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Abstract: Despite recent developments in innovative treatment strategies, stroke remains one of the 

leading causes of death and disability worldwide. Stem cell therapy is currently attracting much 

attention due to its potential for exerting significant therapeutic effects on stroke patients. Various 

types of cells, including bone marrow mononuclear cells, bone marrow/adipose-derived 

stem/stromal cells, umbilical cord blood cells, neural stem cells, and olfactory ensheathing cells have 

enhanced neurological outcomes in animal stroke models. These stem cells have also been tested 

via clinical trials involving stroke patients. In this article, the authors review potential molecular 

mechanisms underlying neural recovery associated with stem cell treatment, as well as recent 

advances in stem cell therapy, with particular reference to clinical trials and future prospects for 

such therapy in treating stroke. 
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1. Introduction 

Besides the rapidly expanding use of thrombectomy as a remedy for acute ischemic stroke [1], 

few drugs that can effectively recover its sequelae have been developed. Lately, stem cell therapy has 

been recognized as a promising strategy that functionally enhances recovery from ischemic stroke. 

Thus, a variety of cells, including bone marrow mononuclear cells (BMMNCs) [2–21], bone 

marrow/adipose-derived stem/stromal cells (BMSCs/ADMSCs) [4,6,7,22–31], umbilical cord blood 

cells (UCBCs) and hematopoietic stem cells [32–37], neural stem cells (NSCs) [34,36,38–43], olfactory 

ensheathing cells (OECs) [38], and fetal porcine cells [44], have been explored as candidate donors. 

Animal studies have indicated that such cells may ameliorate the neurological deficits that follow 

cerebral stroke, and some have been tested in clinical trials with somewhat favorable results. 

However, many issues, such as the need to develop techniques that maximally enhance the effects of 

cell therapy on stroke, remain unresolved, and require clarification [45–48]. These issues relate to 

optimal cell types, cell doses, transplantation routes, and candidate patient types (Figure 1). In 

addition to the refinement of scientific aspects, cell therapy requires an assessment from a commercial 

point of view, to be successfully distributed as a new therapeutic method. Cell therapy requires the 

implementation of good manufacturing practice (GMP) grade production method at a reasonable 

cost for production, preservation, and transfer of the cells. Here, the authors review potential 

mechanisms underlying stem cell-associated neural recovery, the current status of clinical trials, and 

future prospects for utilizing cell therapy against ischemic stroke. 
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Figure 1. Unsolved issues regarding stem cell treatment for ischemic stroke. The most effective and 

safest method of stem cell therapy has not been established. The challenges include the choice of cell, 

cell dose, transplantation routes, and patient type. ES cell: embryonic stem cell, iPS: induced 

pluripotent stem cell. 

2. Pathophysiology of Ischemic Stroke and Therapeutic Targets 

To coordinate bodily processes, the brain requires approximately 20% of the entire cardiac 

output of glucose and oxygen, which is equivalent to only 2% of total body weight [49,50]. As the 

brain stores little or no energy on its own, disruption of the energy supply, even for a short duration, 

may lead to catastrophic damage. Ischemic stroke is often caused by the occlusion of a single blood 

vessel, which subsequently affects its downstream branches via deprivation of glucose and oxygen. 

Although brain arteries possess a network of collateral vessels that compensate by ensuring the 

delivery of blood, it is often insufficient to rescue the whole ischemic area, as a result of which 

ischemic areas closer to the occluded vessel become more susceptible to receiving less blood. 

Theoretically, an affected brain may be divided into two different damaged areas, namely the 

ischemic core and the penumbra. Because the blood flow in the ischemic core is lower than the 

threshold required for cell survival, its cells are irreversibly damaged and die due to necrosis, for 

which there is no rescue. In contrast, blood flow at the penumbra is too low to support neurological 

functions but provides the minimal energy required for preventing cells from immediate death, 

allowing the brain cells to recover if blood flow is restored in time [51]. Therefore, current treatment 

strategies for stem cell transplantation involve rescuing the penumbra before it dies, or regaining a 

new neuronal network via cell transplantation [52]. The ischemic cascade in the penumbra progresses 

with time. Events including the depletion of adenosine triphosphate (ATP); disturbance of ionic 

concentrations of sodium, potassium, and calcium, increased lactate, acidosis, accumulation of 

oxygen free radicals, the release of excitotoxic glutamate, and intracellular accumulation of water, 

may be initiated within minutes to hours following the onset (acute phase) of stroke. This acute phase 

may be followed by events such as apoptosis of neuronal cells, infiltration, and activation of 

inflammatory cells (neutrophil, monocyte, and microglia), vasogenic edema, and increase in 

intracranial pressure, within hours to weeks (subacute phase) [53]. Although the condition of the 

brain appears to stabilize during the chronic phase (months to years), recent findings indicate that 



Int. J. Mol. Sci. 2020, 21, 7380 3 of 21 

 

inflammation and blood–brain barrier leakage, which are detrimental to brain recovery, may 

continue [54–57]. 

Currently, standardized treatments, such as thrombectomy and recombinant tissue 

plasminogen activator (r-tPA) therapy, are applied during the acute phase (<4.5 h). These treatments 

aim to recanalize the occluded vessel and rescue the penumbra. However, it is often difficult to 

successfully apply these treatments during short time periods, and reportedly, only 5–10% of all 

stroke patients become eligible for such treatment [58]. Stem cell therapy, which is known to be 

effective in all three phases, namely acute, subacute, and chronic, reportedly exerts multiple effects 

on animal models, such as extending the penumbra period (acute phase), inhibiting unwarranted 

inflammation (subacute phase), and initiating neuro/angiogenesis (chronic phase) [59]. 

3. Potential Mechanisms of Stem Cell Therapy 

Extensive efforts have been made to elucidate the mode of action underlying the treatment of 

ischemic stroke via stem cell transplantation, resulting in the publication of multiple descriptive 

reviews [60–64]. Briefly, transplanted cells are known to exert a variety of neuro- and vascular-

protective effects during the various phases of an ischemic stroke. The transplanted cells not only 

reorganize the neuronal network but also reduce local and systemic inflammation, support axonal 

regeneration and synaptic sprouting, and reduce glial scars. These mechanisms can be sub-

categorized into two distinct types: i) cell differentiation (cell replacement); (ii) secretion of paracrine 

factors (Bystander effect). 

3.1. Cell Differentiation 

Cell replacement may be achieved via the differentiation of transplanted cells into neuronal or 

vascular cells, which compensates for lost functions, or via the direct settlement and development of 

neuronal progenitor cells [65,66]. Azizi et al. (1998) examined, ex vivo expanded bone marrow-

derived stem cell settlement in the ischemic brain, and indicated that 20% of human BMSCs 

transplanted into a rat brain remained alive 72 d after infusion, and showed neuronal phenotypes 

[67]. Our group demonstrated that in vitro chemical induction of BMSCs reduced the expression of 

mesenchymal cell lineage genes and enhanced the expression of neural genes associated with the 

release of trophic factors [68,69]. An in vivo study revealed that approximately 50% of engrafted stem 

cells in the ischemic brain expressed a neuronal phenotype 2 months following cell transplantation 

[70–72]. The migration of stem cells to the damaged area is also reported [72]. Intracerebrally injected 

stem cells express the CXCR4 receptor, which can bind to stromal cell-derived factor-1 (SDF-1), a 

chemoattractant. SDF-1 is expressed from the damaged brain and the stem cell uses this CXCR4/SDF-

1 axis to migrate to the damaged regions of the brain. However, whether these transplanted and 

phenotype-altered cells actually compensate for the lost neurological network remains unclear [35]. 

3.2. Bystander Effect of Stem Cells 

The secretion of paracrine factors is an important aspect of the functional multipotency of stem 

cells, wherein these cells secrete various trophic factors such as cytokines, chemokines, and exosomes, 

which ameliorate neuronal damage or regenerate new neuronal circuits [73–75]. In addition to 

promoting anti-inflammatory and immunomodulatory effects, these factors induce anti-apoptotic 

effects and mobilize endogenous stem cells (NSC))/neural progenitor cells (NPCs) [76]. These factors 

are released into the surrounding environment via direct permeation or extracellular vesicles (EV), 

and directly ameliorate ischemic damage and down-regulate local as well as systemic inflammation 

via peripheral immune organs, such as the spleen and the thymus [77,78]. EVs are membrane 

structures of lipid bilayer nanoparticles that transport proteins, lipids, and nucleic acids through 

endocytosis. EVs are attracting attention due to their low immunogenicity and high blood-brain 

barrier (BBB) permeability, which reduces damage and facilitates recovery. These properties along 

with its versatility make EVs promising as vehicles for drug delivery [79]. Recent reports suggest that 

EVs can ameliorate ischemic damage through multiple mechanisms including upregulation of 



Int. J. Mol. Sci. 2020, 21, 7380 4 of 21 

 

angiogenesis, neurogenesis, and modulation of autophagy after ischemic stroke [80,81]. Besides 

rescuing damaged brain cells, these factors accelerate the regeneration of in-house stem cells. Trophic 

factors fuel the proliferation of host neuronal progenitor cells, especially of those located around the 

subventricular zone (SVZ), which are normally inactive. 

4. Key Aspects of Clinical Trials 

4.1. Overview of Clinical Trial Results 

A comprehensive search of the clincaltrials.gov database was performed using the search criteria 

“ischemic stroke” and “stem cell” on 23/04/2020. A total of 52 results were returned, and the status 

“completed” for the trial were then manually screened for its publication, following which PubMed 

articles linked to clincaltrials.gov were evaluated for additional information where appropriate. 

Further PubMed searches were performed using the terms “ischemic stroke*” and “stem cell” or 

“neural stem cell (or NSC),” “mesenchymal stem cell or mesenchymal stromal cell” (or “MSC”), 

“mononuclear cell or mononuclear precursor cell” (or “MNC”) and “Schwann cell” (or “SC”), 

“olfactory ensheathing or olfactory glia (or OEC)” or “oligodendrocyte precursor (or OPC).” Each 

article type was then restricted to “clinical trial” to identify any other published studies that had not 

been registered on clinicaltrials.gov. Additional searches were performed to identify case studies 

where appropriate. Cell type, cell source, dose, route, timing, patient number, assessment modality, 

and major outcome were extracted from the manuscript. Cell doses were re-calculated at 60 kg for 

each patient if the dose was only stated in terms of the number of cells per kilogram (cells/kg). A total 

of 43 published clinical trials were obtained (Table 1). The trials were categorized into acute 

(treatment within a week from stroke onset), sub-acute (treatment between 1 week and 6 months 

from onset), and chronic (treatment after 6 months from onset). Some trials contained multiple 

treatment time points and were divided by the actual timing of treatment listed in the manuscript. 
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Table 1. Published clinical trials using stem cells for ischemic stroke. 

Referen

ce 

Number 

Countr

y 
Cell Type 

Cell  

Source 
Dose Route 

Transpla

nt  

Timing 

Treated 

Patient 

Numbe

r 

(Contro

l) 

Assessment  

Modality 
Major Outcome 

Acute 

[16] USA 
Autologo

us 
BMMNC 4–6 × 108 IV 1–3 D 10 BI, mRS, NIHSS showed good neurological recovery 

[25] USA 
Allogenei

c 
BMSC 1.2 × 109 IV 1–2 D 65 (58) mRS, NIHSS, BI 

No difference for neurological  

recovery (primary endpoint),  

but earlier timing (24-36 h)  

may be beneficial 

[35] USA 
Allogenei

c 
UCBC 1.2 × 106 (CD34+) IV 3–9 D 10 mRS, NIHSS Safe 

[10] Brazil 
Autologo

us 
BMMNC 5–60 × 107 IA 3–10 D 20 mRS, NIHSS 

30% of the patients showed satisfactory  

clinical outcome 

[12] Spain 
Autologo

us 
BMMNC 1.6 × 108 IA 5–9 D 10(10) mRS, BI, NIHSS No difference in neurological function 

[9] Brazil 
Autologo

us 
BMMNC 3 × 107 IA 9 D 1 SPECT Brain/liver/spleen uptake at 8 h 

[32] UK 
Autologo

us 
CD34+ (BM) 1–3 × 106 IA 1 W 5 mRS, NIHSS Good recovery was observed 

[36] China 
Allogenei

c 
UCBC & NPC 

3 × 107 (UC: IV),  

1.5 × 107 (UC: IT),  

1.8 × 107 (NPC: IT) 

IV &IT 1 W 1 NIHSS, BI, mRS 
Showed some degree of neurological  

recovery 

Sub-Acute 

 [13] India 
Autologo

us 
BMMNC 2–19 × 108 IV 2–4 W 11 NIHSS, BI, mRS, PET 

Favorable outcomes were mostly  

found in early treatment group 

[5] India 
Autologo

us 
BMMNC 5 × 107 IV 3–4 M 1(3) FM, mBI Safe 

[15] Brazil 
Autologo

us 
BMMNC 2–5 × 108 IV 1–3 M 5 NIHSS 

Cells in brain were scarce (1%),  

IV (21%) showed high cell distribution 

in  

lung compared with IV (7%) 

[14] India 
Autologo

us 
BMMNC 2.8 × 10e7 IV 18 D 59(59) BI, mRS, NIHSS, PET 

No significant recovery compared with  

control 
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[20] Japan 
Autologo

us 
BMMNC 2.5–3.4 × 108 IV 7–10 D 12 

mRS, NIHSS, SPECT, 

PET 

Better NIHSS (but not mRS, BI) 

recovery  

compared with historical control 

[22] Korea 
Autologo

us 
BMSC 1 × 108 IV 1–2 M 5 (25) BI, mRS, NIHSS  

Cell treatment group showed better  

neurological recovery than control 

[28] Korea 
Autologo

us 
BMSC 1 × 108 IV 2 M 16(36) mRS, Survival 

Better recovery, less mortality for 5 

years 

[26] Japan 
Autologo

us 
BMSC 0.8–1.5 × 108 IV 1–4 M 12 NIHSS 

Recoveries were mainly seen 0-1 W 

from  

transplantation 

[24] China 
Autologo

us 
BMSC 3 × 108 IV 1 M 12 (6) mRS, NIHSS, BI 

No neurological difference compared 

with  

control 

[27] France 
Autologo

us 
BMSC 1 or 3 × 108 IV 1–2 M 16(15) NIHSS, mRS, BI 

No overall change, but motor 

functional  

evaluations indicated improvement 

[36] China 
Allogenei

c 
UCBC & NPC 1.2 × 108 (UC) IV 2 & 3 M 2 NIHSS, BI, mRS 

Showed some degree of neurological 

recovery 

[2] Brazil 
Autologo

us 
BMMNC 1–5 × 108 IA 2–3 M 6 SPECT 

Cells were found in the brain after 2 h,  

but not after 24 h 

[3] Brazil 
Autologo

us 
BMMNC 1–5 × 108 IA 2–3 M 6 NIHSS, SPECT 

Safe, but cells could not be seen 24 h 

after 

injection in 4 out of 6 patients 

[15] Brazil 
Autologo

us 
BMMNC 1-5 x 108 IA 1–3 M 7 NIHSS 

Cells in brain were scarce (1%),  

IA (41%) showed high cell distribution 

in 

liver compared with IV (13%) 

[11] Egypt 
Autologo

us 
BMMNC 1 × 106 IA 2–4 W 21(18) NIHSS, mRS, BI,  

IA treatment did not improve 

neurological  

recovery compare with control 

[8] India 
Autologo

us 
BMMNC 5 × 108 IA 1–2 W 10 (10) BI, NIHSS, mRS 

Good recovery was observed in 

treatment  

group (P=0.06) 

[17] USA 
Autologo

us 
BMMNC (ALD) 3 × 106 IA 2–3 W 29 (17) mRS, NIHSS, BI 

No statistical difference compared to  

control 

[34] China 
Allogenei

c 
UCBC & NPC 2 × 107 IA 11–22 D 3 mRS 

Showed neurological recovery in 2 out 

of 3 

patients 

[42] Russia 
Allogenei

c 
Fetus neuronal cell 2 × 108 IT 4 M 1 Karnovskii score 

Cell treatment showed 33% increase in  

Score 
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[36] China 
Allogenei

c 
UCBC & NPC 

3 × 107 (UC: IV), 1.5 × 107 

(UC: IT), 1.8 × 107 (NPC: 

IT) 

IV & IT 2 W 1 NIHSS, BI, mRS 
Showed some degree of neurological  

recovery 

Chronic 

  India 
Autologo

us 
BMMNC 6–7 × 107 IV 5–14 M 20(20) FM, mBI, Ashworth No difference compared with control 

[21] India 
Autologo

us 
BMMNC 5 × 107 IV 6–15 M 11(9) FM, mBI 

Significant improvement in mBI, but 

not in  

FM 

[4,5] India 
Autologo

us 
BMSC 5–6 × 107 IV 8–12 M 6(6) BI, FM, Ashworth 

No significant difference compared 

with  

control up to 4 years 

[29] USA 
Allogenei

c 

BMSC (hypoxia 

treated) 
1 × 108 IV 7 M-25 Y 36 NIHSS, BI 

Significant recovery was observed 

compared 

with baseline 

[7] India 
Autologo

us 
BMSC/BMMNC 5-6 × 107 IV 3 M-2 Y 20(20) FM, mBI mBI showed significant improvement 

[18] India 
Autologo

us 
BMMNC 6 × 107 IT 4 M-12 Y 14 FIM 

Showed recovery, but this study 

included  

hemorrhagic stroke 

[37] China 
Autologo

us 
CD34+ (peripheral) 1–3 × 107 IT 1–7 Y 8 NIHSS, BI 

Patients showed recovery, but this may 

have been due to natural history 

[42] Russia 
Allogenei

c 
Fetus neuronal cell 2 × 108 IT 8 M-1.5 Y 6 (6) Karnovskii score 

Cell treatment groups showed better  

recovery 

[23] USA 
Autologo

us 
ADSC (no culture) N.D. IT (ICV) 1 Y 1 N.D. Stable 

[19] Cuba 
Autologo

us 
BMMNC 1–5 × 107 IC 3–5 Y 3 BI, NIHSS, SSS 

Recovery compared with pre-operation 

was 

found 

[33] 
Taiwa

n 

Autologo

us 
CD34+ (peripheral) 3–8 × 106 IC 6 M-5 Y 15(15) NIHSS, ESS, mRS Statistically significant recovery 

[30,31] USA 
Allogenei

c 

BMSC (Gene 

modified) 
2.5, 5, 10 × 106 IC 7–36 M 18 ESS, NIHSS, FM 

Neurological recovery (ESS, NIHSS, F-

M test)  

was observed up to 2 years 

[41] USA 
Allogenei

c 
Fetus neuronal cell 

2 × 106 (n = 8) or 6 × 106 

(n = 4) 
IC 7 M-5 Y 12 BI, ESS, NIHSS 

6 x 106 showed better recovery than 2 x 

106 
 

[39] UK 
Allogenei

c 
Fetus neuronal cell 2, 5, 10, 20 × 106 IC 1–4 Y 11 NIHSS, BI, Ashworth 

Neurological recovery (median NIHSS 

of 2) 

was observed 

[43] UK 
Allogenei

c 
Fetus neuronal cell 2 × 107 IC 2M-1 Y 23 ARAT 

Upper limb function recovered from  

baseline  
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[40] USA 
Allogenei

c 
Fetus neuronal cell 5, 10 × 106 IC 1–6 Y 18(4) 

ESS, NIHSS, FM, 

ARAT 

No difference for neurological recovery  

(primary endpoint), but showed partial  

recovery in some tests 

[38] China 
Allogenei

c 
OEC 1 × 106 IC 3 Y 1 BI Recovery in speech and gait 

[38] China 
Allogenei

c 
OEC & NPC 1 × 106 & 2 × 106 IC 5 Y 1 BI Recovery in motor function 

[44] USA 
Xenogene

ic 
Fetal Porcine cell 2 × 107 IC 1.5–10 Y 5 BI, RS, NIHSS 

Slight recovery, but 2 patients 

exhibited  

adverse events (seizure and motor 

deficit) 

[38] China 
Allogenei

c 
OEC & NPC 1 × 106 & 2 × 106 

IC & IT 

(NPC) 
1–20 Y 4 BI Recovery in gait 

[36] China 
Allogenei

c 
UCBC & NPC 

3 × 107 (UC: IV), 1.5 × 107 

(UC: IT), 1.8 × 107 (NPC: 

IT) 

IV & IT 
10 M & 2 

Y 
2 NIHSS, BI, mRS 

Showed some degree of neurological  

recovery 
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The methodologies differed widely between trials as well as countries that the trials were 

executed in (Table 1). Autologous BMMNCs account for the largest portion of cells, followed by 

autologous bone marrow stem/stromal cells. Small amounts of other sources of cells, such as UCBCs 

and adipose-derived stem/stromal cells, or neuronal progenitor cells, are also used. Cell doses, which 

differed widely, ranged between 1 × 106 to 1 × 109, while transplantation routes consisted of 

intravenous (IV), intraarterial (IA), intrathecal or intracerebroventricular (IT), and intracerebral (IC) 

routes. Intravascular routes (IV and IA) appear to offer higher cell numbers (up to 109 cells) than those 

of IC transplantation (106-7) (Figure 2). This is because IC transplantation limits the amount of cells 

that can be transplanted to avoid a mass effect on the brain, whereas intravascular transplantation 

does not. IV transplantation appears to be preferable in the acute to sub-acute phase, while IC or IT 

transplantation is mostly performed during the chronic phase. A majority of these trials were of a 

preliminary nature and control groups were not set up, whereas some trials did set up control groups 

consisting of unblinded or blinded patients. All but one study reported no detrimental effects due to 

cell therapy, while the single study that did, used xenogeneic fetal porcine cells and reported that cell 

transplantation exerted a negative effect causing seizures and motor function aggravation, which led 

to the termination of the trial. Although assessment modalities also differed widely between trials, 

modified Rankin Scale (mRS), National Institute of Health Stroke Scale (NIHSS), and Barthel index 

were commonly applied. 

 

Figure 2. The relationship between cell types, dose, and patient characteristics in clinical trials. Note 

that intravenous transplantation is preferred in the acute phase, while intracerebral transplantation 

is preferred in the chronic phase. MNC: CD34: CD34 positive hematopoietic stem cells derived from 

mononuclear cells, MSC: Mesenchymal stem/stromal cell, NSC: Neural stem/progenitor cell, OEC: 

Olfactory ensheathing cell. The number represents the approximate amount of cells transplanted 

per patient (cells/body). 
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4.1.1. The Acute Phase of Stroke 

Cell transplantation within a week from the onset of a stroke is defined in this review as 

treatment during the acute phase. Because it is difficult to expand autologous mesenchymal stem 

cells under ex-vivo conditions within this time frame, BMMNCs or allogenic cells were selected 

[9,10,12,16,25,32,35,36]. The trials used IV or IA transplantation and did not use IC injections. 

Spontaneous recovery strongly influenced the final result within this time frame, and thus should be 

taken into consideration when assessing results. While the smaller, early phase studies that did not 

set up control groups reported good clinical recovery, two studies of IV and IA transplantation that 

used control patients reported an absence of statistical difference between functional recovery and 

control groups [12,25]. However, referring to their post-hoc analysis, one study declared that patients 

who received cells between 24 and 36 h (trial inclusion 24–48 h) showed a significant improvement 

in motor recovery one year following treatment [25]. This indicated that patients receiving their 

BMSCs early via IV injection benefited from the treatment. Currently, studies using these cells under 

new time course (24–36 h) conditions are ongoing in Japan [82]. 

4.1.2. The Sub-Acute Phase of Stroke 

Cell transplantation after a week for up to 6 months is considered to be sub-acute treatment 

[2,3,5,8,11,13–15,17,20,22,24,26–28,34,36,42]. In addition to BMMNCs, autologous BMSCs are used for 

ex-vivo expansion within a time frame of approximately 1 month. IV or IA transplantation accounts 

for the majority of trials, while IT transplantation has also been reported. The results of these studies 

are mostly similar to the favorable results reported in the acute phase of trials using small samples, 

while larger randomized trials showed heterogeneous efficacy [8,11,14,17,22,24,27,28]. A large trial 

performed by Prasad et al. included 118 patients, half of which received approximately 3 × 107 

autologous BMMNCs between 7 and 10 d following the insult [14]. This phase II multicenter, parallel-

group, randomized accessor blinded trial revealed that, although IV infusion of BMMNCs was safe, 

it did not exert any beneficial effects (BI) on stroke outcome. Lee et al. reported that IV injection of 1 

× 108 BMSCs resulted in better recovery and reduced mortality for up to 5 years from treatment 

initiation, compared with randomized controls [28], whereas Jaillard et al. did not report an overall 

benefit [27]. Differences in cell processing procedures, patient types, and timing make arriving at a 

specific conclusion much more difficult. The results of IA treatments also differed between trials. 

Bhatia reported a good trend (P = 0.06) of recovery via IA transplantation of autologous BMMNCs 

[8], while others did not report a difference [11,17]. A recent report by Savitz et al. discussed a new 

aspect regarding logistics [17]. Autologous stem cells are mainly processed at the transplantation site 

and do not require cell preservation while transferring. However, it is impossible to make these 

commercially available unless a cell preservation and logistics process is developed for wide 

commercial distribution. They reported that bone marrow extracted from the patient was transferred 

to a sorting facility, and shipped back to the hospital for transplantation. These procedures are 

considered very important for cell transplantation purposes especially when using autologous stem 

cells. 

4.1.3. The Chronic Phase of Stroke 

Initiating treatment 6 months after an ischemic stroke is considered as treatment during the 

chronic phase [4–7,18,19,23,29–31,33,36–44,66]. Currently, no effective treatments are available for 

this phase, and thus the establishment of an effective treatment process is highly anticipated. 

Interestingly, IC or IT injections account for most transplantation routes within this time frame. 

However, only one study investigating IC transplantation had used control patients, and this study 

reported that IC transplantation of CD34 positive hematopoietic cells initiated marked neurological 

recovery compared with that of the control [38]. Although the number of patients screened was small 

(N = 6 each), IT injection resulted in better recovery compared with that of the control [42]. The results 

of IV transplantation varied between trials, where some studies reported significant recovery 

compared with that of the control [5,7], while others did not [4,6,21]. Randomized clinical trials using 
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larger patient samples are currently ongoing (NCT02448641, NCT02448641) and the results are 

expected soon. 

5. Unsolved Issues Associated with Optimal Treatment 

5.1. Stem Cell Types 

Many stem cell types, including mononuclear cells (MNCs), MSCs, OECs, and NSCs have been 

intensively examined as promising sources and tested via clinical trials, as previously mentioned. 

Some cells use gene-modification processes to enhance the release of trophic factors and survival 

[30,31]. Autologous cells (MNCs, MSCs, OECs) possess the advantage of being associated with a low 

risk for post-transplant rejection and allergies, whereas allogenic cells (MSCs, NSCs) are considered 

to be advantageous due to easier accessibility resulting from large-scale manufacturing and 

availability of standardized stocks. Clinical trials discussed here show a trend of moving from 

autologous to allogeneic cells, which aims for large-scale manufacturing for commercial purposes. 

Prior to distributing an available cell source for commercial purposes, several factors such as safety, 

efficiency, cost, and feasibility of manufacturing on a large scale, must be taken into consideration. 

Recent reports indicate that MSCs from the same bone marrow may express different functional and 

molecular phenotypes if produced using different facilities and methods [83]. This is indicative of the 

difficulties encountered in maintaining consistent quality during cell preparation. Several basic 

studies have compared the efficacy of different cell sources as treatments [84,85]. However, each stem 

cell type comes with its own benefits and drawbacks, and at present, which cell type represents the 

most beneficial treatment remains unclear. 

5.1.1. MNCs 

An advantage associated with MNCs is that these may be obtained from patients without 

resorting to ex-vivo expansion. Approximately, 1 × 108 MNCs can be obtained from 50 mL of bone 

marrow, and transplanted immediately following isolation [83]. Therefore, this cell type is widely 

used in the acute and subacute phases, that nearly half of the trials used bone marrow-derived 

mononuclear cells (Table 1). However, a disadvantage associated with using MNCs is that MNCs 

only contain very small amounts of MSCs (0.1–0.01% of MNCs), which, according to some 

researchers, casts doubts regarding its efficacy. 

5.1.2. Hematopoietic Stem Cells (CD34 Positive) 

Hematopoietic stem cells, expressing CD34, which are obtained from both bone marrow and 

peripheral blood are also frequently used. These cells, which have a long history of being harvested 

and used to treat hematological disorders under clinical conditions, are considered safe for clinical 

use. These cells show a strong capacity for angiogenesis, as witnessed in diseases such as myocardial 

infarction and limb ischemia [86–88], and show potential for reorganizing the vascular network in 

the brain [89]. An advantage of using these cells is that ex-vivo cell expansion, which requires time 

and effort, is not required. However, these cells show limited capacity for neuronal differentiation 

and are thus unable to complete the complex restoration process needed to repair ischemic stroke-

related damage. These cells tend to accumulate during inflammation, and may not reach the brain 

when other organs, such as heart and lung, are inflamed [90]. 

5.1.3. MSCs 

The nomenclature of MSCs (stromal or stem cells) is convoluted. The International Society for 

Cell & Gene Therapy (ISCT) Mesenchymal Stromal Cell Committee has established the minimal 

criteria that are required for a cell to qualify as a mesenchymal stromal cell: (i) plastic-adherence; (ii) 

CD73, CD90, and CD105 expression; 3) absence of expression of hematopoietic and endothelial 

markers CD11b, CD14, CD19, CD34, CD45, CD79a, and HLA-DR; (iv) capable of in vitro 

differentiation into adipocyte, chondrocyte, and osteoblast lineages [91,92]. However, it was later 
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observed that some cell-surface markers displayed an ability to be reversibly upregulated or 

downregulated according to cell culture conditions [93–95]. The use of “stromal” and “stem” to 

describe MSCs is almost equivalently found in the literature, and the ISCT suggests that 

“mesenchymal stromal cell” should be used to describe bulk unfractionated populations, which 

include fibroblasts, myofibroblasts, and stem/progenitor cells, whereas “mesenchymal stem cell” 

should be used for purified stem/progenitor cells [96]. An abundance of preclinical evidence indicates 

that MSCs possess an ability to ameliorate tissue damage and facilitate functional recovery via 

multiple processes, including immunomodulation, pro-angiogenic signaling, neurotrophic factor 

secretion, and neural differentiation [70,71,97,98]. MSCs can be harvested from bone marrow, 

abdominal fat tissue, teeth, umbilical cord blood, and Wharton’s Jelly. MSCs have several advantages 

over other stem cells due to well-established harvesting methods, low risk for tumorigenicity, and 

the absence of ethical issues [64]. MSCs possess a unique immune tolerance, where even allogenic 

MSCs, which do not show immunological rejection responses, are approved for graft vs host disease 

(GvHD) treatment in many countries [99]. Gene modification of BMSCs has also been reported. 

SanBio developed SB623 cells through transient transfection of a plasmid containing the human 

Notch-1 intracellular domain [100]. This cell showed better neuroprotective properties, via higher 

trophic factor secretion, stronger anti-inflammatory effect, and neuro-/angiogenesis. They recently 

reported that SB623 was associated with a rate of recovery from chronic traumatic brain injury, which 

was statistically significant (unpublished data). 

5.1.4. NSCs 

NSCs are multipotent progenitor cells capable of integrating with the host brain by transforming 

into neural cells, oligodendrocytes, and astrocytes [101,102]. These cells survive in the host brain and 

exhibit neuroprotective effects through extending processes, expressing neurotransmitters, and 

forming functional synapses [103,104]. Although these cells are mostly found during the 

development of the fetal CNS, they are also present in a limited number of other regions of the adult 

brain, such as the subventricular zone next to the cerebral lateral ventricle [105]. Although NSCs 

appear to be ideal for refilling lost neuronal networks, the cells need to be harvested from the fetus, 

which poses ethical issues and there is the possibility of immune rejection by the host. Other potential 

concerns include whether NSCs can initiate angiogenesis, differentiate to vascular structures, since 

brain reconstruction requires other cell types including vascular cells, such as endothelial cells, and 

remain pluripotent after adulthood. 

5.1.5. OECs 

OECs surround olfactory neurons, and function as scavengers of pathogens and debris around 

the border between the CNS and the nasal mucosa. Additionally, they reportedly express 

neurotrophic factors that facilitate olfactory regeneration. OECs can be harvested from the nasal 

mucosa and the olfactory bulb. These cells secrete neurotrophic factors, such as the stromal cell-

derived factor 1-a (SDF-1 a), and the brain-derived neurotrophic factor (BDNF), which promote 

neuronal regeneration [106,107]. These cells have been extensively examined in relation to spinal cord 

injury, but investigating its usefulness in treating ischemic stroke has just started [108–111]. Data 

indicating its potential or detrimental nature are scant. 

5.1.6. Other Cell Types 

Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have also been examined in 

preclinical studies [112–114]. Their pluripotency is an attractive characteristic in relation to its 

usefulness in treatment. However, data regarding clinical trials of these cells are currently 

unavailable due to factors associated with ethics and tumorigenicity. 
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5.2. Cell Dose and Route 

IV transplantation has the advantage of showing the lowest invasiveness, thereby allowing 

multiple injections. The method also does not require special equipment for transplantation. 

However, despite its efficacy, small amounts of cells are often found in the damaged lesion, and most 

cells are trapped in the lungs [71]. The bystander effect exerted by neurotrophic factors resulting in 

the amelioration of apoptosis and inflammation are considered as the main therapeutic mechanisms 

underlying IV transplantation. This is useful in the acute phase of ischemic stroke, but may not be 

beneficial in the chronic phase during which cell damage and inflammation are mostly settled. The 

IA approach is considered superior to IV administering in delivering more cells to the lesion. 

However, recent reports have indicated that this method is not effective for cell engraftment in the 

brain [2,3,15]. Additional ischemic damage caused by cell clusters clogging the arteries is a drawback 

of this method [17]. IT application, which can deliver a large number of cells to the subarachnoid 

space, is less invasive relative to IC transplantation. However, the rate of cell engraftment is unclear, 

and complications, such as hydrocephalus and liquorrhea, may arise. The IC approach of directly 

administering cells achieves the highest level of cell engraftment but requires invasive surgery, and 

the risk of additional brain damage being caused by injection needles should not be underestimated 

[115]. 

As previously mentioned, IV and IA transplantations, using a large number of cells ranging up 

to 10e9 cells, are preferred in the acute and sub-acute phases, whereas, in the chronic phase, IC 

transplantation with a smaller cell dose of 107 cells is preferred. Interestingly, most IV/IA transplanted 

stem cells are not found in the brain but the other organs, such as lungs, spleen, and bladder [2,3,9,15]. 

Rosado-de-Castro et al. transplanted technetium-99m labeled BMMNCs intravenously and intra-

arterially into sub-acute stroke patients, and found that only 0.6–0.9 % of cells were present in the 

brain 2–24 h after transplantation [15]. They reported that the IA transplantation group had higher 

radioactive counts in the liver (2 h: 40% and 24 h: 47%) and spleen (2 h: 6% and 24 h: 7%), and low 

counts in the lungs (2 h: 7% and 24 h: 4%), compared to IV transplantation (liver 14% and 19%, spleen 

2% and 3%, and lung 21% and 7%, respectively). According to this result, intravenously and intra-

arterially transplanted cells are distributed differently soon after transplantation, following which 

intravenously transplanted cells are found in the lung, while intra-arterially transplanted cells are in 

the liver. This result is similar to other reports that intra-arterially transplanted technetium-99m 

labeled BMMNCs, which were found in the brain 2 h after ischemia with the main uptake occurring 

in the liver, lungs, spleen, kidneys, and bladder. After 24 h, the cells were hardly distinguishable in 

the brain, while uptake was still observed in the other organs [2]. These results indicate that cells that 

are transplanted intravenously or intra-arterially are unable to stay in the brain for a long time. We 

have recently revealed that intracerebrally injected iron labeled BMSCs can migrate, settle in the 

ischemic area, and survive for more than 2 years (unpublished data) [116]. 

5.3. Patient Characteristics and Outcome Measure 

It is difficult to estimate which pathological aspect (timing, stroke type, comorbidity disease) of 

a patient will most benefit from stem cell treatment, via the use of animal models. Clinical trials 

involving a large number of patients or real-world data are required to resolve this issue. Outcome 

evaluation needs to be adequately refined to accurately monitor the results of clinical trials. mRS, 

NIHSS, and BI are often used in clinical trials, but mRS is too broad-based to detect small differences, 

while NIHSS is mostly intended for acute assessment of patients. 

6. Future Directions 

While the results of the clinical trials are promising, there are other factors such as regulatory 

approval and the overall cost to be considered for the widespread use of stem cells in the treatment 

of ischemic stroke. The key is to achieve a balance between the quality of cells produced and the costs 

involved, two apparently conflicting parameters. 
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6.1. Producing Good Cells (GMP Grade) 

Most of the clinical trials, especially those using autologous cells, were performed completely 

within a single hospital, where cell preparation was also done on-site. Some clinical trials mentioned 

about the GMP grade cell production, while the others did not. GMP is a system for ensuring quality 

controlled drug production to minimize the risks. It covers all aspects of production such as the 

handling and checking of materials, producing drugs according to the standard operating procedures 

(SOP), appropriate packing of drugs, and delivery management. Following GMP is time-consuming 

and costly, however, the cells will not qualify for drug use in many countries unless GMP is followed. 

The problem with this is that each country possesses its own GMP requirement. Pharmaceutical 

companies need to fulfill the requirement of the country where drug production will be carried out. 

Many regulatory agencies are working together to develop a set of common rules for drug approval, 

and this policy can help achieve faster drug development and approval in the future. 

6.2. Producing Cells at Low Cost 

Many clinical trials are executed as an investigator-oriented trial, where government or public 

funds are used for cell production. Cell preparation can be very expensive and to normalize stem 

cells as a standard treatment method, the cost needs to be minimized. Current cell expanding 

procedures requires the expertise of experienced technicians. Allogeneic stem cells are suitable for 

bulk production using automated cell producing machines; however, there is a need for innovative 

technology when it comes to autologous stem cells, which are made-to-order and are difficult to be 

adapted for automated production. Cell logistics are another key issue. Stem cells differ from 

ordinary low-molecular drug compounds in that stem cell efficacy is dependent on viability, which 

means that adequate cell preservation is mandatory. Cryopreservation and shipping of stem cells are 

often adopted in the clinical trials, but the reagent for cryopreservation contains DMSO, a possible 

toxic reagent, and shipping under extremely low temperature (using liquid nitrogen) is costly. 

Therefore, the production and transfer of stem cells at an affordable cost require further optimization. 

7. Conclusion 

Stem cell therapy is expected to ameliorate the sequelae of those ischemic stroke patients who 

have reached the acute phase, a stage at which no proven treatment is currently available. The results 

of clinical trials are promising, in the sense that most methods used for stem cell transplantation 

appear to be safe. It seems that intravenous or intra-arterial transplantation is preferred in the acute 

phase, where the aim is to ameliorate systemic and local inflammation and cell engraftment is not 

required. Alternatively, intracerebral transplantation is preferred in the chronic phase, where cell 

engraftment is considered the objective of cell therapy. However, optimal parameters including the 

choice of cell type, cell dose, and patient characteristics remain elusive and further research is needed 

for maximizing the effects of the proposed methods. To achieve this, it is expected that the integration 

of pre-clinical and clinical research will take place in the near future. 
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