C16-C29</sup>          | Ac-ESCPKCSPGYRVKEACGELTGTVCEP-NH <sub>2</sub> |  |
| HVEM(14-39) <sup>C19-C37</sup>          | Ac-ESCPKCSPGYRVKEACGELTGTVCEP-NH <sub>2</sub> |  |
| HVEM(14-39) <sup>C16,19,29,37S</sup>    | $eq:ac-ESSPKSSPGYRVKEASGELTGTVSEP-NH_2$       |  |
| HVEM(14-39) <sup>SCR</sup>              | Ac-SECGRCEAPEKTKSLCVTPEPVGCYG-NH <sub>2</sub> |  |

**Table S3.** Derviation of associtation and dissociation rate constant for complex formation reaction.

Rates for the reactions:

$$I + E \xleftarrow{k_1}{k_{-1}} E \cdot I$$

 $\operatorname{are}$ 

$$\frac{dE}{dt} = \frac{dE}{dt} = -k_1[E][I] + k_{-1}[EI]$$
(1)

$$\frac{dEI}{dt} = -k_{-1}[EI] + k_1[E][I]$$
(2)

as in our case concentration of enzyme is equal to concentation of inhibitor ([E]=[I]) the equation can be simplified to:

$$\frac{dE}{dt} = \frac{dE}{dt} = -k_1[E]^2 + k_{-1}[EI]$$
(3)

$$\frac{dEI}{dt} = -k_{-1}[EI] + k_1[E]^2 \tag{4}$$

Moreover:

$$[E] + [EI] = [E]_0 + [EI]_0$$
(5)

and as  $[EI]_0 = 0$  therefore

$$[E] + [EI] = [E]_0$$
$$[EI] = [E]_0 - [E]$$
(6)

By substitution 6 to equation 3 we obtain:

$$\frac{dE}{dt} = -k_1[E]^2 + k_{-1}[E]_0 - k_{-1}[E]$$
(7)

By separation of variable we obtain:

$$\frac{dE}{-k_1[E]^2 + k_{-1}[E]_0 - k_{-1}[E]} = dt$$
(8)

Which is typical integral of  $\frac{1}{ax^2+bx+c}$  where a is  $-k_1$  b is  $-k_{-1}$  and c is  $k_{-1}[E]_0$  and with subtitution of  $u = [E] + \frac{k_{-1}}{2k_1}$  and du = dx and  $k = \frac{k_{-1}^2+4k_1k_{-1}[E]_0}{4k_1^2}$  we can write 8 integer in a simplified form:

$$\frac{1}{k_1} \int \frac{1}{u^2 - k} = t \tag{9}$$

As  $k_1$  and  $k_{-1}$  are positive values, after integration we obtain:

$$\frac{1}{-2k_1\sqrt{k}}\ln\frac{u-\sqrt{k}}{u+\sqrt{k}} + C = t \tag{10}$$

After returning with **u** to original values we get:

$$\frac{1}{-2k_1\sqrt{k}}\ln\frac{[E] + \frac{k_{-1}}{2k_1} - \sqrt{k}}{[E] + \frac{k_{-1}}{2k_1} + \sqrt{k}} + C = t \tag{11}$$

To determine C we know that at time t = 0,  $[E] = [E]_0$ , therefore C is:

$$\frac{1}{2k_1\sqrt{k}}\ln\frac{[E]_0 + \frac{k_{-1}}{2k_1} - \sqrt{k}}{[E]_0 + \frac{k_{-1}}{2k_1} + \sqrt{k}} = C$$
(12)

Therfore:

$$\frac{1}{-2k_1\sqrt{k}}\ln\frac{[E] + \frac{k_{-1}}{2k_1} - \sqrt{k}}{[E] + \frac{k_{-1}}{2k_1} + \sqrt{k}} + \frac{1}{2k_1\sqrt{k}}\ln\frac{[E]_0 + \frac{k_{-1}}{2k_1} - \sqrt{k}}{[E]_0 + \frac{k_{-1}}{2k_1} + \sqrt{k}} = t$$
(13)

after transformation we obtain:

$$\exp(-2k_1t\sqrt{k}) = \frac{([E] + \frac{k_{-1}}{2k_1} - \sqrt{k})([E]_0 + \frac{k_{-1}}{2k_1} + \sqrt{k})}{([E] + \frac{k_{-1}}{2k_1} + \sqrt{k})([E]_0 + \frac{k_{-1}}{2k_1} - \sqrt{k})} = \frac{W}{Z}$$
(14)

where W is

$$W = [E][E]_0 + [E]\frac{k-1}{2k_1} + [E]\sqrt{k} + \frac{k^2-1}{4k_1^2} + [E]_0\frac{k-1}{2k_1} - [E]_0\sqrt{k} - k$$
$$= [E][E]_0 + [E]\frac{k-1}{2k_1} + [E]\sqrt{k} - [E]_0\sqrt{k} - [E]_0\frac{k-1}{2k_1}$$
(15)

and  ${\cal Z}$  is

$$W = [E][E]_0 + [E]\frac{k-1}{2k_1} - [E]\sqrt{k} + \frac{k^2-1}{4k_1^2} + [E]_0\frac{k-1}{2k_1} + [E]_0\sqrt{k} - k$$
$$= [E][E]_0 + [E]\frac{k-1}{2k_1} - [E]\sqrt{k} + [E]_0\sqrt{k} - [E]_0\frac{k-1}{2k_1}$$
(16)

Therefore equation 14 can be writen as:

$$[E]([E]_{0} + \frac{k_{-1}}{2k_{1}} - \sqrt{k}) \exp(-2k_{1}t\sqrt{k}) + [E]_{0}(\sqrt{k} - \frac{k_{-1}}{2k_{1}}) \exp(-2k_{1}t\sqrt{k}) = [E]([E]_{0} + \frac{k_{-1}}{2k_{1}} + \sqrt{k}) - [E]_{0}(\sqrt{k} + \frac{k_{-1}}{2k_{1}})$$
(17)