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Abstract: The radiosensitivity of biological systems is strongly affected by the system oxygenation.
On the nanoscopic scale and molecular level, this effect is considered to be strongly related to the
indirect damage of radiation. Even though particle track radiolysis has been the object of several
studies, still little is known about the nanoscopic impact of target oxygenation on the radical yields.
Here we present an extension of the chemical module of the Monte Carlo particle track structure code
TRAX, taking into account the presence of dissolved molecular oxygen in the target material. The
impact of the target oxygenation level on the chemical track evolution and the yields of all the relevant
chemical species are studied in water under different irradiation conditions: different linear energy
transfer (LET) values, different oxygenation levels, and different particle types. Especially for low LET
radiation, a large production of two highly toxic species (HO•2 and O•−2 ), which is not produced in
anoxic conditions, is predicted and quantified in oxygenated solutions. The remarkable correlation
between the HO•2 and O•−2 production yield and the oxygen enhancement ratio observed in biological
systems suggests a direct or indirect involvement of HO•2 and O•−2 in the oxygen sensitization
effect. The results are in agreement with available experimental data and previous computational
approaches. An analysis of the oxygen depletion rate in different radiation conditions is also reported.
The radiosensitivity of biological systems is strongly affected by the system oxygenation. On the
nanoscopic scale and molecular level, this effect is considered to be strongly related to the indirect
damage of radiation. Even though particle track radiolysis has been the object of several studies,
still little is known about the nanoscopic impact of target oxygenation on the radical yields. Here
we present an extension of the chemical module of the Monte Carlo particle track structure code
TRAX, taking into account the presence of dissolved molecular oxygen in the target material. The
impact of the target oxygenation level on the chemical track evolution and the yields of all the relevant
chemical species are studied in water under different irradiation conditions: different linear energy
transfer (LET) values, different oxygenation levels, and different particle types. Especially for low LET
radiation, a large production of two highly toxic species (HO•2 and O•−2 ), which is not produced in
anoxic conditions, is predicted and quantified in oxygenated solutions. The remarkable correlation
between the HO•2 and O•−2 production yield and the oxygen enhancement ratio observed in biological
systems suggests a direct or indirect involvement of HO•2 and O•−2 in the oxygen sensitization effect.
The results are in agreement with available experimental data and previous computational approaches.
An analysis of the oxygen depletion rate in different radiation conditions is also reported.
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1. Introduction

The radiosensitivity of biological systems is strongly affected by the system oxygenation level.
Based on evidence from in vitro experiments [1–3], tissues in hypoxic conditions, or with hypoxic
regions, may be up to three times more radioresistant compared to well-oxygenated ones [3]. This
effect is one of the main limiting factors for the tumor control in radiotherapy applications, correlating
very often with poor prognosis [4] and is generally quantified by the oxygen enhancement ratio (OER).
The OER is defined, for a given equal biological effect, as the ratio between the corresponding dose
values in fully anoxic and in oxygenated conditions,

OER(pO2) =
Dhypoxia

DpO2

∣∣∣∣∣
same effect

. (1)

On the nanoscopic level, the oxygen effect is considered to be strongly related to indirect radiation
damage [5] and, in particular, to the OH• radicals [6]. Among the chemical species produced by water
radiolysis, OH• radicals are believed to be the most harmful; they have a very short half-life and
can react with almost every molecule, including DNA [7]. In oxygenated conditions, the molecular
oxygen may react with the damaged molecule stabilizing the damage and making it more difficult to
repair [8,9]. Additionally, in oxygenated media, the radiolytic species produced during irradiation
can interact with the molecular oxygen dissolved in the target and lead to an enhanced production
of highly toxic reactive oxygen species (ROS). Solvated electrons, e−aq, and hydrogen atoms, H• , are
generated in large quantities and react to form the superoxide anion, O•−2 and its protonated form
HO•2 , which have been identified as possibly responsible for the oxygen-driven sensitization effect [10].

e−aq + O2 → O•−2 (2)

H• + O2 → HO•2 . (3)

These species are particularly damaging, since they are involved in the lipid peroxidation
chain and play an important role in the production of other toxic species, such as hydroxyl
radicals OH• through the Haber-Weiss reaction (catalyzed by the presence of transition metals),
peroxynitrite ions ONOO−through the interaction with nitrogen monoxide NO•, and H2O2 after
scavenging by superoxide dismutase enzymes (SOD). The latter theory is supported by both theoretical
approaches [11–15] and chemical and biological experimental observations [16–19] mainly based on
studies on the Fenton reaction and on the relation with SOD.

Densely ionizing radiation has been shown to mitigate hypoxia-induced radioresistance [20],
motivating a growing interest in ion radiation therapy, especially with high charge, Z, like carbon [21]
or better oxygen [22] for the treatment of hypoxic tumors. At the pre-clinical level, new optimization
techniques accounting for the oxygenation level and ion linear energy transfer (LET) have recently
been developed for particle therapy [3,21].

On the microscopic scale, this effect can be explained as a track density effect. The recombination
probability of water-induced free radicals increases with LET, resulting in a lower contribution of the
indirect effect of radiation damage and, thus, decreasing the impact of the target oxygenation condition.
However, this is not a unique explanation, many other processes might be involved as well and several
additional theories have been developed. One of the most accepted theories, the so-called “oxygen
in track hypothesis", suggests that the production of O2 molecule via multiple ionization processes
in the track of densely ionizing radiation can cause locally a partially oxygenated response [23–26].
Other possible hypotheses are the interacting radical theory [20], the oxygen depletion in the heavy
ion tracks [27], the lesion complexity hypothesis [28], and the radical multiplicity [29].

Though many theories have been developed, the nanoscopic processes involved in the oxygenation
effect still have to be clarified and very little experimental data at that scale is available. Monte Carlo track
structure codes are particularly suitable for studying the microscopic processes involved in the radiation
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damage. Among them, several codes are able to describe the transport of particle radiation in a medium
including the chemical stage of radiation effect. In most of the cases, however, the chemical evolution
of a particle track is described in pure water, without taking into account the impact of any dissolved
species, like molecular oxygen, on the chemical reaction chain. Recently the Monte Carlo particle track
structure code TRAX has been extended to the pre-chemical and chemical stage of radiation in water. A
full description of the code can be found in Boscolo et al. [30]. With the new TRAX-CHEM module, the
production, diffusion, and interaction of radiation-induced water-derived radicals can be studied with a
step-by-step approach under different irradiation conditions.

A further extension of the code, able to account for different concentrations of dissolved molecular
oxygen in the target material, is presented in this work. In order to limit the computational costs
of the simulation, the dissolved oxygen molecules are assumed to be uniformly distributed in the
target material and are treated as a continuum. Time-dependent and LET-dependent yields of all
the considered radiolytic species at different oxygenation levels have been studied for different ion
radiations and energies.

2. Results

2.1. Radiolysis of Oxygenated Water

The time-dependent yield of the chemical species has been evaluated for different target
oxygenations and radiation qualities in the time interval 10−12–10−6 s. Figure 1 shows the chemical
evolution of 90 MeV proton radiation in targets under four different oxygenation conditions: 0%
(complete anoxia), 3% (compatible with typical tumor oxygenation levels), 7% (in the range of normal
tissue oxygenation, a condition called “physioxia") and for a target in fully aerated conditions 21%.

In the early stage of the chemical track evolution (up to∼ 1 ns after the passage of radiation) the radical
yields are not affected by the presence of dissolved molecular oxygen in the target and follow the normal
water radiolysis behavior. The ion track is very dense and the interaction among the radiation-induced
radicals dominates the chemical evolution (independently of the target oxygenation level). At this stage
the main products of water radiolysis (OH•, H3O+, e−aq) are the most abundant species; their yield is
maximum at the beginning of the chemical stage and decreases with time, as these species are involved in
many reaction processes and are consumed during the chemical track evolution. At the same time, the
yield of the main reaction products (H2O2, H2, and OH−) increases during the chemical stage.

After the early stage of the chemical track evolution (1 ns after the passage of radiation), the
radical distribution becomes more diffuse and the track dynamics become slower. As a consequence,
the interaction of the radiolytic species with the dissolved oxygen becomes more prominent and the
chemical track dynamics start to depend strongly on the target oxygenation level.

The main effect of the target oxygenation is the consumption of the e−aq and H• , which are strongly
scavenged by the molecular oxygen (Equations (2) and (3)). For pO2 = 7% and pO2 = 21% a complete
consumption of the e−aq and H• can be observed after 0.8 µs and 0.2 µs, respectively. In the case of
pO2 = 3%, only a small decrease with respect to the completely anoxic target in the electron yield can
be observed at the end of the chemical stage. However, on a larger timescale, exceeding the range
covered by the TRAX-CHEM code, all these e−aq and H• will be eventually depleted.

Together with the e−aq and H• consumption, the production of O•−2 and HO•2 is the major effect of
dissolved oxygen in the target during the process of water radiolysis. The production yield of HO−2 is
negligible over the time covered by the calculations, for all oxygen concentrations analyzed.

In Figure 2, the calculated time-dependent yield of solvated electrons, produced by a proton track
of 5 MeV, in a target with a partial oxygen pressure in air of 21% has been compared with different
chemical track structure codes [15,31]. The initial electron yield, simulated by the TRAX-CHEM code,
is higher as compared to the other simulation approaches. This can derive from the use of different
cross-section sets or different dissociation models adopted by the different codes [32]. However, due
to the lack of experimental data, large variability exists in the predicted radical yield at the very early
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stages of the chemical evolution [33]. At later stages of the track evolution, all codes show good
agreement and predict a full electron consumption at about 0.2 µs after the passage of radiation.

Figure 1. Time dependent yield of the chemical species generated by a 90 MeV proton track (linear
energy transfer (LET) = 0.56 keV/µm) in a pure water target (top left) and in an oxygenated water
target in equilibrium with an atmospheric partial oxygen pressure at the water surface of 3% (top
right), 7% (bottom left), and 21% (bottom right).

Figure 2. Comparison of different time dependent calculated yield for e−aq produced by irradiation
with 5 MeV protons in a target with a partial oxygen pressure in air of 21%. —— : TRAX-CHEM, – – – :
Colliaux et al. [15], • : Štepán and Davídková [31].

2.2. Time-Dependent Radiolytic Yield for Different Oxygen Concentrations

Since the major effects of target oxygenation have been observed on the time evolution of e−aq, H• ,
HO•2 and O•−2 , their time-dependent yields have been studied for a set of oxygen concentrations ranging
between pO2 = 0% and pO2 = 21%. Figure 3 shows the simulation results for 500 keV electron tracks.
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An increasing production of O•−2 and HO•2 (and a decrease in the yield of e−aq and H• ) is
observed for all oxygen concentrations. The oxygen reaction dynamics become faster when increasing
the oxygen concentration and, for oxygenation levels above pO2 = 5%, complete consumption of
the e−aq and H• can be observed within a microsecond, leading to a saturation in the production
of O•−2 and H2O . The yield at the saturation level of the O•−2 nearly matches the yield of the
solvated electrons in anoxic conditions: in fully oxygenated conditions (pO2 = 21%) the yield of
O•−2 GO−2

(10−6s,pO2 = 21%) = 2.24 and the electron yield in anoxia is Ge−aq
(10−6s,pO2 = 0%) = 2.25.

The production yield of the HO•2 is slightly larger compared to the maximum yield of the H•

in hypoxic conditions: GHO•2 (10−6s,pO2 = 21%) = 0.66 while GH•(10−6s,pO2 = 21%) = 0.56. Even
though the larger part of the HO•2 is produced through the reaction process described in Equation (3),
a smaller but not negligible contribution of the HO•2 yield comes from the recombination of O•−2 with
H3O+, (reaction (xxiii) in Table 1):

H3O+ + O•−2 → HO•2 . (4)

In the present simulations, pH and the acid-base equilibrium of HO•2 and O•−2 are not modeled
explicitly, so that all GO−2

and GHO•2 reflect their production by radiolysis rather than a stable

concentration. The pKa of 4.8 leads to an equilibrium ratio [O•−2 ]/[HO•2] at neutral pH of about
250. Accordingly with what is observed in Figure 1, for targets at oxygenation levels larger than
5% a complete consumption of e−aq and H• can be observed and the chemical evolution reaches an
equilibrium. For less oxygenated targets, however, the chemical dynamic is slower and the equilibrium
is not reached within a microsecond and can proceed in a complex way at larger timescales.
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Figure 3. Time dependent yield for e−aq (top left), H• (bottom left), O•−2 (top right) and
HO•2 (bottom right) in an oxygenated water target, with oxygen concentration on the water surface
between pO2 = 0% and pO2 = 21%, for 500 keV electron irradiation.
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2.3. pO2-Dependent Radiolytic Yield for Different LET

The final radical yield (t = 1 µs, i.e., at the very end of the chemical stage) of all chemical species has
been studied as a function of the oxygen concentration. Figure 4 shows the results of the calculations
performed for different particles and different LET values: an electron track of 1 MeV, a proton track of
10 MeV and a carbon track of 10 MeV/u. The total yield of the chemical species is larger for low LET
radiation and decreases when increasing the LET. For high LET radiation, the reaction kinetics is much
faster: the ion track is denser, resulting in a larger recombination probability of the chemical species
generated during the water radiolysis. Additionally, the yield of the recombination products (H2O2,
H2 and HO•2 ) increases when increasing the LET.

The general trend of the radical yield at the different oxygenation conditions is similar for all
the radiation qualities investigated. In all cases, the chemical species affected most by the dissolved
molecular oxygen are O•−2 , HO•2 , e−aq and H• . A rapid decrease in the yield of the e−aq and H• with
increasing target oxygenation level can be observed up to pO2 ∼ 5%. For larger oxygenation levels,
e−aq and H• are completely depleted. Accordingly, a steep increase of the production yield of O•−2 and
HO•2 is observed for oxygen concentrations up to pO2 ∼ 5%, but further increasing this value a
saturation level is reached for the O•−2 while the yield of the HO•2 continues to increase but in a much
slower way.

The production yield of all the other radiolytic species is less significantly modified by the
water oxygenation level. An increase of the H2O2 yield with the oxygen concentration can be
observed especially for higher LET radiation. For 10 MeV/u carbon ions, the G-value at 1 µs of
the H2O2 increases from 0.89 (for the anoxic case, pO2 = 0%) to 1.19 (for the fully oxygenated target,
pO2 = 21%). For the 1 MeV electron radiation the H2O2 G-value goes from 0.6 (in the anoxic target) to
0.67 (in the target with pO2 = 21%). The time dependent yield of the H2O2 is the result of two main
processes:

OH• + OH• −→ H2O2 (5)

e−aq + H2O2 −→ OH• + OH−. (6)

The first process is dominant at the early stages of the chemical track evolution and is the main
production channel of the H2O2 while the second process becomes significant after 1 ns and removes
H2O2 from the target. The contribution of the first process is more relevant in the dense primary
radical condition after, high LET radiation, and is potentiated by the absence of the second one if
sufficient molecular oxygen is present (due to competition with the molecular oxygen scavenging
effect). The combined effect results in a larger yield of H2O2 at 1 µs after irradiation. A small increase
of the OH• radical yield and a small decrease of the H3O+, H2 and OH− yield can be observed, but in
these cases, changes in the production yield at the microsecond are lower than 10%.

Figure 5 represents the consumption yield of the molecular oxygen at the end of the chemical
stage, as a function of the target oxygenation, for different ion radiation qualities: 90 MeV proton
(LET = 0.56 keV/µm), 10 MeV proton (LET = 3.9 eV/µm)), 10 MeV/u helium ion (LET = 15.2 keV/µm)
and 10 MeV/u carbon ion (LET = 133 keV/µm). The formation of molecular oxygen through
second-order recombination processes (see reactions (xvi), (xvii), (xxv) and (xxvi) in Table 1) is also
taken into account. In fully oxygenated conditions and for high LET radiation tracks, at 1 µs after the
passage of radiation, up to 25% of all the molecular oxygen initially depleted is regenerated in the
target through these secondary processes.
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The “yield” of oxygen consumption increases with increasing target oxygenation until reaching
a plateau at pO2 = 5% when all the radiation-induced solvated electrons are scavenged. Though
the plateau starts at pO2 = 5% for all the radiation quality investigated, the total yield of oxygen
consumption is higher for low LET radiation. In contrast, for high LET radiation, the maximum yield
of oxygen consumed is lower and the decrease at low oxygenation is more moderate.

e- 1 MeV 1H 10 MeV 12C 10 MeV/u

Figure 4. Radiolytic yields, at 1 µs, for all the different chemical species generated by the water
radiolysis at different oxygenation conditions by 1 MeV electron irradiation (LET= 0.13 keV/µm) on
the left panel and 10 MeV proton (LET= 3.9 keV/µm) in the central panel and 10 MeV/u carbon ions
radiation (LET= 133 keV/µm) on the right panel.

Figure 5. Consumption of the molecular oxygen for different target oxygenation levels and induced
by different LET radiations. The consumption yields are calculated at the end of the chemical track
evolution, t = 1 µs.
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2.4. Radiolytic Yields for Different LET and Particle Type in Oxygenated Water

The impact of dissolved molecular oxygen on the final radical production yield has been studied
under different oxygen concentrations for different particle radiation and different energies. Water
targets at oxygenation levels of 21%, 3%, 0.2% and 0%, respectively, irradiated by protons, helium,
and carbon ions with LET values ranging between 0.14 and 232 keV/µm are investigated here. LET
dependent yields at the completion of the chemical stage are shown in Figure 6.

These results are in agreement with what has been already observed in Figures 3 and 4: the
solvated electrons and the atomic hydrogen (e−aq and H• ) yields decrease significantly with the
increase of the oxygen concentration until full depletion of these species is observed in the case of
complete oxygenation for all the radiation qualities investigated. The yields of O•−2 and HO•2 , which
are the two main indicators of the presence of molecular oxygen in the target, increase when increasing
the target oxygenation over the entire range of LETs investigated. Their production yield is maximum
for lower LET radiation and decreases for higher LET.

Only minor effects of the target oxygenation are observed for the other chemical species generated
by water radiolysis. The scavenging effect of the solvated electrons and atomic hydrogen radicals leads
to a general decrease in the production of the H2 molecule which is mainly generated as a product of
the recombination processes described by reactions (vi) and (x) in Table 1:

e−aq + e−aq + 2H2O −→ H2 + 2OH− (7)

H• + H• −→ H2. (8)

Consistent with what is shown in Figure 4, increased production of H2O2 can be observed in
oxygenated conditions at high LET, while no effect is apparent at low LET.

The yield of the OH• radical is slightly higher in an oxygenated target for low LET, while at
intermediate LET no difference between oxygenated and hypoxic target is observed. A larger yield of
OH• is observed in the anoxic case in the high LET region. One of the main processes consuming the
OH• radical is its interaction with a solvated electron. For oxygenated targets, this reaction is directly
competing with the interaction of the e−aq with the O•−2 and results in a lower amount of scavenged
OH•. For high LET, however, the track kinetic is faster and the OH• reacts with the e−aq before the
interactions with the dissolved oxygen become dominant.

The discontinuities are shown on the LET dependent curves in Figure 6 are due to the different
simulated radiation types. This is because the LET is not a unique parameter for describing a particle
track structure, and it also depends on the charge and speed of the primary particle. However, the
dependence on the particle seems to vary not significantly with the oxygenation level of the target.
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Figure 6. LET dependent radiolytic yields for all chemical species generated by the water radiolysis in
water target at a partial oxygen pressure of 0%, 0.3%, 2% and 21%. Calculations were performed with
protons, helium ions and carbon ions at one microsecond after the irradiation.

3. Discussion

Motivated by the need for a better understanding of the nanoscopic processes underlying the
oxygen-induced radiosensitivity, the chemical track dynamics of the radiolytical species generated by
different radiation qualities has been studied for water targets at different oxygenation levels.

Time-dependent radical yields for targets at different oxygenation levels have been calculated for
proton and electron radiation, Figures 1 and 3. For all the investigated conditions, the impact of the
target oxygenation can be observed only in the later stages of the chemical track evolution, indicating
that for the first nanoseconds the radical yields are determined only by the intra-track recombination
processes, independent from the target conditions.

The main effect of the dissolved molecular oxygen in the target is the consumption of e−aq and H•

and a corresponding production of O•−2 and HO•2 (see reactions (2) and (3)). At 1 µs after the passage
of radiation, a complete depletion of e−aq and H• is observed for oxygen concentrations larger than
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pO2 = 5%. For oxygen concentrations lower than pO2 = 5% the probability of interacting with the
dissolved molecular oxygen is lower and the equilibrium on the radical yields is not reached within
a microsecond (the time frame covered by the TRAX-CHEM simulations, and normally considered
as the end of the chemical stage). The temporal interval of the simulation is chosen in a way that
the chemical track evolution can be considered concluded; the radical distribution can be assumed
to be uniform and the reaction process is determined only by the reactant concentration and not by
their spatial distribution. As shown in Figure 7 the track structure is lost on the microsecond time
scale and only a slightly increased radical concentration can be observed on the micrometer scale close
to the track center. At the conclusion of the chemical stage, in completely anoxic conditions, when
only the intra-track reactions are accounted for, the reaction rates of the different radicals are very
low and the yields of the different species become constant. Typical proton and electron track radii
corresponding to the end of the chemical stage are in the order of several hundreds of nanometer up to
one micrometer.

However, when interactions with target molecules are possible, such as in oxygenated conditions,
the radiolytic species will keep interacting with the target even after the track structure is completely
lost. The radical yields will not reach equilibrium within the µs time frame and the chemical kinetics
can proceed in a complex way for a very long time [15]. In the case of oxygenated water, according to
our model (Table 1), the only species able to interact with the dissolved oxygen are e−aq and H• . Thus,
it is to be expected that the whole track reaction kinetics will be limited to the lifetime of these two
species in the target material. The chemical evolution of homogeneous systems is beyond the scope of
this study; therefore, it has been decided to not extend the simulation time but to limit the study to the
accepted time frame of the track evolution.

Figure 7. Chemical evolution of a 10 MeV/u carbon ion track in an oxygenated water target with an
oxygen partial pressure pO2 = 21%. Track shown in beam eye view.

The radical production yields at the completion of the chemical track evolution have been studied
for different radiation types and oxygenation levels. In Figure 4 the G-values for all the radiolytic
species as a function of the oxygen concentration are studied for 1 MeV electron, 10 MeV proton and
10 MeV/u carbon ion radiation, while in Figure 6 the LET dependence of the radical production yield
is reported for 21%, 2%, 0.3% and 0% pO2. The yield of O•−2 and HO•2 increases with increasing target
oxygenation over the whole range of analyzed LET. Their production yield is maximum for lower LET
radiation and decreases for higher LET values. This strong dependence on the LET can be explained
as a track structure effect: for high LET the ion track is denser and radicals are produced in close
proximity. The radiation-induced water radicals will, then, recombine reacting with each other before
any significant oxygen scavenging effect. Similar results have been obtained by Colliaux et al. [15]
where the LET dependent yield of (HO•2 + O•−2 ) has been calculated in an oxygenated water target
with pO2 = 21% and, as in our calculations, a pronounced decrease in the yield of (O•−2 + HO•2 ) with
LET has been observed. A significant increase in the production of H2O2 has been also observed for
oxygenated targets, especially for high LET irradiation.
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Figure 8. G-values for the production of superoxide and perhydroxyl (left) and oxygen enhancement
ratio (OER) (right) are depicted as a function of target oxygenation. The OER values are calculated
according to the parametrization proposed by Tinganelli et al. [3] but using definition (1).

When considering the correlation between the production yield of O•−2 and HO•2 at different LETs,
particle types, and dissolved oxygen concentrations, it is reasonable to believe that the interaction
of e−aq and H• with the molecular oxygen leads directly or indirectly to the production of toxic
species, able to damage the cell structure or alter cell signaling. This theory is supported by
many studies [11–19,34–36] and correlates well with in vitro experiments, showing that the oxygen
enhancement effect in biological systems has a pronounced dependence on the radiation LET [3,37,38]
(it decreases when irradiating with higher LET radiation). This parallelism between the production
of O•−2 and HO•2 and the oxygen effects observed in biological systems becomes even more evident
when comparing production yields of O•−2 and HO•2 and the OER curve under different irradiation
and target conditions. As shown in Figure 8, the general trend of the OER and of G(O•−2 +H2O ) as
a function of the target oxygenation level are very similar: a steep increase in both curves can be
observed when increasing the target oxygenation until reaching a plateau for partial oxygen pressures
larger than 5%. Additionally, a reduction of the entire OER curve and G(O•−2 +H2O ) is observed
when increasing the LET for all the oxygenation levels. However, the OER curve shows a maximum
sensitivity on the LET for values ∼ 100 keV/µm while the radical yield has a maximum sensitivity
for LET values ∼ 10 keV/µm. Therefore, it is not straightforward to deduce the oxygenation effect in
biological systems directly within the present theoretical framework. The present study is focused,
indeed, on assessing the role of one possible sensitization mechanism but additional pathways, e.g.,
the oxygen fixation, must be also taken into account when aiming at a complete explanation of the
oxygen-induced radiation sensitivity. Additionally, a water target is a considerably simplified system
compared to the cellular environment and all the complex reaction chains taking place with cell
medium, including the secondary reactions taking place at further stages, the biological damage
and its repair, and the possible cross-talk with signaling pathways caused by altered levels of some
ROS, are not accounted for. In this context, further extensions of the model can be considered in
order to take into account the presence of additional solutes known to play an important role in the
induction of radical damage, such as nitrogen monoxide NO•, carbonate or bicarbonate ions, or the
presence of metals to catalyze the Fenton chemistry [34,39]. At the same time, radical scavengers
such as superoxide dismutase (SOD), catalase (CAT), gluthatione peroxidase (GSH) could be included
in the model [40]. However, considering that all these species will only have a role in the system
dynamic at later stages of the chemical track evolution, when the primary radiation-induced radicals
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are already diffused, computationally lighter approaches based on the homogeneous chemistry might
be considered appropriate for the implementation of further stages of the system dynamics.

The investigation of the influence of target oxygenation and LET on radiation-induced radical
production and oxygen consumption opens the way for applications where these factors are being
discussed to enable a differential radioprotective effect. This includes e.g., ultra-high dose rate (FLASH)
conditions [39,41,42] where high instantaneous concentrations of ROS are produced and replenishment
of oxygen through diffusion is too slow to maintain stable oxygenation.

4. Materials and Methods

4.1. Simulation of Particle Track Evolution in Non-Oxygenated Water

The evolution of charged particle tracks is described in TRAX-CHEM as a three steps process:
the physical, the pre-chemical and the chemical stage. These three stages take place subsequently and
are characterized by a characteristic time scale. The physical stage of the radiation track evolution
consists of the simulation of the ionization and excitation processes along the particle track and is
simulated with the standard version of the TRAX code [43]. The electron and ion tracks are simulated
with an event-by-event approach, until they reach a cutoff energy of 7.4 eV, which corresponds to
the lower electronic excitation level of water. Ion and electron interactions are described through a
set of shell specific ionization and excitation cross-section tables, and Auger electron production and
electron elastic scattering cross sections are implemented as well. Multiple ionization processes and
photon interactions are not implemented in the current version of the TRAX code. At the conclusion of
this stage, which is assumed to be at 10−15s after the irradiation, the positions and the shell specific
ionization or excitation levels of the target water molecules are provided and can be used as an input
for the following stage.

The pre-chemical stage, which lasts up to 10−12s, consists of the dissociation and thermalization
of all the products generated during the physical stage: HO+

2 , HO∗2 and e−aq. The probability of
undergoing a dissociation process or relaxing to the ground state depends on the specific ionization or
excitation channel. In TRAX-CHEM, all the ionized molecules are thought to dissociate to OH• and
H3O+, while four possible dissociation patterns have been considered for excited water molecules:
auto-ionization, two dissociative decays ( OH• + H• and H2 + H2O2) and relaxation to the ground state.
During the dissociation process, a fraction of energy is transferred to the dissociation fragments as
kinetic energy. These species will then need to release this energy and thermalize with the surrounding
medium before starting to behave and interact as chemical species. A complete description of the
dissociation and thermalization model has been reported in Boscolo et al. [30]. At the end of the
thermalization process, the pre-chemical stage is considered to be concluded and the last and longest
stage of the track evolution begins the chemical stage.

During the chemical stage, the radiolytic species diffuse and interact among themselves until
reaching the chemical equilibrium. In TRAX-CHEM these two processes are described with a step
by step approach, which allows us to determine the position of each chemical species in every step
of the simulation. For every time step, the Brownian diffusion process is modeled with a jump in
a random direction. The reaction model is described through a proximity parameter; the reaction
radius. If two species are closer than the corresponding reaction radius, the reaction is supposed
to take place: the two reactants are removed from the chemical list and substituted by the reaction
products. Inter-track reactions (i.e., reactions of chemical species originating from different primary
particles) are not included in the present TRAX-CHEM extension. Details on the implementation of the
chemical model including the stepping algorithm, the reaction models, the calculation of the reaction
radii and the diffusion model have been presented in Boscolo et al. [30]. Complete lists of the reactions
and the chemical species implemented in TRAX-CHEM are provided in Tables 1 and 2; these tables
have been updated and extended with respect to the initial ones [30] in order to take into account the
presence of dissolved molecular oxygen in the target, as presented in the next section. In TRAX-CHEM
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the chemical stage, and thus the track evolution, is supposed to conclude 10−6 s after the physical
irradiation interactions. After this time, the chemical yields of the different species become constant
and the track development can be considered to be finished.

Table 1. List of all the reactions and reaction rate constants, k, used in this work (obtained mainly from
[44]). Reactions (14)-(26) arise as a consequence of the presence of dissolved O2.

Reaction Products k(1010dm3mol−1s−1)

(i) OH•+ OH• −→ H2O2 0.6
(ii) OH•+ e−aq −→ OH− 2.2
(iii) OH•+ H• −→ H2O 2.0
(iv) OH•+ H2 −→ H• + H2O 0.0045
(v) OH•+ H2O2 −→ HO•2+ H2O 0.0023
(vi) e−aq+ e−aq+ H2O+ H2O −→ H2+ OH−+ OH− 0.55
(vii) e−aq+ H• + H2O −→ H2+ OH− 2.5
(viii) e−aq+ H3O+ −→ H• + H2O 1.7
(ix) e−aq+ H2O2 −→ OH•+ OH− 1.0
(x) H• + H• −→ H2 1.0
(xi) H• + H2O2 −→ OH•+ H2O 0.01
(xii) H• + OH− −→ e−aq+ H2O 0.002
(xiii) H3O++ OH− −→ H2O+ H2O 10.0
(xiv) e−aq+ O2 −→ O•−2 1.9
(xv) H• + O2 −→ HO•2 2.0
(xvi) OH•+ HO•2 −→ O2 1.0
(xvii) OH•+ O•−2 −→ O2+ OH− 0.9
(xviii) OH•+ HO−2 −→ HO•2+ OH− 0.5
(xix) e−aq+ HO•2 −→ HO−2 2.0
(xx) e−aq+ O•−2 −→ OH−+ HO−2 1.3
(xxi) H• + HO•2 −→ H2O2 2.0
(xxii) H• + O•−2 −→ HO−2 2.0
(xxiii) H3O++ O•−2 −→ HO•2 3
(xxiv) H3O++ HO−2 −→ H2O2 2.0
(xxv) HO•2+ HO•2 −→ H2O2+ O2 0.000076
(xxvi) HO•2+ O•−2 −→ O2+ HO−2 0.0085

Table 2. List of all the chemical species and their diffusion coefficients, D, added to the chemical species
list of TRAX to describe the impact of dissolved molecular oxygen in the water target.

Species D (10−9m2s−1)

OH• 2.8
H3O+ 9.0
H• 7.0
e−aq 4.5
H2 4.8
OH− 5.0
H2O2 2.3
O2 2.1
HO•2 2.0
HO−2 2.0
O•−2 2.1

4.2. Simulation of Particle Track Evolution in Oxygenated Water

The classical version of the TRAX-CHEM code has been modified and is now able to simulate
the chemical evolution of ion tracks in water targets under different oxygen pressure conditions. The
particle list and the reaction network of the classical version of the TRAX-CHEM code have been,
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thus, extended (see Tables 1 and 2) and new species, generated by the interaction of O2 with the
radiation-induced water-free radicals, are now included in the track chemical evolution.

In contrast to all other species, which are explicitly included in the code and treated
with the step by step approach mentioned above, the molecular oxygen is assumed to be
homogeneously distributed in the target and is treated as a continuum. This approximation, proposed
by Pimblott et al. [45], Green et al. [46], is necessary to limit the computational cost of the simulations
and has also been adopted by other authors [13,14,47,48]. The explicit introduction of the oxygen in the
simulation would dramatically increase the computing time, even for very dilute solutions [45]. As an
example, in a chemical simulation of a 10 MeV proton track in a cubic volume of 5 µm side the number
of radiolytic species produced per particle track is about 103. In a fully oxygenated condition (21% pO2,
corresponding to a concentration of 0.27 mmol/litre) the number of oxygen molecule that have to be
explicitly introduced (in the same cubic volume of 5µm side) and followed at every single step of the
simulation is about 2 × 107, increasing the simulation time by more than four orders of magnitude.
Considering the relatively low radiation-induced oxygen consumption compared to the total amount
of molecular oxygen dissolved in the target, a variation of the global oxygen concentration during the
track evolution can be excluded for all the oxygenations and radiation conditions examined. When
investigating the possibility of noticeable local oxygen depletion in the track cores, it has to be kept in
mind that the interaction of the radiolytic species with the target occurs in a later stage of the expanding
chemical track evolution since the reaction dynamic between the induced chemical species is slower.
For high LET ions (∼100 keV/µm), the highest local density of oxygen removal is reached around 10
ns within 10-20 nm of the track core and stays below 250 µM, quickly decreasing as the chemical track
diffuses and oxygen conversion to superoxide and perhydroxyl becomes important. For even larger
LET values, only a slightly delayed onset of the HO•2 and O•−2 production can, therefore, be expected.
Similar conclusions have been reported by Colliaux et al. [15]. Additionally, the molecular oxygen
production through multiple ionizations is not accounted for here, but it has been demonstrated that
the contribution of this process to the radical yield is very low [15].

Under these conditions, given an oxygen concentration cs, the probability for a radiolytic species
to interact with an oxygen molecule of the target is determined by the rate equation:

dΩ(t)
dt

= −k(t)csΩ(t), (9)

where Ω(t) is the time-dependent survival probability of the molecule of interest. The time dependent
rate coefficient k(t) for the reaction of interest can be calculated according to the Noyes theory [49], as:

k(t) = 4πD′Rreac

(
1 +

Rreac√
πD′t

)
, (10)

where D′ is the relative diffusion coefficient defined, considering the two species A and B,
D′ = DA + DB and Rreac is the reaction radius defined according to the Smoluchowski theory, as

Rreac =
kAB

4π(DA + DB)
. (11)

The probability for a molecule to react with the dissolved oxygen in a time t will, thus, be:

W(t) = 1−Ω(t) = 1− e−4πD′Rreaccs
(

t+2Rreac

√
t

πD′
)

. (12)

Since TRAX-CHEM uses a variable time step, the probability W(t) that a species will interact
is calculated for each time step and is sampled through a uniformly distributed random variable
x ∈ [0 : 1]. When x ≤W(t) the reaction is taking place, the reactants are removed from the simulation
and replaced by the corresponding reaction products.
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4.3. Calculation

In order to identify a range of oxygen concentrations compatible with the one of a biological
system, the concentration of molecular oxygen dissolved in the water target is calculated from the
partial pressure of oxygen in the air within standard conditions of pressure by Henry’s low. Given a gas
partial pressure, pgas (in atmospheres), the solubility of the gas at a fixed temperature in a particular
solvent, cs (in mol per liter):

cs = KH · Pgas, (13)

where KH is Henry’s constant and corresponds to the gas solubility in water. For O2 at a temperature
of 20 ◦C, Henry’s constant is KH = 1.3 × 10−3 mol/(l atm). In fully oxygenated conditions
(partial oxygen pressure pO2 = 21%), the oxygen concentration equals 0.27 mmol/L.

For the results presented in the present simulation results, G values, i.e., numbers of species
produced per 100 eV energy deposition, have been calculated for all the chemical species in a simulated
volume of 5× 5× 5 µm3 for low LET radiation. In the case of high LET radiation, a geometry reduced
in the beam direction of 5× 5× 0.5 µm3 was chosen in order to guarantee the track segment condition.
For each simulation, a series of parallel calculations were performed in order to reduce the statistical
uncertainty. The number of primary particles was chosen so that a total energy of 2.5 MeV was
deposited in the target. The statistical fluctuation in the chemical simulations has been evaluated for
every single primary particle and was shown to be within 10% [30].

5. Conclusions

In the presented work, the impact of target oxygenation on radical production yields has
been studied for electron and ion radiation in water with the recently implemented extension of
the TRAX-CHEM code, able to handle the presence of dissolved molecular oxygen in the target.
The molecular oxygen concentrations investigated in this work range from anoxic conditions
(pO2 = 0%) to air-saturated water targets (pO2 = 21%). Time-dependent and LET dependent yields of
all the simulated radiolytic species at different oxygenation levels have been studied for different ion
radiation and different energies up to 1 µs after the passage of radiation. In oxygenated conditions,
a large production of two highly toxic species (O•−2 and HO•2) has been predicted, especially for low
LET radiation. These species are generated as reaction products, from the interaction of respectively
e−aq and H• with the dissolved molecular oxygen. Thus, a decrease in the final (1 µs) yield of the
e−aq and H• is observed in oxygenated targets until reaching a complete consumption for oxygen
concentrations at the water surface larger than 5%. Little impact of the dissolved molecular oxygen
has been predicted on the production yield of the other radiolytic species, with the exception of the
H2O2 whose yield is expected to increase with the target oxygenation especially for high LET radiation
tracks. Consistent with the LET dependence of the oxygen effect on the macroscopic level, a strong
decrease in the production yields of O•−2 and HO•2 is observed with the increase of the LET. The strong
correlation between the production yields of (O•−2 and HO•2) and the oxygen radiosensitization effect
observed in in vitro cell clonogenic experiments indicate a possible direct or indirect involvement of
these species in the indirect radiation damage. Although the code is not yet able to resolve the oxygen
effect in biological media and does not account for mechanisms e.g., the oxygen damage fixation, the
present implementation provides quantitative insights on the nanoscopic processes involved in the
sensitizing effect of oxygen. Further extension of the code to later stages of the chemical dynamics
including radiosensitizers, radical scavengers, and specific molecular targets of interest in the cell may
be considered.
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