Figure S1. The expression profile of CaSBP12 gene under salt stress in pepper. After 400 mM NaCl treatment, the expression of CaSBP12 was detected at $0 \mathrm{~h}, 2 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}$, 12 h , and 24 h . h: hour. * and ** represent significant differences at $\mathrm{P} \leq 0.05$ and $\mathrm{P} \leq$ 0.01 respectively. Mean values and SDs for three replicates are shown.

Figure S2. The total chlorophyll contents of CaPDS-silenced, CaSBP12-silenced, and control plants after forty days post-infiltration. Bars with different letters indicate significant differences at $\mathrm{P} \leq 0.05$. Mean values and SDs for three replicates are shown.

Figure S3. The expression level of ion transport genes in CaSBP12-silenced and control plants without any treatment were measured using quantitative real-time PCR. CaSOS1: CA08g01100; CaHKT2-1: CA07g09810; CaHKT2-2: CA01g10660. Bars with different letters indicate significant differences at $\mathrm{P} \leq 0.05$. Mean values and SDs for three replicates are shown.

Figure S4. The expression of CaSBP12 gene in transgenic lines and wild-type lines of Nicotiana benthamiana. The expression of CaSBP12 gene in transgenic lines and wild-type lines of Nicotiana benthamiana was measured using quantitative real-time PCR. ** represent significant differences at $\mathrm{P} \leq 0.01$ respectively. Mean values and SDs for three replicates are shown.

Figure S5. The expression level of NbSOS1 (Niben101Scf02321g00027.1) gene in transgenic lines and wild-type lines of Nicotiana benthamiana was measured using quantitative real-time PCR without any treatment. Bars with different letters indicate significant differences at $\mathrm{P} \leq 0.05$. Mean values and SDs for three biologic replicates are shown.

Table S1. The detail data of damage severity index percentage of transgenic (line 4, line 7 , and line 8) and wild-type plants after salt stress twenty-two days.

	0 level plants	1 level plants	2 level plants	3 level plants	Total number of treatment plants	Damage severity index percentage
WT	3	8	8	1	20	45.00
Line 4	3	1	8	8	20	68.33
Line 7	0	5	6	10	21	74.60
Line 8	1	4	14	6	25	66.67
WT	1	15	5	0	21	39.68
Line 4	0	0	11	10	21	82.54
Line 7	0	3	15	3	21	66.67
Line 8	0	9	7	5	21	60.31

Table S2. Primers names and their sequences used for vector construction in this study.

Olig name	Primer Abbreviation	Primer Sequence (5'-3')
$\boldsymbol{C a S B P 1 2}$	CaSBP12-VIGS-F	CGGGATCCATCCTCCGTTATGCTTTCTGGC
	CaSBP12-VIGS-R	GGGGTACCTACCTTGGGAATGGGTGAAACA
$\boldsymbol{C a S B P 1 2}$	CaSBP12-PBI121-F	GCTCTAGAATGTTGGACTATGACTGGGGAG
	CaSBP12-PBI121-R	CGGGATCCTGGTCTTTGCCTAAAACAATCC

Table S3. Primers names and their sequences used in this study for quantitative real-time PCR.

Olig name	Primer Abbreviation	Primer Sequence ($5^{\prime} 3^{\prime}$)	Gene amplification length(bp)	Location of each primer
CaSBP12	RTCaSBP12-VIGS-F	GTTTCACCCATTCCCAAGGTAATT	213	exon
	RTCaSBP12-VIGS-R	TAGTACGTCGGTAAAGTCGATTAACAA		
CaActin2	CaActin2-F	TCCACCTCTTCACTCTCTGCTC	213	exon
	CaActin2-R	TGACCCATCCCTACCATAACAC		
CaAPX	CaAPX-F	AGAGGACAAGCCAGAACCAC	271	exon
	CaAPX-R	CCTTGTCTGATGGCAACTGT		
CaCAT2	CaCAT2-F	GAAGCCAAATCCTAAGTCCC	258	exon
	CaCAT2-R	CCAACTCGGATTGCCTCTT		
CaSOD	CaSOD-F	TATGGAGCCTTAGAACCTGC	173	exon
	CaSOD-R	CCATTGAACTTGATAGCACCT		
CaPOD	CaPOD-F	TCСТССТССТАСТТСТААСС	302	exon
	CaPOD-F	ACAGACCTCTTTTGCTCACT		
CaSOS1	CaSOS1-F	GTTCGTGTCTCGTTTCCGC	163	exon
	CaSOS1-R	TCAAATCGGTCTGAACAGCATC		
CaHKT2-1	CaHKT2-1-F	GGCATTCATATCAGTTCAGTTTGT	231	exon
	CaHKT2-1-R	TTATCAACAGGCAAAAAAGTAGTAGAG		
CaHKT2-2	CaHKT2-2-F	AAACACAGTGTATTGCAGAACAACGAT	77	exon
	CaHKT2-2-R	TCAAGATTATGAAGACCTTCACCATTA		
Nbactin-97	Nbactin-F	TATGGAAACATTGTGCTCAGTGG	218	Exon
	Nbactin-R	CCAGATTCGTCATACTCTGCC		
NbAPX	NbAPX-F	CCAAGGGTTCTGACCATCTG	304	exon
	NbAPX-R	GCATAGTCGGCAAAGAAAGC		
NbCAT1	NbCAT1-RT-F	TCTATTGTGGTTCCAGGGGTTT	375	exon
	NbCAT-RT-R	CACCCACCGACGAATAAAGC		
NbSOD	NbSOD-RT-F	GCAGACGGACCTTAGCAACA	230	exon
	NbSOD-RT-R	TGGCGACGGTAGGAGCAT		
NbPOD	NbPOD-RT-F	AGGCTCAGGGGACAACAACT	194	exon
	NbPOD-RT-R	TCACAAAATCAGTGGCGAAA		
NbSOS1	NbSOS1-F	TCCCTTGGGGCAGTGG	200	exon
	NbSOS1-F	GCTACAGCTGAGTAGAACATCCC		

