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700115 Iaşi, Romania; elena.rezus@umfiasi.ro (E.R.); anca.cardoneanu@umfiasi.ro (A.C.)

2 Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy,
700115 Iaşi, Romania; ciprian.rezus@umfiasi.ro

3 Center for Rheumatic Diseases, “Carol Davila” University of Medicine and Pharmacy,
050474 Bucharest, Romania; catalin.codreanu@reumatologiedrstoia.ro

4 Department of Rheumatology and Physiotherapy,“George Emil Palade” University of Medicine, Pharmacy,
Science and Technology, 540139 Târgu Mureş, Romania; mirela.parvu@umfst.ro
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6 Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa”
University of Medicine and Pharmacy, 700454 Iaşi, Romania; bogdan.tamba@umfiasi.ro
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Abstract: Aging is an inevitable and gradually progressive process affecting all organs and systems.
The musculoskeletal system makes no exception, elderly exhibit an increased risk of sarcopenia
(low muscle mass),dynapenia (declining muscle strength), and subsequent disability. Whereas in
recent years the subject of skeletal muscle metabolic decline in the elderly has been gathering interest
amongst researchers, as well as medical professionals, there are many challenges yet to be solved in
order to counteract the effects of aging on muscle function efficiently. Noteworthy, it has been shown
that aging individuals exhibit a decline in skeletal muscle metabolism, a phenomenon which may
be linked to a number of predisposing (risk) factors such as telomere attrition, epigenetic changes,
mitochondrial dysfunction, sedentary behavior (leading to body composition alterations), age-related
low-grade systemic inflammation (inflammaging), hormonal imbalance, as well as a hypoproteic diet
(unable to counterbalance the repercussions of the age-related increase in skeletal muscle catabolism).
The present review aims to discuss the relationship between old age and muscle wasting in an effort to
highlight the modifications in skeletal muscle metabolism associated with aging and physical activity.

Keywords: aging; sarcopenia; muscle mitochondria; catabolism; anabolism; inflammation; adipokine;
myokine; sedentary lifestyle; exercise

1. Introduction

Aging is an inevitable process affecting all organs and systems [1]. The musculoskeletal system
makes no exception, the elderly exhibit an increased risk of degenerative joint disease, muscle loss
(sarcopenia), declining muscle strength (dynapenia), and subsequent disability [2]. Medicine has seen
notable progress in the last decades, leading to a dramatic increase in life expectancy, especially in
developed countries [3]. It has been stated that by the end of the 21st century, median ages will ascend
significantly [4]. Consequently, the economic burden of age-related disorders is increasing and may
imply a stringent need for more numerous specialized health care professionals in the upcoming
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years [5]. Global estimates anticipate that by 2050 a particularly large proportion of the general
population will be over 60 years of age, which makes the issue of improving the management of
aging-associated disorders of paramount importance [4,6].

Skeletal muscle assures locomotion as well as certain important aspects of metabolic homeostasis,
such as glucose uptake and fatty acid oxidation [7]. Among other issues, the subject of age-related
muscle impairment has been brought into focus by the growing number of elderly individuals requiring
medical assistance [4–6] and the important functional hindrance linked to musculoskeletal system
alterations in old age [8–12].

From debilitating comorbidities [13], inactivity and immobilization [14] to aging-associated
neurological and immune abnormalities, hormonal imbalance, oxidative stress, as well as poor nutrition,
a plethora of factors contribute to the development of sarcopenia in the elderly. Moreover, it has been
shown that aging triggers important changes at the level of skeletal muscle metabolism; therefore,
enticing the appearance of clinically relevant disruptions in the global metabolic homeostasis [15,16].

The present review aims to discuss the relationship between old age and muscle wasting in an effort
to highlight the changes in skeletal muscle metabolism associated with aging and physical activity.

2. Senescence and Human Skeletal Muscles

In recent years, the subject of cell senescence (derived from the Latin word senescere portraying
age-related decline or waning) has been studied intensely [16]. In the 1950s, one of the first theories
regarding cell senescence was proposed describing a central role for reactive oxygen species (ROS)
in the process of aging [17]. The presence of free radicals may induce telomere shortening (the latter
structures being sensitive to excessive ROS levels); thus, promoting the appearance of DNA alterations
and contributing to cellular aging. In vitro studies presented replicative senescence as the cultured cells’
failure to divide after 30–40 doublings (known as the Hayflick limit) while also exhibiting telomere
length attrition and the formation of age-related heterochromatin [16,18]. Moreover, it has been proven
that skin fibroblasts isolated from older individuals present with similar alterations of their genetic
material [19].

Skeletal muscle cells demonstrate longer telomeres compared to leukocytes. However, telomere
shortening has been shown to progress at similar rates in minimally proliferative tissues (such as
skeletal muscle cells and adipocytes) and proliferative cells (such as skin cells and leukocytes) [20].
Nevertheless, telomere length displays notable inter-individual discrepancies with a concomitant
"synchrony" across different somatic tissues (a strong correlation between tissues, different subjects
presenting either shorter or longer telomeres) in humans, non-human primates, non-primate mammals,
and birds [21–25].

It has been reported that the amassing of connective tissue in muscles together with lipid molecule
build-up (nonesterified-free fatty acids and triglycerides, as well as the respective metabolites) [26]
inside myocytes (skeletal muscle myosteatosis being considered a particular type of ectopic fat
depot) may largely contribute to the decline of muscle quality in old age, with marked metabolic
consequences [27–29].

Sarcopenia and dynapenia are highly prevalent in the elderly as well as in chronic conditions
(Figure 1) [30–32]. From the age of 30, muscle mass decreases by circa 40 percent during a period
of 30 years, followed by a more rapid decline in the next decades (up to 40 percent per decade after 60
years of age) [27]. Consequently, muscle mass constitutes just one-quarter of the total body mass
in persons in their late 70s [27]. Moreover, it has been stated that sarcopenia could be regarded
as a geriatric syndrome [33]. As sarcopenia is known to associate with both hypoplasia (the decline
of fiber number) as well as skeletal muscle atrophy (the reduction of fiber size), it demonstrates
notable differences from disuse-related changes in skeletal muscle mass which commonly only involve
a decrease in fiber size [34].
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Figure 1. Associated with age-related sarcopenia.

While not yet fully understood, the pathomechanisms underlying sarcopenia and dynapenia,
have become a legitimate subject of research in recent years [35]. Fabbri et al. showed that a higher total
fat mass accompanied by a simultaneous loss in lean body mass predicts a more rapid rate of decline in
muscle quality (the strength-to-mass ratio defined as the relationship between knee extension strength
and thigh muscle cross-sectional area) in persons over 50 years of age during a four-year follow-up
period [35]. Nevertheless, the authors did not obtain a significant relationship with weight or body
mass index (BMI) [35].

In the elderly, the dynamics of energy production and usage are disrupted [36,37].
This phenomenon yields more severe repercussions in older persons with multiple chronic disorders.
In this regard, elderly individuals with varied chronic diseases demonstrate a more increased resting
metabolic rate compared to their healthy counterparts while exhibiting lower available energy [36,38].
Ager-related loss of muscle mass is linked to the reprogramming of skeletal muscle metabolism [39].

Ranging from DNA methylation/demethylation to histone acetylation/deacetylation processes,
a wide variety of epigenetic alterations have been thought to modulate skeletal muscle metabolic activity
(Figure 2) [40]. In light of recent research, inhibitors of histone deacetylase (HDAC) superfamilies emerge
as potential anti-aging agents in both animal models as well as human subjects [41]. Certain repair
mechanisms such as BER (base-excision repair) are believed to maintain genome stability. It was
stated that physical exercise could improve BER enzyme activity at the level of skeletal muscles in
rodents [42]. However, the mechanisms underlying exercise/inactivity-related epigenetic responses on
the development of sarcopenia in elderly human subjects, as well as the potential consequences of
skeletal muscle "epi"-memory with respect to physical activity are still a matter of discussion [43,44].

Certain chronic conditions such as type II diabetes mellitus and neuromuscular diseases, as well
as age-related loss of muscle mass, have been shown to associate with epigenetic changes, consequently,
leading to modifications of skeletal muscle metabolic activity [40]. However, together with other factors
such as nutrient availability, exercise may regulate epigenetic response [45]. Moreover, as shown by
the bioinformatics meta-analysis performed by Brown, epigenetic responses post-exercise (particularly
DNA methylation/demethylation) may greatly depend on age [46].
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Figure 2. Epigenetic changes, enzymes involved, skeletal muscle expression, and metabolic
consequences. DNMT: DNA methyltransferase; TET: ten-eleven translocation; AID: activation-induced
cytidine deaminase; APOBEC: apolipoprotein B mRNA editing enzyme component 1; BER: base
excision repair; GNAT: Gcn5-related N-acetyltransferase; CBP: Creb-binding protein; HDAC: histone
deacetylase (after [40]).

Endurance exercise has been shown to decrease global DNA methylation in young sedentary
individuals. In mice [47] as well as human subjects, endurance exercise lead to modifications
of DNA methylation patterns, mainly involving genes related to skeletal muscle differentiation,
metabolism, and growth [48]. Drummond et al. found that resistance exercise (combined with amino
acid supplementation) was not followed by a skeletal muscle downregulation of miR-1 in aging
compared to young individuals [49]. Nevertheless, other studies reported discrepant results [50].

2.1. Structural Decline

Motor units within skeletal muscles may be stratified according to the type of myosin dimers
displayed by the fibers. Specifically, type I myosin demonstrates an abundance of mitochondria
and myoglobin, in this case, ATP deriving from oxidative metabolic processes. Type I myosin characterizes
low fatigable motor units in which it is capable of transducing energy over lengthier periods of time
at a relatively decreased pace [27]. Contrastingly, myosin type IIx contained within fast fatigable muscle
fibers mainly relies on glycogen lysis; therefore, assuring higher amounts of usable energy for shorter
time periods [27]. Motor units displaying type IIa myosin are considered intermediate on several
levels (velocity of energy transduction, the cross-sectional area size, fiber number). Noteworthy, these
fibershave been described, as fast, yet fatigue-resistant [27].

In elderly sarcopenic individuals, type II muscle fibers have been shown to be more prone to
atrophy compared to type I predominantly in postural muscles. However, studies report discrepant
results with regard to the proportion in which the cross-sectional area of fast fatigable (type II) or slow
fatigable fibers (type I) decreases with aging [34]. In this respect, the cross-sectional area size was
found to be lower by circa one-quarter to more than half in subjects over 80 years of age compared
to young controls. Though less dramatic, a significant decline of the type I fiber cross-sectional area
size in the elderly was reported by some studies, but not by others, the subject of slow fatigable fiber
atrophy in aging remains a matter of discussion [34].

Age-related dysregulations in motor units may translate into significant disability. Nevertheless,
an aging-related conversion of slow fatigable fibers into fast fibers, as well as an increment of hybrid
fibers, have been observed [27]. It has been stated that neurodegeneration gives rise at least partly to
these changes, denervated fibers being recruited by the remaining functional motor units, which have
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a tendency to gather similar fiber types while simultaneously altering fibers to suit the characteristics
of the motor unit [27].

Murgia et al. analyzed the impact of aging on skeletal muscle from a single-fiber proteomic
perspective (mass spectrometry-based proteomics) in eight physically active older versus younger
adults (widely spaced with respect to age) in an effort to eliminate the important confounding factors
that are inactivity and immobilization in the elderly [7]. Numerous glycolytic enzymes displayed
a significantly increased expression in older individuals, while an important reduction was observed in
fast fibers (type IIx glycolytic fibers) [7]. It has been reported previously that age-associated sarcopenia
notably impacts the fast type of skeletal muscle fibers in human subjects, but not the slow-twitch type
(type I oxidative fibers) [51].

Vigelsø et al. compared biopsies from the vastus lateralis of endurance-trained middle-aged men
to that of controls (untrained), finding higher contents of perilipin 5, endothelial lipase (which was
correlated with circulating high-density lipoprotein values, HDL), and mitochondrial complex III–V in
trained individuals [52].

The accumulation of certain bioactive lipids such as ceramide and diacylglycerols(DAGs)
at the level of skeletal muscles has been linkedto insulin sensitivity in experimental animals and human
subjects [53,54]. It has been stated that sarcolemma ceramide (particularly the C18:0 species), as well
as sphingolipids, may be inversely associated with insulin sensitivity [54]. Søgaard et al. examined
the effects of a six-week high-intensity interval training (HIIT) on DAG and ceramide expression
in muscle biopsies of both young and older subjects with excess weight [55]. Muscle ceramide
anddiacylglycerol levels were found to be higher in older compared to younger patients, while HIIT
diminished C18:0 and saturated ceramides. In addition, exercise prompted the elevation of certain
molecules involved in lipid and glucose metabolism (fatty acid-binding protein, adipose triglyceride
lipase, glycogen synthase, GLUT4, hexokinase II) [55].

2.2. The Aging Mitochondrion

The mitochondrion is a highly dynamic organelle that holds a pivotal role in energy production
as well as the release of ROS [56]. Moreover, mitochondria have been shown to coordinate important
phenomena such as cell death and signaling, thus playing a more complex part in the regulation of
global homeostasis than it was previously thought [57]. Skeletal muscle mitochondrial dysfunction is
highly prevalent in advanced age; the latter associating with a decrease in both mitochondrial volume
and number, as well as reduced biogenesis [56].

Advanced age is associated with remarkable bioenergetic and biochemical changes in skeletal
muscle mitochondria (Figure 3) [56]. In this respect, a decrement of enzymatic activity together
with notable changes involving oxidative stress and mitochondrial DNA mutations (accompanied by
the alteration of oxidative phosphorylation and subsequent mitochondrial dysfunction) have been
observed in aging individuals [58,59].

Sirtuin-3 (Sirt3, a member of the sirtuin family) is an NAD+–dependent protein deacetylase
exerting regulatory properties on mitochondrial activity. In murine models of diabetes, its expression
in skeletal muscle is reduced leading to anomalies in ROS production and insulin signaling [60].
Moreover, Sirt3 has been shown to be associated with aging [61–63].

Menshikova et al. investigated the discrepancies in mitochondrial size and content in the skeletal
muscles (vastus lateralis percutaneous biopsies) of overweight/obese older individuals undergoing
either physical training or calorie restriction [64]. In the exercise group, the authors found a significant
increase of muscle mitochondria size and mitochondria membrane content (cardiolipin). Additionally,
the activity of the electron transport chain (rotenone-sensitive NADH-oxidase) and the β-oxidation
pathway (β- hydroxyacyl CoA dehydrogenase activity) were also enhanced at 16 weeks of training
compared to baseline [64]. Calorie restriction only promoted tricarboxylic acid cycle activity
(citrate synthase) [64].
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Figure 3. Skeletal muscle mitochondria [56].

3. Body Composition and Physical Activity in Old Age

Seeing as there is a growing body of evidence supporting the association between advanced
age and body composition alterations, medical professionals are becoming increasingly aware of
the challenges posed by aging in the general population [65].

The European Working Group on Sarcopenia in Older People (EWGSOP) published a consensus
report advancing diagnosis criteria for sarcopenia. The aforementioned criteria propose the evaluation
of the decline in skeletal muscle mass together with strength and physical performance, thus arguing
against the separation of sarcopenia from dynapenia [66].

However, other authors defend the concept of a disproportionate decline between muscle mass
and strength in old age, with dynapenia possibly progressing more rapidly than the decrease in muscle
size [34]. In addition, dynapenia has been thought to describe the functional hindrance derived from
both muscle- and neural-related factors (the neuromuscular apparatus as a whole) [67,68]. Nevertheless,
EWGSOP presented the means for stratification of sarcopenic patients according to the severity of
the changes identified, defining presarcopenia as the decrease in muscle mass alone.Sarcopenia was
described as a decrease in muscle mass coexisting with either diminished muscle strength or low
physical performance. Furthermore, EWGSOP defined severe sarcopenia as the association between
the three parameters [66]. While the concomitance of skeletal muscle mass decline and muscle-related
functional impairment is regarded as clinically relevant by authors irrespective of their position towards
the temporal disassociation between the twoaforementioned aspects of the aging process, the concept
of dynapenia (analyzed by itself) remains a subject of controversy and discussion [30,66].

Part of the data resulting from the Health, Aging, and Body Composition Study (Health, ABC) [69]
included protein intake and the loss of lean mass (LM) and non-bone appendicular lean mass (aLM)
over a three-year follow-up period in a cohort of non-frail community-dwelling older adults (2066 men
and women between 70–79 years of age). The daily dietary protein intake was estimated using
a 108-item food frequency questionnaire (FFQ), while subjects’ body composition was evaluated by
dual X-Ray absorptiometry (DXA) [69]. The study determined that subjects in the lowest protein
quintile suffered a loss of lean body mass circa 40% greater (43% for LM and 39% aLM) than the highest
protein quintile over three years, thus emphasizing the role of nutrition in the preservation of muscle
mass in the elderly [69].

In older individuals, the balance between protein synthesis and breakdown may be hindered.
Increased muscle catabolism and the reduction of skeletal muscle mass both characterize old age
and frailty. It has been reported that frailty enhances the development of aging-related disruptions
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of protein metabolism [70]. The lack of dietary proteins is a potential factor involved in the decrease
of muscle protein synthesis in the elderly. Studies showed that aminoacid supplementation might
demonstrate a beneficial effect on muscle protein synthesis in old, as well as young subjects [71].
However, some authors argue that supplementation may not be sufficient in order to induce significant
changes in muscle catabolism [72].

Dietary protein intake has often been shown to be below the recommended daily allowance in both
men and women. In addition, research focusing on dietary intake for efficient stimulation of protein
synthesis concluded that the optimal daily consumption falls within 1.2 and 1.5 g/kg [72,73]. Currently,
it is believed that the recommended daily allowance (0.8 g/kg) is too low to assure the conservation of
muscle mass in aging subjects. In frail elderly women, higher dietary protein intake has been shown to
boost skeletal muscle metabolism [74].

3.1. Skeletal Muscle and White Adipose Tissue in Old Age: AComplex Relationship

Whereas middle age is characterized by weight gain in both men and women, elderly individuals
experience a decrease in body mass, which differs according to gender. In this regard, it has been found
that weight loss in old age occurs earlier in men compared to women [75]. In contrast, the amount of
visceral fat follows an ascending curve during aging, with abdominal circumference demonstrating
growing values in the elderly [36].

As of recent discoveries, white adipose tissue is no longer considered only a mean of storing excess
energy, its active and dynamic secretory activity being described by numerous studies [76,77]. In this
respect, research showed that the various protein and peptide molecules released by adipocytes play
an important role in regulating global homeostasis. Over 100 of these compounds called adipokines
(also referred to as adipocytokines) have been described so far [78]. Leptin, the first adipokine
described in the literature, plays a major role in coordinating food intake through its action on
the hypothalamus as an anorexigenic hormone [79]. Specific receptors for leptin have been identified in
the kidneys, lungs, adrenal glands, and skeletal muscles, suggesting its involvement in the modulation
of the aforementioned tissue/organ activity [80–82].

Obesity is frequent among older sedentary individuals and has been shown to associate
with both adipocyte hyperplasia and hypertrophy, thus triggering an imbalance between pro-
and anti-inflammatory adipokine release (Figure 4) [76,78,83,84].

In centenarians, enhanced leptin levels have been linked to increased longevity. Moreover, sarcopenic
individuals exhibit lower leptin titers [84]. Seeing as leptin receptors are abundant in skeletal muscles,
it has been stated that leptin may regulate metabolic activity at this level [85,86]. Nonetheless, while
classically considered a mainly pro-inflammatory adipokine, leptin may also be released by skeletal
muscles, thus becoming an adipomyokine. When comparing skeletal muscle to adipose tissue, the latter
releases only a somewhat larger amount of leptin (per unit mass) [87].

Several pathological conditions are associated with sedentary behavior, sarcopenia, and increased
fat mass. Leptin levels have been shown to be increased in patients with spinal cord injuries [85].
Yet sarcopenic older subject demonstrates lower leptin concentrations [84]. In vitro studies provided
evidence regarding the impact of leptin concentrations on muscle metabolism. In cultured differentiated
cultured muscle cells (C1C12 myotubes), higher leptin concentrations promptly promoted the expression
of myokine and energy metabolism genes; therefore, influencing nutrient partition as well as oxidative
processes [88]. In this respect, Nozhenko et al. found that peroxisome proliferator-activated receptor
γ coactivator-1α (PGC-1α), uncoupling protein 3 (UCP3), muscle carnitine palmitoyltransferase 1
(mCPT1), insulin receptor (InsR), interleukin-6 (IL-6), IL-15, and leptin receptor (OB-Rb) [88].

The amount of intermuscular fat located in the lower extremities may impact skeletal muscle
quality and performance in certain populations such as older subjects. Moreover, it has been
reported that intermuscular adipocytes secrete inflammatory mediators, thus creating an inflammatory
microenvironment that is partly responsible for the appearance of alterations in the local blood
supply [35]. In this context, skeletal muscle fibers suffer several metabolic changes, such as increased
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lipolysis followed by the accumulation of glucose within the tissue. Nevertheless, the latter phenomenon
contributes to the development of insulin resistance. The link between the secretory activity of
intermuscular white adipose tissue and insulin resistance has long been investigated, the currently
available scientific data suggesting that obesity is not the sole culprit in the appearance of metabolic
anomalies in old age. In addition to intermuscular adipose tissue, collagen deposition may also
negatively impact muscle quality [35].

Figure 4. Size-dependent imbalance between pro-inflammatory adipokines (such as leptin, visfatin,
adipsin, resistin, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor α (TNFα)) and anti-inflammatory
adipokines (adiponectin, omentin, visceral adipose tissue-derived serine protease inhibitor (vaspin),
secreted frizzled-related protein 5 (SFRP5), and IL-10) [79,80,85].

By promoting the accumulation of inflammatory cells within skeletal muscles and the simultaneous
boosting of pro-inflammatory responses at the level of intermuscular fat, obesity ultimately leads
to muscle inflammation. These phenomena incite the appearance of notable anomalies in myocyte
metabolism [89]. Moreover, myocyte differentiation and satellite cell (also known as muscle stem cells)
activity may be impaired by muscle fat depots. Together with aging, obesity has been shown to sustain
a chronic pro-inflammatory state while also hinders muscle regeneration. Furthermore, this condition
is frequently accompanied by sarcopenia in elderly individuals (sarcopenic obesity) [89].

3.2. Exercise Versus Inactivity

Apart from its role in assuring the erect posture in humans as well as locomotion, skeletal muscle
tissue has long been proven to regulate global glucose metabolism [90,91]. Research indicates that
skeletal muscle metabolic phenotypes may be partly inherited. In murine studies, mitochondrial
dysfunction, impaired insulin signaling, and reduced glucose transporter 4 (GLUT4) expression
in skeletal muscles have been observed in the offsprings born to obese mothers [92,93]. However,
numerous other factors drive significant changes in skeletal muscle metabolism [40]. In this respect,
physical exercise ameliorates skeletal muscle function by improving metabolic processes [94].

Relative to rest periods, the fractional production rate of myofibrillar proteins may be raised
by exercise in sedentary older men, with better results at 24- and 48-h post-exercise in patients
undergoing resistance training compared to HIIT [95]. Nevertheless, in the study performed by
Bell et al. HIIT constituted the single exercise regimen, which resulted in the bolstering of sarcoplasmic
protein fractional synthetic rate one-day post-exercise [95].
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In recent studies, skeletal muscle emerges as an important secretory organ with a plethora of
roles in the control of global homeostasis. Myokines are thought to be mainly secreted by muscles but
may also be released by hepatic, pancreatic, and adipose tissues [91]. These peptides trigger complex
metabolic changes through endocrine, paracrine, as well as autocrine signaling [91].

Apelin is an adipomyokine whose release may be upregulated by endurance training in individuals
with excess weight [96]. It has been stated that apelinomimetic agents (or an agonist of the APJ receptor
which is a G protein-bound receptor expressed in numerous tissues) could be used to improve aging-related
skeletal muscle dysfunction [97]. In murine models of insulin resistance, apelin treatment exerted
an important influence on the activity of skeletal muscle mitochondria. In this regard, apelin promoted
biogenesis, glucose transport, complete fatty acid oxidation, and oxidative capacity [97].

Huh et al. found higher irisin values in younger versus older research subjects, studies reporting
an inverse relationship between age and circulating irisin titers [98]. Irisin is a recently described myokine [99]
that has been proposed as an “exercise hormone” (initially thought of as an exercise-inducible signaling
molecule) resulting from the proteolytic cleavage of membrane fibronectin type III domain-containing
protein 5 (FNDC5) [100]. It has been stated that white adipose cells may go through a “browning” process
under the influence of irisin, the result being the appearance of beige/brite adipocytes with particular
metabolic characteristics [99,101,102].However, the numerous discrepancies in published data regarding
both the detection methods as well as the potential relevance of irisinin humans lead to significant
controversy [103]. One of the main concerns raised by authors involved the precision of the Enzyme-Linked
Immunosorbent Assay (ELISA) kits used to estimate irisin levels [103,104]. Four commercially available
polyclonal antibody kits for irisin demonstrated marked cross-reactivity with non-specific proteins when
analyzed by Western blotting. Albrecht et al. found this to be true in both human sera as well as animal
samples [104].

In vitro research indicated that primary human skeletal muscle cells (HMSCs) treated with
irisin suffer alterations in the expression of metabolic genes. In this respect, the upregulation
of such genes involved in glucose metabolism as hexokinase 2 (HK2) and glucose transporter 4
(GLUT4) was observed as early as si hours post-treatment by Huh et al. [105]. The upregulation
of genes involved in glycogen (glycogen synthase—GYS1) and lipid metabolism (carnitinpalmitoyl
transferase—CPT1b) were determined one-day post-treatment. Additionally, phosphoenolpyruvate
carboxykinase (PEPCK), pyruvate dehydrogenase 4 (PDK4), and glycogen phosphorylase (PYGM)
were found to be downregulated six hours after treatment with irisin [105]. In C2C12 myotubes treated
with irisin, the latter exerted a positive effect on PGC-1α, which subsequently lead to an enhancement
in mitochondrial content as well as consumption of oxygen [106].

Chang et al. found a link between muscle dysfunction and irisin titers in the elderly, considering it
to be a potential biomarker for sarcopenia. However, the authors used ELISA kits to determine
circulating levels of the myokine [107]. Nevertheless, the relationship between muscle mass or function
and irisin levels in human serum, and specifically older individuals remains a matter of debate seeing
as most of the currently available detection methods lack sensitivity [104].

It has been stated that the adipokine resistin blunts human myogenesis through the activation of
the NFκB pathway (a negative regulator of myogenesis), especially in obese older individuals [108].
O’Leary et al. analyzed the impact of lean and overweight subcutaneous fat conditioned media
secretome on cultured muscle cells from 18–30-year-old and >65-year-old individuals. In cultured
myotubes, resistin bolstered intramyocellular lipid accumulation. In addition, the adipokine influenced
myotube metabolic activity by increasing both basal and maximal respiration as well as ATP production,
and by boosting fatty acid oxidation [108]. Yoshiko et al. examined the relationship between the values
of TNFα, adiponectin and leptin, andthe echo intensity (chosen as an indicator of muscle strength
andfunction) of muscles in the upper arm, thigh, and lower back (triceps brachii, biceps femoris,
rectus femoris, and multifidus) in elderly men and women [109]. The average echo intensity of
the upper and lower limb muscles was negatively correlated with both circulating leptins, as well
as adiponectin values [109]. Prestes et al. investigated the muscle strength responsiveness (relative
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muscle strength gain in 45◦ leg press) of olderwomen who underwent afour-month resistance training
program [110]. The subjects classified as low responders demonstrated higher circulating leptin levels
at baseline compared to high responders. However, a reduction of leptin and resistin plasma values
was observed throughout the study in both high as well as low responders [110].

4. Age-Related Hormonal Changes and Physical Activity

The aging process is accompanied by variations in hormonal release (endocrine aging, Figure 5),
elderly persons exhibiting lower levels of dehydroepiandrosterone (DHEA), estrogens, testosterone,
growth hormone (GH), as well a dysfunctional hypothalamic-pituitary-adrenal axis which may all
lead to decreased lean mass and disruptions in muscle strength and metabolism [111–113]. However,
there is a certain amount of controversy surrounding the potential benefits of hormone replacement
therapy on skeletal muscle activity in these cases [113]. Exercise has been shown to influence hormone
release in elderly individuals [114]. However, the clinical relevance of these changes (specifically at
the level of skeletal muscle metabolism) is yet to be fully elucidated [115,116].

Testosterone is an anabolic hormone with a pivotal role in the regulation of protein synthesis as well
as regeneration at the level of skeletal muscles. In healthy men, testosterone levels suffer a 1% reduction
per year, beginning from the fourth decade of life [113,114]. Nevertheless, while low testosterone
levels have been associated with the risk of falls, low muscle mass and physical performance in older
men, studies regarding the benefits of testosterone replacement therapy report conflicting results
and notable adverse events [117,118]. Other options, such as selective androgen receptor modulators
(SARMs), showed promising results with respect to the increase of skeletal muscle mass as well
as the modulation of muscle metabolism (emerging as promoters of muscle anabolism) [119–122].
Physical training has been shown to enhance testosterone levels in older men. Hayes et al. measured
total and free testosterone, cortisol, and sex hormone binding globulin titers in the sera of sedentary
older men before and after HIIT (preceded by a conditioning phase) [115]. Cortisol levels remained
fairly constant throughout the study. The total testosterone levels were significantly improved during
both the conditioning stage, as well as post-HIIT, while free testosterone demonstrated a modest but
statistically significant increase only after the latter [115]. Contrary to age-matched lifelong physically
active individuals, sedentary older men have been shown to exhibit a notable increment of total
testosterone values (but not free testosterone) and cardiorespiratory fitness following a six-week
conditioning training program [123].

Nonetheless, the dynamics of testosterone release post-exercise in relation with skeletal muscle
metabolism and performance remains a matter of discussion. In young male endurance athletes who
underwent an 18-week intensive training program (running, circa five sessions per week), testosterone
levels displayed an acute decrease (with a subgroup fulfilling androgen deficiency criteria). In contrast,
preliminary findings revealed that the subjects’ physical performance was enhanced [124].

Murine studies showed that estrogen could upregulate glucose uptake by promoting
the phosphorylation of certain proteins involved in the insulin signaling pathway, which, in turn,
may bolster the translocation of glucose transporter 4 (GLUT4) to the muscle cell membrane [125–127].
In postmenopausal women, estrogen levels decrease dramatically, contributing to the decline of both
muscle mass and physical performance [128]. Recent research suggests that circulating estrogen,
growth hormone (GH) and dehydroepiandrosterone (DHEA) levels together with physical fitness
(balance, muscle strength, and flexibility) could be raised byregular exercise in aging women. However,
studies are often conducted on small sample sizes observed over short periods [129,130].

Marked disruption of the hypothalamic-pituitary-adrenal axis has been described in aging
and certain chronic diseases [131,132], increased glucocorticoid levels leading to the impairment of
protein synthesis and a concomitant acceleration of proteolysis at the level of skeletal muscles [133].
A number of other hormones such as insulin growth factor-1 (IGF-1), GH, and oxytocin have also been
shown to impact skeletal muscle mass, function, and regeneration capacity in aging individuals [113].
Both IGF-1 and GH exert notable anabolic effects on protein metabolism [134]. Moreover, the two
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hormones impact skeletal muscle hypertrophy and differentiation [114]. It has been suggested that
the age-related decline in IGF-1 and GH levels could play a role in the development of sarcopenia,
while chronic physical exercise may boost GH-IGF-1 axis activity [114,129].

Figure 5. Hormonal changes and their impact on skeletal muscles.

Ghrelin is an important modulator of appetite and metabolism, and aging has been associated
with decreased circulating levels of the hormone [135]. Displaying potent orexigenic effects, ghrelin has
also been described as a GH secretagogue hormone (endogenous ligand for the growth hormone
secretagogue receptor). The 28-amino acid peptide is mainly released at the level of the stomach,
but also the central nervous system, adipose tissue, and muscles [136]. Ghrelin impacts skeletal muscle
metabolism, exhibiting notable anabolic effects in both humans and rodents. Research suggests that
ghrelin has beneficial effects on skeletal muscle by improving function and preventing aging- or
disease-associated waning/atrophy [137]. In murine models of chronic kidney disease (a condition
which is frequently found in the elderly), the administration of unacylated ghrelin demonstrated
beneficial effects on muscle catabolism [138].
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Some authors found that ghrelin deletion in young experimental animal models did not lead to
significant modifications in body composition. Following ghrelin deletion, mouse models of age-related
skeletal muscle changes demonstrated a rise in the number of oxidative and fatigue-resistant type IIa
muscle fibers [139]. In addition, Guillory et al. identified a relationship between ghrelin signaling
and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) decline [139].
In murine models of chronic heart failure, the administration of ghrelin restored the oxidative capacity
of skeletal muscle mitochondria and influenced mitochondrial biogenesis [140]. In the RESOLVE
study, overweight research subjects were randomly assigned to three different physical training
regimens: low-resistance–low-aerobic, low-resistance–high-aerobic and high-resistance–low-aerobic
exercise [141]. Compared to baseline values, ghrelin levels were increased after three weeks and three
months, respectively. The titers identified after 6 and 12 months of exercise were found to be similar
to baseline values [141]. Currently, the relationship between exercise, ghrelin values, and muscle
function/metabolism is yet to be fully characterized, especially in older human subjects [142].

Old age is known to be associated with a decrement in insulin sensitivity; the hormone exhibiting
important anabolic effects on skeletal muscles [143]. Adiponectin has been shown to be an amplifier
of insulin signaling. The adaptor protein APPL2 (leucine zipper motif isoform 2) is able to interfere
with the AdipoR (adiponectin receptors 1 and 2)-APPL1 interaction involved in the adiponectin
pathway [144]. Studies on murine models revealed that exercise might have beneficial effects on insulin
sensitivity by diminishing the content of APPL2 in the skeletal muscles of older Fischer 344 rats [145].
Furthermore, research indicates that regular exercise may reduce the impact of aging-related insulin
sensitivity in humans [146].

Bucci et al. investigated the impact of a four-month physical training program on skeletal muscle
insulin sensitivity in a group of elderly women [147]. The elderly patients who were the offspring
of overweight or obese mothers (OOM) demonstrated lower insulin sensitivity at the level of thigh
muscles compared to the rest of the group. However, whole-body insulin sensitivity was similar to that
of older women born of lean/eutrophic mothers (OLM) [147]. Resistance training improved muscle
mass in both OOM and OLM, but whole-body as well as insulin sensitivity enhancement were only
seen in the OOM subgroup [147]. In addition, the amelioration of insulin sensitivity post-training was
more pronounced in subjects with shorter leukocyte telomere length [147]. Both exercises, as well
as calorie restriction-induced weight loss, improve insulin sensitivityin older persons with excess
weight. Menshikova et al. found similar improvements in insulin-stimulated glucose disposal rates
at 16 weeks of either exercise or diet-induced weight loss [64]. Ha & Son also found a significant
improvement in insulin sensitivity in elderly women after a 12-week aerobic and anaerobic exercise
(combined) intervention [129].

Whereas aging-associated hormone imbalance and its impact on skeletal muscles continue to
attract interest from researchers, extensive analysis is needed to fully decode the intricate mechanisms
underlying these processes, as well as to elucidate the potential impact of physical exercise [148].

5. Inflammaging and Physical Activity

According to recent studies, aging is associated with a low-grade yet persistent accrual of such
inflammatory biomarkers as IL-6, tumor necrosis factor α (TNF-α), and C-reactive protein (CRP),
depicting a phenomenon widely known as inflammaging [149–152]. Inflammatory activation in older
individuals has been shown to be explained by a wide variety of factors. Noteworthy, the low-grade
systemic inflammation associated with advanced age does not derive from the engagement of a single
signaling axis, but rather employs more complex mechanisms which may be analyzed through clusters
of biomarkers. In elderly individuals, Morrisette-Thomas et al. found that TNF-α, IL-1 RA, IL-6,
IL-18, high sensitivity CRP (hsCRP), as well as soluble TNF receptors I and II correlated (as a group)
with mortality and chronic conditions [153]. "Garb"-aging is a term referring to the accumulation of
cell/organelle-derived debris (cellular "garbage" such as formyl peptides, cardiolipin, or mitochondrial
DNA) in parallel with a decreased activity of elderly individuals’ disposal mechanisms [154]. It is
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believed that these processes are linked to mitochondrial dysfunction and systemic inflammation in
old age [154].

Systemic inflammation plays a significant role in the body composition decline of the elderly [155,156].
The metabolic disturbance associated with inflammation implies an increase in energy consumption
and intense proteolysis (catabolism of skeletal muscle tissue), and may be accompanied by the extrusion
of fluids into the extracellular compartment as well as by an increment of acute phase protein
synthesis [157].Research showed that such pro-inflammatory cytokines as TNF-α and IL-6 display
anti-myogenic properties and may contribute to the development and progression of muscle atrophy [158].

“Adaptive aging” refers to the achievement of a balance between pro- and anti-inflammatory
mediators in older persons [159]. It has been stated that aging-associated low-grade systemic inflammation
could be improved by diet, gut microbiota and physical exercise (particularly resistance training) [160–162].
Niklas et al. [163] and Tartibian et al. [164] found a significant decline of IL-6 values after exercise
interventions in aging persons (walking one hour and a half per week for over 50 weeks/treadmill
for 24 weeks). However, only Tartibian et al. identified lower levels of TNF-α [164]. Martins et al.
described lower CRP titers after a 16-week aerobic exercise intervention [165]. Whereas the exact molecular
pathways through which physical activity inflammaging-related changes in muscle metabolism, exercise
has been associated with "healthy aging" [166]. Currently, there is a penury of data in this field
which demands further exensive investigation [166].

6. Conclusions

The aging process is associated with notable changes in muscle mass, structure, and function.
Importantly, aging individuals exhibit a decline in skeletal muscle metabolism, a phenomenon which may
be linked to a plethora of predisposing (risk) factors such as telomere attrition, mitochondrial dysfunction,
physical inactivity, hormonal changes, age-related low-grade systemic inflammation (inflammaging),
as well as a hypoproteic diet (unable to counterbalance the repercussions of the age-related increase in
skeletal muscle catabolism). Whereas in recent years, the subject of skeletal muscle metabolic decline in
the elderly has been gathering interest amongst researchers as well as medical professionals, there are
many challenges yet to be solved in order to efficiently counteract the effects of aging on muscle function.
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