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Abstract: Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) has 
revolutionized the complex scientific field of disease modelling and personalized therapy. Cardiac 
differentiation of human iPSCs into cardiomyocytes (hiPSC-CMs) has been used in a wide range of 
healthy and disease models by deriving CMs from different somatic cells. Unfortunately, hiPSC-
CMs have to be improved because existing protocols are not completely able to obtain mature CMs 
recapitulating physiological properties of human adult cardiac cells. Therefore, improvements and 
advances able to standardize differentiation conditions are needed. Lately, evidences of an 
epigenetic memory retained by the somatic cells used for deriving hiPSC-CMs has led to evaluation 
of different somatic sources in order to obtain more mature hiPSC-derived CMs.  
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1. Introduction 

Human induced pluripotent stem cells (hiPSCs) have assumed a pivotal role in research since 
their discovery in 2007 [1]. The possibility to differentiate them into functional cardiomyocytes 
(hiPSC-CMs) awakened excitement for the potential use of those cells in repairing and regenerating 
damaged cardiac tissue [2,3]; however, even though hiPSC-CMs represent an autologous source that 
overcomes the immunological limitations and ethical concerns belonging to embryonic stem cells 
(ESCs), the risk of tumor formation and uncontrolled differentiation have restricted this kind of 
approach. The possibility to characterize specific phenotypes associated with patient-specific 
genotypes allows the use of hiPSC-derived cells for disease modelling and drug development with 
very promising results [4–6]. 

Several works in the past have reported that hiPSCs are similar to ESCs, but it was recently 
demonstrated that, because of their somatic origin, epigenetic memory can influence their 
differentiation and maturation processes [7]. Furthermore, quite a few studies have demonstrated 
that hiPSC-CMs are molecularly and functionally immature and resemble embryonic and neonatal 
CMs [8–11]. Differences in structural morphology, gene and protein expression, as well as calcium 
handling and ionic patterns, have been described using a time-course of hiPSC-CMs maturation in-
vitro; electrical properties and physiology of derived CMs can dramatically change in a time-
dependent way, thus leading to the crucial need to optimize time and culture conditions during 
differentiation [12]. 

The focus of this review is to raise the issue of the different limitations and strengths affecting 
hiPSC-CMs derived from different somatic sources by the same patient, with particular attention to 
the role of cell origin and the advantages of CMs derived from a cardiac source. 



Int. J. Mol. Sci. 2020, 21, 507 2 of 18 

 

2. Reprogramming 

The discovery by Takahashi and Yamanaka in 2006 demonstrated that a defined set of factors is 
able to directly reprogram a somatic cell to an ESC-like state [13]. Out of 24 candidate ESC-associated 
genes, just four (i.e., Oct4, Sox2, Klf4, and c-Myc) have been determined sufficient to convert 
fibroblasts to a pluripotent cell type, iPSCs. These four “Yamanaka factors” were first constitutively 
expressed using retroviral vectors in both mouse [13] and human [1] fibroblasts, inducing these 
terminally differentiated cells to express genes that are typical of ESCs. 

The original iPSCs reprogramming strategy is still being used and remains mostly unaltered, but 
some advances have been made in the delivery of the four “Yamanaka factors” to improve efficiency. 
iPSCs have been successfully generated using both integrating and non-integrating methods, but the latter 
seems to have advantages regarding safety due to a reduced risk of genotoxicity and insertional 
mutagenesis [14]. Integrating methods include retroviral [13] and lentiviral delivery [15], while non-
integrating methods include Sendai viruses [16,17], episomal plasmid transfer [18,19], co-MIP [20], 
piggyBac transposons [21], small molecules [22], miRNAs [23], and protein-mediated delivery [24]. 

Many cell types have been successfully reprogrammed to pluripotency, including mononuclear 
cells from blood [25], umbilical cord and placenta [26], urine-derived cells [27], hair keratinocytes [28] 
and cardiac progenitor cells [29]. 

The process to attain pluripotency has been described as consisting of three steps (Figure 1) 
[30,31]. The first one, called initiation, is characterized by the downregulation of signature somatic 
genes, a metabolic switch from oxidative phosphorylation to glycolysis, an increase in cell 
proliferation and reactivation of telomerase activity. This stage also requires changes in cell 
morphology, in particular a mesenchymal-to-epithelial transition (MET), which involves the 
acquisition of epithelial characteristics as cell polarity and expression of E-cadherin. These 
morphological changes are important since it is known that the cell shape itself is involved in 
epigenetic modifications regulating reprogramming [32]. 

The second phase of reprogramming, called maturation, involves the upregulation of 
endogenous pluripotency genes. These genes include the alkaline phosphatase, SSEA1, Fbxo15, Sall4, 
Oct4, Nanog,Tra-1-60, Esrrb, and finally Sox2 [33]. The maturation step of reprogramming is likely the 
cause of the low efficiency of the reprogramming process and, indeed, a great number of cells in this 
phase undergo apoptosis or reversion [34]. 

Only 1% of the cells that initiate reprogramming make it to the third and final step, called 
stabilization; these are the cells that manage to repress transgene expression and activate endogenous 
pluripotency genes, becoming “stabilization-competent” [35]. Other changes occurring during the 
stabilization phase involve, for example, rearrangements in DNA methylation [33]. 

The core pluripotency gene cocktail is constituted by Oct4, Sox2 and Nanog. These transcription 
factors form a circuitry for pluripotency which is autoregulatory, since all of them are able to regulate 
the expression of each other. Oct4, Sox2, and Nanog have the ability to activate genes necessary to 
maintain ESC-like pluripotency and to repress lineage-specific transcription factors, preventing the 
exit from the pluripotent state [36,37]. Other factors present in reprogramming cocktails, such as c-
Myc or Glis1, are used to facilitate activation of this autoregulatory circuitry by stimulating gene 
expression and proliferation in general [38,39]. 

The original reprogramming strategy has been widely used, leading improvements in the cell 
reprogramming process. However, the translation of iPSC to a clinical setting is challenged by many 
obstacles, such as frequent incomplete reprogramming of the cells. Indeed, there are differences in 
the transcriptomes of iPSCs and ESCs and this may result from iPSCs either not activating 
pluripotency genes in the same way ESCs do, or not completely silencing somatic genes [40]. 
Moreover, de novo mutations may occur during the reprogramming process and the culture of 
generated iPSCs [41]. The lack of a rapid and precise test to evaluate the level of reprogramming in 
iPSCs aggravates this challenge. 

To overcome these issues, an alternative approach that bypasses the pluripotent stage has been 
developed. This strategy, called transdifferentiation or direct reprogramming, allows for the 
reprogramming of one somatic cell type directly into another by delivery of single or multiple specific 
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transcription factors of the desired lineage. Different studies have shown that, with this technique, 
fibroblasts can be directly converted to several other cell types including neurons [42], 
cardiomyocytes [43], endothelial cells [44], hepatocytes [45] and chondrocytes [46]. However, in these 
works transdifferentiation did not always translate to human cells as effectively as it does in murine 
cells [47]. Recently, it has been reported that fibroblasts from human donors can be efficiently 
converted to myoblasts by the overexpression of MYOD1 and MYCL [48,49]; the myotubes from this 
study seem a promising cell source for cell therapy when tested in-vitro, but have yet to be studied 
in-vivo. 

 
Figure 1. Schematic overview of the sequential events occurring during somatic cell reprogramming 
into human iPSCs. The process consists of three steps, Initiation, Maturation, and Stabilization. The 
main events occurring during each step are indicated. 

3. Cardiac Differentiation 

Cardiovascular diseases (CVDs) are the greatest cause of mortality among non-communicable and 
communicable diseases [50]. As such, modelling CVDs in vitro is of great importance to better 
understand these diseases and to develop new drugs and alternative therapies. 

Human CMs can be isolated from patient-derived heart tissue specimens, but the possibility to 
have access to human cardiac biopsies is rare. Moreover, current protocols to obtain adult primary 
CMs are still technically challenging making it difficult to obtain large quantities of viable cells. 
Additionally, after 24–48 h of being kept in culture, in the absence of mechanical and electrical stimuli 
and of supporting cells (i.e., cardiac fibroblasts), CMs undergo de-differentiation, lose their 
sarcomeric structure and die [51,52]. 

The possibility to derive hiPSC-CMs, starting from minimally invasive bioptic samples such as 
skin tissue, enables the creation of an in-vitro disease- and patient-specific model suitable for 
preclinical drug screening [53,54], thus replacing non-human cellular and animal models. Indeed, 
there are several challenges with these models, including their poor predictive capacity owing to 
inter-species differences in cardiac electrophysiology and human biology [55]. In addition, cell lines 
such as CHO and HEK293 cells are not ideal models for cardiotoxicity because ectopic expression of 
a cardiac ion channels does not always recapitulate the physiology of human CMs [56,57]. 

The initial observation that stem cells could mature into beating CMs was reported when ESCs 
were first cultured in suspension. These cells spontaneously formed three-dimensional aggregates 
and inside these “embryoid bodies” (EBs) cells with functional and electrical properties of CMs could 
be found [58]. A similar process occurring with iPSCs was later reported [59]. Even if it is rather 
inefficient (~1% purity of CMs) and highly cell line-dependent, the EB method is currently being 
applied because of its simplicity. 

Another method for cardiac differentiation was inspired by embryological cardiovascular 
development, where the anterior endoderm has a central role in the induction of cardiac mesoderm 
[60–62]. This method is based on the coculture of iPSCs with END-2 cells, an endoderm-like cell line 
from mouse carcinoma cells, which may result in the formation of beating clusters [61,63–70]. The 
preparations resulting from this protocol have a 20–25% purity of CMs. 
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Different signaling pathways and growth factors have been found involved in successfully 
inducing cardiac mesoderm in culture [71–73]. Combinations of BMP4, Wnt3a, and Activin A induce 
gastrulation-like events in iPSCs cultured in a high-density monolayer with a serum- and feeder cell-
free system [74]. Spontaneously contracting areas are generally observed after 10 days from induction 
with BMP/Activin A and, after three weeks, these cell preparations typically consist of ~30% CMs 
[75]. A similar protocol uses factors that activate the canonical Wnt/β-catenin signaling pathway 
instead of BMP/Activin A to induce cardiac mesoderm [76–78]; this methodology has been described 
to produce up to 50% CMs [79]. Since all these growth factors don’t elicit optimal transcript levels to 
induce cardiogenesis if used outside the right time frames [80], time-dependent media 
supplementation is crucial to obtain an efficient lineage-specific differentiation. Commercial kits 
provide standardized and simplified protocols to increase the reproducibility of the differentiation 
process [54,81]. 

4. Functional Properties of hiPSC-CMs: Overview and Limitations 

The spontaneous beating that appears at the beginning of the differentiation process is generally 
accepted as sign for the expression, within newly developing hiPSC-CMs, of functional cardiac ion 
channels and transporters related to generation of action potential (AP) and contractility. 
Unfortunately, hiPSC-CMs generated with current protocols are still quite immature and existing 
differentiation techniques appear to work efficiently only with specific cell lines [82–84]. 

The characterization of electrophysiological properties of differentiating, beating CMs is key to 
define the level of electrical and mechanical cell maturation. Several ionic currents have been 
characterized in single hiPSC-CMs by using the patch-clamp technique, such as the sodium (INa), the 
calcium (ICa,L and ICa,T) and the potassium ones (Ito, IKr and IKs) [85–90]. In particular, sodium and 
calcium inward components contribute to the depolarizing phases of the electrical activity; while the 
former is responsible of the fast depolarizing process, the latter has a functional role during the slower 
depolarization of spontaneous automatic cells together with If pacemaker current, or during the 
plateau in stimulated AP, critical phase for the cell contraction. Otherwise, repolarizing process is 
due to the outward potassium current contribution of the AP. The balance between inward and 
outward currents determine the AP duration (APD) and then the refractoriness period, that are 
crucial in developing arrhythmic events. 

The biophysical properties that characterize voltage dependence and activation/inactivation 
kinetics of each of these ion channels have been studied in relation to time of culture. Furthermore, 
their current density was found to increase from day 30 to 80 of the differentiation process. 
Consequently, temporal changes of these properties determine different ionic contribution to the 
cardiac AP (INa, ICaL, IK1), leading to heterogeneous AP profiles and parameters (diastolic membrane 
potential, Ediast; AP amplitude, APA; AP duration, APD) [91–93]. 

Based on the AP properties, CMs deriving from a single clone of differentiating iPSCs, frequently 
results in a mix of cells that can be classified as atrial-, ventricular- and nodal-like CMs [53,59,86]. 
However, this kind of classification is biased by being operator-dependent and may result in 
misleading interpretation when comparing CMs with prolonged APD (e.g., hiPSC-CMs from Long 
QT Syndrome patients) to healthy ones. In this context, tools can be used to identify and/or isolate 
atrial- or ventricular-like hiPSC-CMs. Recently, Schwach et al. have described a specific marker which 
is highly enriched in human atrial CMs, but not in ventricular ones, the so called chick ovalbumin 
upstream promoter transcription factors I and II (COUP-TFI and II) that regulates atrial-specific ion 
channels gene expression such as KCNA5 encoding Kv 1.5 (IKur current) and KCNJ3 encoding Kir 3.1 
(IKACh current) [94–96]. By fusing this promoter with fluorescent reporter genes (mCherry) and 
combining it with the well-established human cardiac NKX2.5EGFP/+ reporter, they were able to sort 
a pure atrial cell population [97]. 

In Figure 2 the typical features of adult human CM APs are compared to the ones of hiPSC-CMs. 
In general, nodal-like hiPSC-CMs and sinoatrial CMs APs are comparable, showing spontaneous 
electrical activity thanks to the contribution of the funny (If) and calcium (ICaL) currents and the 
absence of the inward-rectifier potassium channels (IK1) that usually maintains negative Ediast. Major 
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differences between adult and hiPSC-CM AP shapes are present when atrial and ventricular APs are 
analyzed. Indeed, hiPSC-CMs show more depolarized Ediast and they often still have a spontaneous 
electrical activity, because If is still functional and the IK1 expression is not enough to maintain an 
hyperpolarized Ediast [98]. As a consequence of the depolarized Ediast, AP upstroke velocity and APD 
in hiPSC-CMs are not superimposable to those of adult CMs. 

To overcome the lack of IK1 expression, the overexpression of Kir 2.1, IK1 encoding gene, [99] or 
an “electronic” maturation by injection of computational IK1 in a real time mode (dynamic clamp 
technique) have been designed [100,101]. In both cases, Ediast of derived-CMs hyperpolarizes and the 
activation of all expressed ion channels allows to develop an AP profile more similar to the one of 
atrial or ventricular adult CMs. This optimized physiological condition has been used to investigate 
mechanisms of cardiac cellular disease [4] and predict pharmacological approaches [5,6]. Overall, by 
adding IK1 (through dynamic clamp or channel overexpression), hiPSC-CMs AP becomes more 
similar to the adult one, suggesting that from the electrophysiological point of view the lack of this 
channel may be the main reason for the hiPSC-CM immaturity. 

 
Figure 2. Electrophysiological phenotypes of hiPSC-derived (yellow) compared with adult CMs (green). 
AP shape (upper panel) described in each phenotype (ventricular-, atrial- or nodal-like) is determined by 
different contribution of cardiac ion currents, represented over time in the lower panel. 

Additionally, hiPSC-CMs repolarization reserve is lower in comparison to adult CMs because of 
the low expression of the slow delayed rectifier channel IKs. Indeed, the functional contribution of this 
current to the hiPSC-CM AP has been usually seen under β-adrenergic stimulation and reduced 
repolarization reserve by blocking the rapid component IKr [102–104]. Only in few papers IKs has been 
recorded in basal conditions in hiPSC-CMs [4], a sign of a good cell maturation level. For this reason, 
the expression of IKs together with the one of IK1 in hiPSC-CMs are usually seen as functional 
maturation markers of these cells. 
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Several works have studied Ca2+ handling proteins (L-type Ca2+ channels, RyR2 in sarcoplasmic 
reticulum, SERCA2a pump-based Ca2+ uptake) and Ca2+ transient parameters, as well SR Ca2+ release 
events (Ca2+ sparks) [19,105,106]. In hiPSC-CMs there is an immature condition due to a poorly 
developed sub-cellular T-tubules system and sarcomeric structure; these are crucial elements for Ca2+-
handling, contractile force and relaxation processes [10,107–110]. U-shaped Ca2+ transients in hiPSC-
CMs suggest the presence of an immature functional excitation-contraction (EC) coupling compared 
to native CMs (Figure 3), thus implying that kinetic properties of calcium handling process are slower 
compared to the adult CMs [106,111]. 

 
Figure 3. Calcium-induced calcium release mechanism (CICR) schematized with T-tubule and sarcomere 
structures. Ca2+ influx via the L-type calcium channels is able to cause a release of the SR Ca2+ store via the 
Ca2+-sensitive ryanodine receptors (RYR2). In hiPSC-CMs the Ca2+ entry is mainly the extracellular one and 
calcium handling kinetics are slower (yellow in the inset) compared to adult CMs (green). 

Single cells recordings with the patch clamp technique are still the most informative and accurate 
technique to disclose mechanisms underlying abnormal electrical activity in hiPSC-CMs. However, 
global electrophysiological information can also be acquired by the multielectrode array (MEA) 
system by plating spontaneous beating clusters of hiPSC-CM. This technique is useful to evaluate 
changes in AP rate, duration and conduction velocity. 

Platforms of hiPSC-CM to test drug safety by analyzing their proarrhythmic effects have been 
recently developed. Cardiac electrophysiology models have been applied more and more in the 
emerging discipline of quantitative system pharmacology (QSP) for cardiac safety prediction [112]. 
hiPSC-CMs have been applied in screening the proarrhythmic potential of drugs; Sotalol, Dofetilide, 
and E4031 for hERG channel blockade, Quinidine and Flecainide as sodium channel blockers, and 
Verapamil and Diltiazem as calcium channel inhibitors represent the main examples [113–115]. These 
drugs, in conjunction with in silico modelling, have been indeed the major focus of the FDA’s 
Comprehensive In Vitro Proarrythmia Assay (CiPA) initiative [116]. In the last years, the CiPA has 
been a remarkable initiative that uses in silico models for the assessment of potential proarrhythmic 
effects of drugs that are then classified into high, intermediate and low risk for Torsade de Pointes 
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(TdP) tachycardia. In particular, the potential torsadogenic effect of drugs is based on hERG (IKr) or 
IKs (slow-delayed rectifier) outward currents inhibition with or without Nav1.5 (transient/late sodium 
currents, INa/INaL) and Cav1.2 (L-Type Ca2+) inward currents enhancement. The result is a delayed AP 
repolarization with increased incidence of early afterdepolarization (EADs), leading to ventricular 
arrhythmias such as TdP and ventricular fibrillation [112,117–119]. Furthermore, a computational 
approach has been recently developed to recapitulate the human AP profile and drug-induced TdP 
[120–122]. 

The CiPA in silico system represents a predictive strategy applied on hiPSC-CMs for 
development of therapeutic drugs potentially safety in term of cardiac function. Anyway, care must 
be taken with conclusions about healthy and pathological phenotypes of CMs, that may result 
misleading because of their immature functional state [89,92,123]. 

5. Pluripotency and Cardiac Differentiation of hiPSCs Derived from Cardiac vs. Non-Cardiac 
Sources 

The reprogramming process can be applied to all type of somatic cells, such as placenta [26] 
mononuclear cells from blood [25], and keratinocytes [28], from which it is possible to address the 
differentiation process toward cardiac phenotype. The somatic source may influence the phenotype 
of iPSCs by affecting both reprogramming and differentiation efficiency. For example, it has been 
shown how blood-derived iPSCs differentiate into hematopoietic cells more easily in comparison to 
fibroblast-derived ones [7]; in addition, beta cell derived-iPSCs were more prone to differentiate into 
insulin-producing cells if compared to ESCs [124]. 

In agreement with these observations, it has been recently reported the possibility to reprogram 
explant-derived cells, elsewhere referred as cardiac progenitor cells (CPCs) [125], from human 
cardiac biopsies obtain functional and terminal differentiated CMs [29]. As schematized in Figure 4, 
CPC-derived hiPSCs account for improvements in differentiation to CMs in comparison to patient-
matched hiPSCs from other somatic sources, such as bone marrow-derived mesenchymal stem cells 
(BMC) and dermal fibroblasts (HDF) both if cultured in monolayers [126] or EBs [127,128]. 

These works emphasized the existence of an epigenetic memory retained by iPSCs from their 
tissue of origin. Reprogramming of somatic cells to pluripotency undergo a reversal in DNA 
modifications that characterize the cell development, but in some cases these modifications remain 
unaltered, representing a residual tissue-specific DNA methylation that influences the differentiation 
potential of iPSCs [129]. 

Although hiPSC derived from HDFs have been described to produce a higher number of colonies 
that appear earlier in time, the expression level of pluripotency markers (e.g., Nanog, Oct4) resulted 
significantly enhanced in hiPSC from CPCs as compared to both hiPSC from HDFs and from BMCs 
[126,128]. Inversely, Sanchez-Freire et al. [127] showed that the expression of pluripotency markers was 
not different between the two hiPSC lineages from different tissues. In both cases, the ability of 
reprogrammed cells to form three germ layers (i.e., mesoderm, ectoderm, and endoderm), which is 
considered a hallmark for pluripotency in iPSCs, is not affected by the cell source. 

As for the specification potential toward cardiac phenotype, hiPSC derived from cardiac somatic 
sources showed higher efficiency during the re-differentiation process compared to non-cardiac ones 
in terms of genes expression for early (NKX 2.5, ISL1) and late cardiogenic transcription factors 
(HAND2, TBX5, GATA4 and MEF2C) [127,128]. Genes encoding for late cardiac specific markers, such 
as MYLC2.a, MYH6, TNNI3 and TNNT2, were also overexpressed in cardiac hiPSC-CMs, as well as 
those encoding for cardiac specific ion channels (HCN1-4, CACNA1C and 1G, RyR2, Cx43) [126,128]. 

Accordingly, a higher percentage of Troponin T (cTnT)-positive CMs in beating cardiac Sca1-
iPSC-CMs (cardiac) compared to HDF-iPSC-CMs (non-cardiac) has been reported both by Sanchez-
Freire et al. (15 days) [127] and Meraviglia et al. (18–20 days) [128] as a late differentiation marker. 
Taken together these data support the hypothesis that the cardiac origin of somatic cells to be 
reprogrammed influences the transcription of cardiac genes during the differentiation of iPSCs. 
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Figure 4. Schematic overview of human induced pluripotent stem cells (hiPSCs-CMs) generated from 
different somatic sources: cardiac progenitor cells (CPCs) from cardiac tissue, bone marrow cells 
(BMs) from sternal region, and dermal fibroblasts (HDFs) from skin. 

While Meraviglia et al. and Pianezzi et al. observed that hiPSC-CMs started beating at 10 days of 
differentiation, Sanchez-Freire et al. needed five more days to detect the first spontaneous events in 
their Sca1- and HDF-derived CMs. Furthermore, in the studies by Meraviglia et al. and Pianezzi et al. 
this correlated with an upregulation of cTnI expressed in a sarcomeric pattern. In addition, CPC-
derived CMs from Pianezzi et al. are the first population to exhibit early spontaneous beating (at 10 
days of differentiation) compared to patient-matched HDF- and BMC-derived ones (15 days), thus 
suggesting precocity in cell differentiation from cardiac source. 

Functionally, Meraviglia et al. and Sanchez-Freire et al. did not observe any differences in term 
of beating rates between cardiac and non-cardiac sources derived-CMs at 30 days of differentiation. 
Interestingly, in urine-derived hiPSC-CMs [111] the adaptation of AP to stimulation rates was not 
observed until 90 days of maturation, while in our hand CPC-derived cells showed APD90 shortening 
when stimulated from 2 to 4 Hz already at 35 days of differentiation (unpublished). Meraviglia et al. 
noticed that the maturation process affected especially the maximum diastolic potential (MDP) 
values, that resulted more hyperpolarized in CPC-CMs at 60 day of differentiation. However, 
Sanchez-Freire et al. did not observe any electrical difference between cardiac- and fibroblast-derived 
CMs at day 30. 

In recent work, it has been observed variability in electrical properties and sensitivity to ion 
channel blockers in CMs derived from different sources [130]. Accordingly, the MEA measurements 
by Pianezzi et al. pointed out a higher maturation degree of CPC-CMs by highlighting the presence 
of IKs, a current more expressed and more functional in CPC-derived CMs in comparison to HDF- 
and BMC-derived cells. A higher repolarization reserve in CPC-CMs has been demonstrated by 
highlighting the contribution of IKs with the specific blocker JNJ303 under IKr blockade with E4031. In 
support of this, a JNJ303-dependent QT prolongation resulted strongly enhanced in CPC-CMs in 
comparison to HDF- and BMC-CMs [126]. 

In Pianezzi et al. CMs derived from cardiac somatic cells showed differences from an early stage 
of maturation in calcium handling. Here, not only CPC-, but also HDF- and BMC-CMs at 35 days of 
differentiation were able to elicit RyR-mediated Ca2+ release when exposed to caffeine. However, the 
quantification of the number of responsive CMs clearly showed that the percentage of CPC-derived 
ones was significantly greater than the percentages of CMs derived from the other two cell types. On 
the other hand, the molecular expression of RyR2 and SERCA2a proteins were not different among 
the three groups. Thus, the “caffeine responsiveness” may represent a functional index, over the 
expression of cardiac specific genes, for the identification of differentiating CMs. Despite of this, in 
Sanchez-Freire et al., 30 days of differentiation were not sufficient to evince any differences between 
CPC- and HDF-CMs, equally immature in Ca2+ transient properties. 
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In general, we can say that, although different somatic cells show a cardiogenic potential when 
exposed to appropriate cardiac stimuli, cardiac precursor cells seem to be temporally and/or 
qualitatively more prone to differentiate into functional cardiac cells. Moreover, it must be clarified 
whether maturation of reprogrammed cells from cardiac sources represents also at late time points a 
better cellular substrate for cardiac disease modelling, drug testing and tissue regeneration. 

6. Conclusions 

To date, it has been widely described how hiPSC-CMs are able to recapitulate molecular and 
functional aspects of human heart pathophysiology, thus providing a good tool for disease modelling 
and development of personalized therapy that involves a pharmacological treatment. A wide range 
of genetic cardiomyopathies has been modelled using hiPSC-CMs [131], for example familiar long 
QT (LQT) syndromes [4,85–87,132,133], Brugada syndrome [134,135], Catecholaminergic 
polymorphic tachycardia (CPVT) [136,137] and atrial fibrillation [138,139]. 

Unfortunately, the physiological phenotype of iPSC-CMs is heterogeneous both in term of sub-
populations of CMs and in term of maturation degree during differentiation protocol, potentially 
leading to an incorrect interpretation of data. To avoid this, the comparison of their functional 
parameters with the native and adult counterpart is crucial. The cellular size and morphology, 
together with the expression of structural proteins and a T-tubular system that ensure the electrical 
conduction, must be evaluated in order to perform accurate functional analysis and develop 3D 
platforms; electrophysiological parameters and Ca2+ handling features, contractile force, responses to 
beta-adrenergic stimulation, metabolic profile and conduction velocity must be verified to assess the 
ability of hiPSC-CM-based models to recapitulate diseases and pathological phenotypes. 
Furthermore, populations of cells differentiated from iPSCs contain non-cardiomyocyte cells that 
may interfere with maturation levels, electrophysiological properties and conduction velocity of 
differentiating CMs, therefore affecting the sensitivity to tested drugs. Standardization of methods 
and techniques from one laboratory to another is needed for a reliable comparison between healthy 
and pathological cell models. 

Current differentiation protocols that are being tested to optimize the structural and functional 
maturation degree of hiPSC-CMs use addition of physiological substrates, prolongation of culture 
time, coculture with endothelial cells or fibroblasts, 3D cell platforms (“organoids”) and mechanical 
and electrical stimulation (dynamic clamp); these techniques, combined with purification methods 
such as pre-plating or substitution of glucose with lactate in the early maturation phase of CMs, can 
produce up to 90% cTnT-positive hiPSC-CMs [140–147]. 

Despite their limitations, thanks to molecular, structural and functional correlations with 
primary adult CMs, hiPSC-CMs can be considered reliable tool for disease modelling and it 
represents a valid platform for pharmacological screening [53,54]. Moreover, it is crucial to consider 
the somatic origin of hiPSC-CMs since it has been clearly demonstrated to impact on time of 
development and maturation degree of derived CMs in a patient-matched comparison. 

The selection of a somatic donor tissue has to be adjusted according to the goal of the study. Since 
CPCs are derived from cardiac biopsies of patients who undergo heart surgery, the accessibility to 
human material can be limited. For these reasons, the use of cardiac derived cells as source to generate 
hiPSCs represents a compromise between the possibility to obtain a more mature CM and the 
invasiveness and risks of cardiac procedures. 
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Abbreviations 

hiPSC Human Induced Pluripotent Stem Cell 
CM Cardiomyocyte 
ESC Embryonic Stem Cell 
MET Mesenchymal to Epithelial Transition 
CVD Cardiovascular Disease 
CPC Cardiac Progenitor Cell 
BMC Bone Marrow-derived stem Cell  
HDF Human Dermal Fibroblast 
Na+ Sodium 
K+ Potassium 
Ca2+ Calcium 
Ediast Diastolic Membrane Potential 
AP Action Potential 
APA Action Potential Amplitude 
APD Action Potential Duration 
MDP Maximum Diastolic Potential 
MEA Multielectrode Array 
ECG Electrocardiogram 
TdP Torsade de Pointes 
LQTS Long QT Syndrome 
CPVT Catecholaminergic Polymorphic Ventricular Tachycardia 
DCM Dilated Cardiomyopathies 
HCM Hypertrophic Cardiomyopathies 
QSP Quantitative System Pharmacology 
CiPA Comprehensive In Vitro Proarrythmia Assay 
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