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Abstract: Stemazole exerts potent pharmacological effects against neurodegenerative diseases
and protective effects in stem cells. However, on the basis of the current understanding, the
molecular mechanisms underlying the effects of stemazole in the treatment of Alzheimer’s disease
and Parkinson’s disease have not been fully elucidated. In this study, a network pharmacology-based
strategy integrating target prediction, network construction, gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking
was adopted to predict the targets of stemazole relevant to the treatment of neurodegenerative
diseases and to further explore the involved pharmacological mechanisms. The majority of the
predicted targets were highly involved in the mitogen-activated protein kinase (MAPK) signaling
pathway. RAC-alpha serine/threonine-protein kinase (AKT1), caspase-3 (CASP3), caspase-8 (CASP8),
mitogen-activated protein kinase 8 (MAPK8), and mitogen-activated protein kinase 14 (MAPK14) are
the core targets regulated by stemazole and play a central role in its anti-apoptosis effects. This work
provides a scientific basis for further elucidating the mechanism underlying the effects of stemazole
in the treatment of neurodegenerative diseases.

Keywords: stemazole; neurodegenerative diseases; anti-apoptosis; network pharmacology; molecular
mechanisms

1. Introduction

Neurodegenerative diseases, which comprise a type of chronic and progressive disease
characterized by progressive degeneration of the structure and function of the nervous system [1],
have become the most feared maladies in older people and one of the most serious healthcare
problems worldwide [2]. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two common
neurodegenerative diseases that may lead to cognitive decline, memory loss, and movement
disorders [3,4]. A total of 50 million people worldwide were living with AD as of 2018. This
number will rise to approximately 152 million by 2050 [5]. According to the Global Burden of Disease
Study, there are currently 6.2 million individuals suffering from PD, and the incidence of PD has
surpassed that of AD [6].

Unfortunately, despite tremendous effort and expenditures, the existing clinical treatments for
neurodegenerative diseases result in only temporary and limited symptomatic relief [7,8], and they are
unable to treat the root causes or delay disease progression [9,10]. Therefore, there is an urgent need for
effective therapeutic strategies based on the understanding of the pathological mechanisms underlying
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neurodegenerative diseases. Progressive neuronal damage or loss is one of the deterministic features of
neurodegenerative diseases such as AD and PD [11,12]. Stem cell-based therapy has exciting potential
for neuroprotection [13,14]. The loss of brain function caused by injury and aging can be treated by
mobilizing the proliferation and differentiation of endogenous stem cells and replacing them with
exogenous stem cells [15,16].

Recently, a novel small molecule with the ability to regulate stem cells has shown potential for
the treatment of neurodegenerative diseases. Stemazole (ST) was discovered by a high-throughput
screen [17]. We previously demonstrated that stemazole can prevent several types of stem cells
from undergoing apoptosis under nutritional deprivation and injury conditions, including human
hippocampal stem cells, pancreatic stem cells, cardiac stem cells [17], and human embryonic stem
cells [18]. Our experimental evidence also revealed the neuroprotective effects of stemazole in animal
models of neurodegenerative diseases. Stemazole exhibited a therapeutic effect in a beta-amyloid
(Aβ) injection rat model of Alzheimer’s disease [19] and a protective effect on the impaired dopamine
system in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced acute mouse model of
Parkinson’s disease [20]. In addition, stemazole has high absolute oral bioavailability, which makes it
possible to develop it into an oral preparation. It can cross the blood–brain barrier and shows stable
accumulation in the brain [21].

These studies have indicated that stemazole is a promising drug candidate. However, the
regulatory mechanism underlying the effects of stemazole against AD and PD has not been
systematically elucidated. Studies of the molecular targets and relevant signal pathways will provide a
better understanding of the effects of stemazole in the treatment of neurodegenerative diseases.

Network pharmacology is an innovative method to study the mechanisms of drugs at the
systemic level [22]. It encompasses bioinformatics, network analysis, and experimental approaches
and integrates multiple sources of information [23]. Therefore, network approaches can accurately
discriminate potential drug–target interactions [24].

Using the network pharmacology strategy, our study systematically investigated the potential
targets and molecular mechanisms underlying the effects of stemazole against neurodegenerative
diseases. First, we predicted the molecular targets of stemazole through chemical similarity analysis,
pharmacophore model screening, and reverse docking. Pathological targets were identified using
various bioinformatics platforms. We then performed enrichment analysis according to gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms and constructed
a drug–target–pathway network. Finally, molecular docking was used to verify the interactions
between stemazole and its targets.

2. Results

2.1. Screening of Potential Targets

A database of targets associated with neurodegenerative diseases and the targets of stemazole
was constructed. A total of 1981 and 1063 targets associated with AD and PD, respectively, were
identified using the DisGeNET database v6.0 (Table S1). A total of 559 predicted targets of stemazole
were obtained from PharmMapper, Drug Repositioning and Adverse Reaction via Chemical-Protein
Interactome (DRAR-CPI), Drug Positioning and Drug Repositioning via Chemical-Protein Interactome
(DPDR-CPI), TargetNet, and ChemMapper after eliminating duplicates (Table S2). The intersection
of the three lists identified 91 therapeutic targets of stemazole related to both AD and PD. To further
identify the therapeutic targets involved in the regulation of stem cells, 91 targets in the DrugBank
database, UniProt, the Human Protein Atlas, the Comparative Toxicogenomics Database, and KEGG
were analyzed. Twenty-nine targets were found to be involved in the processes of apoptosis and were
putative therapeutic targets of stemazole, mediating its effects against neurodegenerative diseases
through an anti-apoptosis mechanism, as shown in Table 1.
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Table 1. Putative therapeutic targets of stemazole mediating its effects against neurodegenerative diseases.

No. Symbol Protein Name Database

1 ABL1 Tyrosine-protein kinase ABL1 DRAR-CPI, DPDR-CPI,
PharmMapper

2 ACHE Acetylcholinesterase ChemMapper

3 AKT1 RAC-alpha serine/threonine-protein kinase ChemMapper

4 AR Androgen receptor DPDR-CPI, ChemMapper

5 CASP3 Caspase-3 PharmMapper

6 CASP8 Caspase-8 DPDR-CPI

7 CASP9 Caspase-9 TargetNet

8 CDK5 Cyclin-dependent-like kinase 5 ChemMapper

9 CSF1R Macrophage colony-stimulating factor 1 receptor DPDR-CPI

10 DAPK1 Death-associated protein kinase 1 PharmMapper

11 DRD3 D(3) dopamine receptor ChemMapper

12 ESR1 Estrogen receptor DRAR-CPI, PharmMapper,
ChemMapper, TargetNet

13 FGF2 Fibroblast growth factor 2 ChemMapper

14 FYN Tyrosine-protein kinase Fyn DPDR-CPI

15 GAPDH Glyceraldehyde-3-phosphate dehydrogenase ChemMapper

16 HGF Hepatocyte growth factor ChemMapper

17 HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A reductase PharmMapper

18 IGF1R Insulin-like growth factor 1 receptor DRAR-CPI

19 INSR Insulin receptor PharmMapper

20 MAPK14 Mitogen-activated protein kinase 14 PharmMapper, ChemMapper

21 MAPK8 Mitogen-activated protein kinase 8 DPDR-CPI, PharmMapper,
ChemMapper

22 MAPK8IP1 C-Jun-amino-terminal kinase-interacting protein 1 ChemMapper

23 MMP9 Matrix metalloproteinase-9 DPDR-CPI

24 PIK3CG Phosphatidylinositol 4,5-bisphosphate 3-kinase
catalytic subunit gamma isoform DPDR-CPI, TargetNet

25 PPARD Peroxisome proliferator-activated receptor delta DRAR-CPI

26 PPARG Peroxisome proliferator-activated receptor gamma DRAR-CPI, ChemMapper

27 PPIF Peptidyl-prolyl cis-trans isomerase F,
mitochondrial ChemMapper

28 PTGS2 Prostaglandin G/H synthase 2 ChemMapper, TargetNet

29 TNF Tumor necrosis factor DRAR-CPI

2.2. Protein–Protein Interaction (PPI) Network Construction and Analysis

A total of 29 putative targets were uploaded to the STRING database to identify the functional
partnerships and interactions between them. Protein interactions with a confidence score of 0.9 or
higher were then imported into Cytoscape v3.7.1 to generate the protein–protein interaction (PPI)
network, which comprised 23 nodes and 42 edges (Figure 1).
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of the node degree were calculated by Network Analyzer, and the three centralities (betweenness, 
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analysis. 
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AKT1 9 33.13798 71.3 0.5945946 

MAPK14 8 40.777042 100.933334 0.52380955 
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CASP8 4 9.148983 11.6 0.4680851 
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TNF 6 13.089347 8.866667 0.4489796 

CASP9 3 7.837092 3.4444444 0.43137255 

CDK5 3 5.526705 8.5 0.37931034 

Figure 1. Protein–protein interaction network. The size of the circle represents the node
degree of the target protein. MAPK, mitogen-activated protein kinase; AKT1, RAC-alpha
serine/threonine-protein kinase; FYN, tyrosine-protein kinase Fyn; CASP, caspase; ESR, estrogen
receptor; AR, androgen receptor; TNF, tumor necrosis factor; ABL1, tyrosine-protein kinase ABL1;
CDK, Cyclin-dependent-like kinase; IGF1R, insulin-like growth factor 1 receptor; INSR, insulin
receptor; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HGF, hepatocyte growth factor;
PIK3CG, hosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform; PPARG,
peroxisome proliferator-activated receptor gamma; DAPK, death-associated protein kinase; MMP,
matrix metalloproteinase; PTG, prostaglandin G/H synthase; FGF, fibroblast growth factor.

To identify the hub nodes and essential proteins in the PPI network, the topological parameters
of the node degree were calculated by Network Analyzer, and the three centralities (betweenness,
closeness, and subgraph) were determined by the CytoNCA plugin, as shown in Table 2. On the basis
of the overlap between the top 10 proteins in each of the four groups, mitogen-activated protein kinase
8 (MAPK8), RAC-alpha serine/threonine-protein kinase (AKT1), MAPK14, tyrosine-protein kinase
Fyn (FYN), caspase-3 (CASP3), estrogen receptor (ESR1), androgen receptor (AR), and CASP8 were
identified as essential proteins with significant centrality values based on the network topology analysis.

Table 2. Topological parameters of the targets.

Degree Subgragh Betweenness Closeness

MAPK8 9 35.681553 164.86667 0.6111111
AKT1 9 33.13798 71.3 0.5945946

MAPK14 8 40.777042 100.933334 0.52380955
FYN 6 23.114271 116.72222 0.5

CASP3 6 20.888252 63.6 0.5
ESR1 5 16.392994 46.566666 0.5
AR 4 15.240643 53.433334 0.47826087

CASP8 4 9.148983 11.6 0.4680851
ABL1 4 14.081305 18 0.41509435
TNF 6 13.089347 8.866667 0.4489796

CASP9 3 7.837092 3.4444444 0.43137255
CDK5 3 5.526705 8.5 0.37931034
INSR 2 3.5084944 42 0.4
IGF1R 2 2.9850514 0 0.4

PPARG 2 2.9773748 0 0.3859649
HGF 2 3.2480063 8 0.36666667

GAPDH 2 4.990251 5.8333335 0.36065573
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Table 2. Cont.

Degree Subgragh Betweenness Closeness

PIK3CG 2 5.3232713 2.3333333 0.33846155
PTGS2 1 1.9571668 0 0.3859649
DAPK1 1 2.1390505 0 0.33846155
MMP9 1 1.957167 0 0.33846155
FGF2 1 1.6149884 0 0.33846155

MAPK8IP1 1 2.5664337 0 0.28947368

2.3. GO and KEGG Pathway Enrichment Analyses

In addition, 29 potential targets were submitted to the g: Profiler server for KEGG pathway
annotation and GO enrichment analysis. The KEGG pathways and gene ontology terms with a p-value
≤0.05 were significantly enriched. The top 20 components were graphed using the OmicShare cloud
platform (Figure 2).

The KEGG pathway annotation showed that 27 of the 29 (93.1%) potential targets were significantly
enriched in 53 pathways (Table S3). The statistical analysis indicated that 7 proteins were involved
in the top 20 pathways (Figure 3) very frequently (≥10 times), which indicates that they are of great
importance in the enriched pathways. The seven core proteins were MAPK8, AKT1, MAPK14, CASP3,
CASP8, TNF, and CASP9. Among the enriched pathways, the MAPK signaling pathway was found to
be dysregulated in neurodegenerative diseases. The predicted targets involved in the MAPK signaling
pathway are shown in red in Figure 4.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 17 

 

INSR 2 3.5084944 42 0.4 

IGF1R 2 2.9850514 0 0.4 

PPARG 2 2.9773748 0 0.3859649 

HGF 2 3.2480063 8 0.36666667 

GAPDH 2 4.990251 5.8333335 0.36065573 

PIK3CG 2 5.3232713 2.3333333 0.33846155 

PTGS2 1 1.9571668 0 0.3859649 

DAPK1 1 2.1390505 0 0.33846155 

MMP9 1 1.957167 0 0.33846155 

FGF2 1 1.6149884 0 0.33846155 

MAPK8IP1 1 2.5664337 0 0.28947368 

2.3. GO and KEGG Pathway Enrichment Analyses 

In addition, 29 potential targets were submitted to the g: Profiler server for KEGG pathway 

annotation and GO enrichment analysis. The KEGG pathways and gene ontology terms with a p-

value ≤0.05 were significantly enriched. The top 20 components were graphed using the OmicShare 

cloud platform (Figure 2). 

The KEGG pathway annotation showed that 27 of the 29 (93.1%) potential targets were 

significantly enriched in 53 pathways (Table S3). The statistical analysis indicated that 7 proteins were 

involved in the top 20 pathways (Figure 3) very frequently (≥10 times), which indicates that they are 

of great importance in the enriched pathways. The seven core proteins were MAPK8, AKT1, 

MAPK14, CASP3, CASP8, TNF, and CASP9. Among the enriched pathways, the MAPK signaling 

pathway was found to be dysregulated in neurodegenerative diseases. The predicted targets 

involved in the MAPK signaling pathway are shown in red in Figure 4. 

 

 

Figure 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology enrichment
analyses of 29 target proteins (p-value ≤ 0.05). (A) The top 20 KEGG pathways. (B) The top 20 biological
processes. (C) The top 20 molecular functions. (D) Eleven cellular components. The color scales
indicate the different thresholds for the p-values, and the sizes of the dots represent the number of
genes corresponding to each term.
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represent unidentified proteins and identified proteins, respectively.
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The GO terms comprised three categories: biological process, molecular function, and cellular
component. As shown in Figure 2, the top five biological processes included the regulation of
cell death, regulation of apoptotic processes, regulation of programmed cell death, cell death, and
apoptotic processes. The top five molecular functions included catalytic activity acting on a protein,
identical protein binding, drug binding, protein kinase activity, and enzyme binding. The top five
cellular components included membrane-bound organelles, membrane rafts, membrane microdomains,
membrane regions, and intracellular organelles.

2.4. Molecular Docking

Docking studies were carried out between stemazole and five select important targets, AKT1,
CASP3, CASP8, MAPK8, and MAPK14. These targets were chosen because not only were they key
nodes of the PPI network, but they also played an important role in KEGG signaling pathways.
According to the molecular docking results in Table 3, CASP3, MAPK14, AKT1, CASP8, and MAPK8
is the highest to the lowest order of affinities predicted for the interaction between each of the five
protein targets and stemazole.

Table 3. Results of molecular docking between stemazole (ST) and the predicted target.

Receptors Binding Energy (∆G)/kcal·moL−1 Inhibit Constant (Ki)/µM

CASP3 −7.45 3.45
MAPK14 −7.21 5.17

AKT1 −7.04 6.86
CASP8 −6.48 17.92
MAPK8 −6.38 20.9

The docking results in this study demonstrate that the receptor–ligand interaction between ST
and AKT1 involves both hydrophobic interactions and polar interactions. As shown in Figure 5A, their
interaction is centered on a stable hydrophobic core consisting of several nonpolar residues in AKT1
(Ser205, Arg206, Ala212, Tyr263, Thr211, Trp80, Tyr272, Gln79, and Asp292). In addition, the hydroxyls
within the main chains of Leu210 (3.10 Å) and His207 (3.06 Å) form two hydrogen bond contacts with
the N17 atom of ST, which further stabilizes the entire interaction region. These interactions enable ST
to bind to AKT1.

Moreover, the results in Figure 5B show that ST can bind to CASP3 by forming a hydrophobic
interaction with the surrounding residues Asn208, Glu248, Phe250, Trp206, Ser249, and Phe247. ST
could form three H-bonds with Glu246 (2.74 Å), Trp214 (3.13 Å), and Arg207 (2.93 Å).

The action modes of ST and CASP8 are shown in Figure 5C. ST binds to a pocket in CASP8, which
is comprised of Phe468, Arg471, Leu440, Leu470, Lys472, Lys473, and Ile439. Two hydrogen bonds,
STS23:Asp438OD2 (2.94 Å) and STS23:Leu474N (3.18 Å), further enhance the interaction between the
ligand and the CASP8 protein.

According to the analysis shown in Figure 5D, ST was observed to form hydrophobic interactions
with six residues in MAPK8 (Ala113, Asn114, Ile32, Leu110, Ala53, and Val40) and three hydrogen
bonds (STN17:Gln117OE1 (3.33 Å), STN13:Asp112O (2.82 Å), and STN25:Met111N (2.73 Å)).

As shown in Figure 5E, ST was predicted to interact with MAPK14 via Val117, Gln120, Lys121,
Leu217, and Leu122. ST also forms H-bonds with the residues Lys118 (2.84 Å) and Leu216 (2.95 Å).



Int. J. Mol. Sci. 2020, 21, 427 8 of 16

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 17 

 

 

Figure 5. Molecular models of the binding of stemazole to the predicted targets (A) AKT1, (B) CASP3, 

(C) CASP8, (D) MAPK8, and (E) MAPK14 shown as 3D diagrams and 2D diagrams. 

Figure 5. Molecular models of the binding of stemazole to the predicted targets (A) AKT1, (B) CASP3,
(C) CASP8, (D) MAPK8, and (E) MAPK14 shown as 3D diagrams and 2D diagrams.



Int. J. Mol. Sci. 2020, 21, 427 9 of 16

3. Discussion

There is an urgent need to develop new treatment strategies because of the growing crisis resulting
from neurodegenerative diseases and the poor efficacy of the existing approved drugs. Stemazole is a
novel small molecule with neuroprotective effects, and its therapeutic efficacy in preclinical models of
Alzheimer’s disease and Parkinson’s disease has been demonstrated in several studies. Stemazole also
protects multiple types of stem cells from apoptosis. Here, a network pharmacology strategy was used
to reveal the mechanism underlying the effects of stemazole. Therapeutic targets and the signaling
pathways in which they participate were explored by reverse screening, PPI network construction, and
pathway enrichment analysis. Information from various online servers and databases was integrated.
The results we obtained are very reliable, as they benefitted from multiple information sources and
different target identification methods. The specific interactions between stemazole and the targets
were verified through molecular docking. Fifty-three signaling pathways and 29 proteins were shown
to be involved. Five proteins were identified as the most probable targets. The results could provide a
better understanding of the effects of stemazole on the treatment of neurodegenerative diseases and
guide further studies of the development of stemazole as a stem cell drug.

We proposed that stemazole plays a therapeutic role in the treatment of neurodegenerative
diseases that is mediated by an anti-apoptotic pathway, and the theoretical calculations were carried
out on this basis. A similar therapeutic mechanism has been observed for other active small molecules.
Pieper and colleagues discovered an aminopropyl carbazole named P7C3, which was utilized in
an in vivo screen [25]. A series of P7C3-derived compounds showed neuroprotective activity in
multiple models of Alzheimer’s disease [26], Parkinson’s disease [27], and traumatic brain injury [28]
by protecting immature neurons from apoptotic cell death and promoting mature neuronal survival.
Ye et al. reported a small molecule, 7,8-dihydroxyflavone (DHF), with the ability to protect neurons
from apoptosis [29]. DHF has shown promising therapeutic efficacy in rodent models of Alzheimer’s
disease [30], Parkinson’s disease [29], Huntington’s disease [31], and amyotrophic lateral sclerosis [32].
Previous experiments have proven that the anti-apoptosis mechanism may serve as the basis of a
promising treatment. On the basis of this fact, it is crucial for drug research to explore the properties of
drug candidates, especially their underlying molecular mechanisms. The mechanism underlying the
effects of stemazole will be discussed in the following section.

The targets of stemazole were enriched in the MAPK signaling pathway, which was indicated by
the KEGG pathway enrichment analysis. Previous studies have shown that the activation of the MAPK
signaling pathway is highly correlated with the occurrence and development of neurodegenerative
diseases. In the pathogenesis of AD, the MAPK pathway contributes to disease progression by inducing
neuronal apoptosis, the transcription and activation of β- and γ-secretases, and the phosphorylation
of Amyloid-beta precursor protein (APP) and tau. The role of the MAPK signaling pathway in PD
involves the induction of neuronal death and neuroinflammatory responses associated with the levels
of α-synuclein and functional deficiencies in parkin and Protein/nucleic acid deglycase DJ-1 [33]. The
MAPK signaling pathway leads to apoptosis in both AD and PD, which suggests the importance of the
anti-apoptosis ability of stemazole.

Two methods, centrality analysis of the PPI network and KEGG pathway analysis, were used
individually to identify the core targets. According to the centrality and the node degree of the
protein–protein interaction network, we identified the essential proteins, including MAPK8, AKT1,
MAPK14, FYN, CASP3, ESR1, AR, and CASP8. Nodes with high centralities and node degrees often
play the most important roles in the network. Among the top 20 enriched KEGG pathways, MAPK8,
AKT1, MAPK14, CASP3, CASP8, TNF, and CASP9 were considered important because of their high
frequency of involvement. The results of the two methods were not exactly the same. Proteins
identified as central targets by both methods were selected for further analysis at the molecular level.

Five targets, MAPK8, AKT1, MAPK14, CASP3, and CASP8, were selected for the molecular
docking studies. Stemazole showed good affinity towards the five targets, which validated the network
pharmacology results. These targets play important roles in the pathophysiology of neurodegenerative
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diseases. Akt1 is highly expressed in the nervous system and is critical for the survival of neuronal
cells [34]. Neuroprotective effects were observed after AKT1 kinase activity was enhanced, and
pAKT1 was upregulated in cellular and animal models of neurodegenerative diseases [35]. JNK1
(MAPK8) is the main c-Jun N-terminal kinase involved in brain physiological activity [36]. Activated
JNK plays an important role in amyloid plaque formation, Aβ deposition, the phosphorylation of
tau, neuroinflammation, and Aβ-induced synaptic dysfunction [37], all of which are physiological
processes involved in AD [38]. p38-α (MAPK14) mediates oxidative stress and leads to the aggregation
of the tau protein [39]. After inhibiting p38 in rodent models of AD, the apoptosis of nerve cells
and damage to cognitive function were greatly reduced [40]. In addition, p38 can also lead to the
degeneration and death of dopaminergic neurons in Parkinson’s disease [41]. Caspase-8 and caspase-3
are two cysteine aspartate-specific proteases. Apoptotic neurons act as part of initiator and executioner
cascades in apoptotic cascades [42]. The experimental results indicated that caspase-8 can mediate
neuronal death induced by beta-amyloid protein [43]. As a downstream effector of caspase-8, caspase-3
is the core executioner caspase. Activation and increased expression of caspase-3 were observed in the
brain in AD. Caspase-3 is also involved in APP proteolysis and Aβ peptide formation [44]. Through
genetic intervention via caspase-3, dopaminergic neurons can be protected against cell death induced
by oxidative stress, which suggests that caspase-3 is an important target for the prevention of the
progression of PD [45].

The results of the network analysis provide a theoretical basis and important information that
could be useful for elucidating the mechanisms underlying the therapeutic effects of stemazole and
identifying potential targets, but the experimental verification of the targets and specific interactions
will be necessary in the future.

4. Materials and Methods

The experimental flow is shown in Figure 6.
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4.1. Identification of Pathological Targets

Targets associated with AD and PD were identified using the DisGeNET database v6.0 (http://www.
disgenet.org/) [46]. Apoptosis-related proteins and genes were identified using the Human Protein Atlas
(https://www.proteinatlas.org/) [47], the DrugBank database (https://www.drugbank.ca/) [48], UniProt
(https://www.uniprot.org/) [49], the Comparative Toxicogenomics Database (CTD, http://ctdbase.
org/) [50], and the Kyoto Encyclopedia of Genes and Genomes (KEGG, https://www.kegg.jp/) [51].
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4.2. Virtual Screening of Drug Targets

The three-dimensional structure of stemazole was built and optimized in Gaussian 09W
software [52] at the DFT-B3LYP/6-311G (d, p) level. The optimized structure was saved in mol2
and sdf format prior to the screening processes. The SMILES string of stemazole was generated using
Advanced Chemistry Development/ChemSketch software [53].

According their theoretical basis, reverse screening methods are classified into one of three
types: shape screening, pharmacophore screening, or reverse docking [54]. Each method has its own
characteristics in terms of algorithms and programs. Each database contains only a small number of
protein targets. Therefore, several servers were used to combine prediction methods to utilize a wide
range of targets and obtain reliable results.

The 3D structural file or SMILES string was submitted to the PharmMapper (http://lilab-ecust.
cn/pharmmapper/) [55], DRAR-CPI (http://cpi.bio-x.cn/drar/) [56], DPDR-CPI (http://cpi.bio-x.cn/

dpdr/) [57], TargetNet (http://targetnet.scbdd.com/) [58], and ChemMapper (http://lilab-ecust.cn/

chemmapper/) [59] servers to predict the targets of stemazole. Homo sapiens was chosen as the organism.
After adding the targets together and deleting the duplicates, the obtained predicted targets were

assumed to be pathological targets. Then, the therapeutic targets of stemazole relevant to its effects on
AD and PD via its anti-apoptosis mechanism were preliminarily determined.

4.3. PPI Network Construction and Analysis

The identified targets were uploaded to the STRING database v11.0 (http://string-db.org) [60] to
obtain the protein–protein interaction information, including the physical and functional associations.
Protein interactions with a confidence score of 0.9 or higher were exported in TSV format. The PPI
network was visualized by Cytoscape v3.7.1 [61]. Network Analyzer [62] was utilized for calculating
the network topology parameters, in which the network was treated as undirected. The CytoNCA
plugin (v2.1.6) [63] was used to measure the topology scores of the nodes, including the betweenness,
closeness, and subgraph centrality. The option “without weight” was selected.

4.4. GO and KEGG Pathway Enrichment Analyses

The gene ontology and KEGG pathway enrichment analyses were carried out using the web server
g: Profiler (https://biit.cs.ut.ee/gprofiler) [64] and visualized by the OmicShare cloud platform as a
bubble chart (http://www.omicshare.com/). The target-pathway network was constructed in Cytoscape
v3.7.1.

4.5. Molecular Docking

The X-ray crystal structures of the targets (http://www.rcsb.org/) [65,66], including AKT1 (PDB ID:
6HHF), CASP3 (PDB ID: 5IAG), CASP8 (PDB ID: 3KJN), MAPK8 (PDB ID: 3O2M), and MAPK14 (PDB
ID: 5ETC), were obtained from the Protein Data Bank (PDB). The water molecules and hetero atoms
were then removed from the proteins using Chimera 1.13.1 [67]. The protein receptor files and ligand
file were processed using AutoDock Tools 1.5.6, including adding hydrogen atoms, calculating and
adding Gasteiger charges, merging nonpolar hydrogen atoms, and setting rotatable torsion bonds.
Then, they were converted to pdbqt format. The parameters of the grid box are shown in Table 4. Each
grid box was centered on and encompassed the entirety of the active site. Molecular docking between
stemazole and the core targets was carried out using AutoDock 4.2 software [68] with the Lamarckian
genetic algorithm. The number of GA runs was set to 50, and other parameters were set to default
values. The binding mode with the lowest binding energy in the cluster with the most conformations
was selected for further analysis. The interactions between stemazole and the predicted targets were
visualized and displayed as 3D diagrams and 2D diagrams by using PyMOL 1.8 and ligplus.

http://lilab-ecust.cn/pharmmapper/
http://lilab-ecust.cn/pharmmapper/
http://cpi.bio-x.cn/drar/
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Table 4. Parameters of the grid box in molecular docking.

Targets PDB ID Grid Center Npts Spacing

AKT1 6HHF 5.230 2.277 20.620 60 60 60 0.375
CASP3 5IAG 8.173 −18.986 −21.032 60 60 60 0.375
CASP8 3KJN −5.713 17.721 16.597 60 60 60 0.375
MAPK8 3O2M 17.929 107.605 53.797 60 60 60 0.375
MAPK14 5ETC 5.881 76.862 22.002 60 60 60 0.375

5. Conclusions

The potential targets and molecular mechanisms underlying the effects of stemazole against AD
and PD mediated by anti-apoptosis were systematically investigated by network pharmacology. The
key pathway involved in the neuroprotective effects of stemazole is the MAPK signaling pathway, and
five key targets were identified, including MAPK8, AKT1, MAPK14, CASP3, and CASP8. In summary,
the presented findings may inspire and guide further pharmacological studies of the effects of stemazole
against neurodegenerative diseases.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/2/427/s1.
Table S1: Targets associated with Alzheimer’s disease and Parkinson’s disease, Table S2: Predicted targets of
stemazole, Table S3: The results of the GO and KEGG pathway enrichment.
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Abbreviations

GO gene ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
AKT1 RAC-alpha serine/threonine-protein kinase
CASP3 caspase-3
CASP8 caspase-8
MAPK8 mitogen-activated protein kinase 8
MAPK14 mitogen-activated protein kinase 14
AD Alzheimer’s disease
PD Parkinson’s disease
ST Stemazole
Aβ beta-amyloid
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
ABL1 Tyrosine-protein kinase ABL1
ACHE Acetylcholinesterase
AR Androgen receptor
CASP9 Caspase-9
CDK5 Cyclin-dependent-like kinase 5
CSF1R Macrophage colony-stimulating factor 1 receptor
DAPK1 Death-associated protein kinase 1
DRD3 D(3) dopamine receptor
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ESR1 Estrogen receptor
FGF2 Fibroblast growth factor 2
FYN Tyrosine-protein kinase Fyn
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
HGF Hepatocyte growth factor
HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A reductase
IGF1R Insulin-like growth factor 1 receptor
INSR Insulin receptor
MAPK8IP1 C-Jun-amino-terminal kinase-interacting protein 1
MMP9 Matrix metalloproteinase-9
PIK3CG Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform
PPARD Peroxisome proliferator-activated receptor delta
PPARG Peroxisome proliferator-activated receptor gamma
PPIF Peptidyl-prolyl cis-trans isomerase F, mitochondrial
PTGS2 Prostaglandin G/H synthase 2
TNF Tumor necrosis factor
PPI Protein–protein interaction
DHF 7,8-dihydroxyflavone
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