Supporting Information

	mRNA ID (NCBI	Amplic	Forward Primer	Reverse Primer
Gene	Reference	on Size	Sequence	Sequence
	Sequence)	(bp)	$(3' \rightarrow 5')$	$(5' \rightarrow 3')$
18S rRNA	NR_033238.1	176	GGAACTGAGGCCAT	CGGAACTACGACGGT
			GATTAAG	ATCTG
COL1A1	XM_008271783.1	271	CTGGTGAATCTGGAC	TGTCTCACCCTTGTCA
			GTGAG	CCAC
COL1A2	NM_001195668.1	170	CCAATCACGCCTCTC	GCAGCCATCGACAAG
			AGAAC	AACAG
COL3A1	XM_002712333.2	259	GCATTGCTTACATGG	CCAACGTCCGCACCA
			ATCAGG	AATTC
FN	AF135404.1	270	GCAACCCACAGTGG	AGTCCTGACACAACA
			AATACG	ACAGAC
aSMA	NM_001101682.2	224	CGTGACTACTGCTGA	GGATGCCAGCAGATT
			ACGTG	CCATC
TNC	FI4804001	219	GTCACTCATCACAGC	CTGAGTGTGTATTCCG
inte	1,100,100,1		TCTGG	TGGC
TNMD	NM 001109818.1	239	GCAGTTTCCGAGTTA	CGACGGCAGTAAATA
			CAAGAC	CAACAG
DCN	NM 001082330.1	255	GTGGACAATGGTTCT	AAGGTGGATGGCTGG
			CTGGC	ATCTC
ACAN	L38480.1	113	GCTACGGAGACAAG	GTAAAAGACCTCACC
			GATGAG	CICCAT
BGN	NM_001195691.1	199	GGCCIGAAGCICAAC	GGCICCCGIICICAAT
	-		TACCT	CATC
MKI67	XM_008251084.2	283	CACATCCAGCAGTGA	GIGITAGCAGIACCI
			AACGG	GAAGIC
MMP2	D63579.1	220	GAAGAICGACGCIGI	GIAICICCAGAACII
			GIACG	
MMP9	D26514.1	160	GATACAGECTGTICC	GGACCATATAGATGC
TIMP1	NM_001082232.2	236		GAAGUICAGAUIGII
TIMP2	XM_008252510.2	224		
			ACHG	ACAAG

Table S1. Gene abbreviations, NCBI reference sequences of mRNAs (used as template for primer design), amplicon size and primer sequences used for Real-Time PCR Analysis.

A PDGF-BB supplementation

B PDGF-BB supplementation

Figure S1. Effect of PDGF-BB supplementation on tenocyte proliferation. Representative CLSM images from the EdU proliferation assay and EdU-positive cells [%] for each PDGF-BB concentration (ng/mL) tested in A) serum+ conditions and B) serum-free conditions. Data was adapted from [47]. The total EdU-positive cells [%] was calculated as EdU positive cells (pink) in relation to the total cell number (DAPI stained, blue). Scale bars: 100 µm. (Data shown as mean ± standard deviation, ** *p* < 0.01, ****p* < 0.001, obtained by one-way ANOVA).

Figure S2. Collagen I and fibronectin staining (green) and cell nuclei DAPI staining (blue) of rabbit tenocytes (Animal 2) cultured in vitro in 2D, treated with PDGF-BB, TGF- β , AA or untreated (control) at day 3, 7 and 14. Scale bars: 100 μ m.

Figure S3. Collagen I and fibronectin staining (green) and cell nuclei DAPI staining (blue) of rabbit tenocytes (Animal 3) cultured in vitro in 2D, treated with PDGF-BB, TGF- β , AA or untreated control at day 3, 7 and 14. Scale bars: 100 μ m.

Figure S4. Quantification of fibronectin deposition by tenocytes in the different treatment conditions. The signal of fibronectin staining was assessed from images of maximum projections of the z-stacks obtained with confocal microscopy. Briefly, thresholded images were segmented and the total area of the signal in each image was assessed. The area measured was normalized to the cell number relative values for the ratio obtained are shown on the y-axis) in each image and thus the fibronectin deposition was quantified independent of cell density, as the treatments used do increase cell proliferation.