Supporting Information

Surface Modification by Nano-Structures Reduces Viable Bacterial Biofilm in Aerobic and Anaerobic Environments

Sarah Ya'ari 1,2,3, Michal Halperin-Sternfeld 1,2,3, Boris Rosin 1,2,3 and Lihi Adler-Abramovich 1,2,3,*

- ¹ Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; sarahkal@gmail.com (S.Y.); michal4@mail.tau.ac.il (M.H.-S.); borisrosin@mail.tau.ac.il (B.R.)
- ² The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- ³ The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- * Correspondence: LihiA@tauex.tau.ac.il; Tel.: +972-3-640-7252

Keywords: modified amino acid; self-assembly; surface coating; anti-biofilm activity

Figure S1. SEM images of glass and mica surfaces coated with Fmoc-F₅**-Phe. (A-B)** SEM images of Fmoc-F₅-Phe modified (A) glass and (B) mica before stability test. (C-D) SEM images of Fmoc-F₅-Phe modified (C) glass and (D) mica after stability test.

Figure S2. SEM images of glass and mica surfaces coated with Boc-F₅-**Phe. (A-B)** SEM images of Boc-F₅-Phe modified (**A**) glass and (**B**) mica before stability test. (**C-D**) SEM images of Boc-F₅-Phe modified (**C**) glass and (**D**) mica after stability test.

Figure S3. Initial biofilm analysis for siliconized glass coated with Fmoc-F₅-**Phe. (A)** Fmoc-F₅-Phe modified slides without bacteria stained with crystal violet (**B**) Fmoc-F₅-Phe stained with crystal violet and washed overnight and (**C**) non-stained control sample.

Figure S4. Biofilm analysis by HRSEM. (A) *E. faecalis* and (B) *S. mutans* form biofilm on non-coated surface, (C) *E. faecalis* and (D) *S. mutans* incubated on Fmoc-F5-Phe coated surface.