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Abstract: Prion diseases are a unique group of infectious chronic neurodegenerative disorders to 

which there are no cures. Although prion infections do not stimulate adaptive immune responses 

in infected individuals, the actions of certain immune cell populations can have a significant impact 

on disease pathogenesis. After infection, the targeting of peripherally-acquired prions to specific 

immune cells in the secondary lymphoid organs (SLO), such as the lymph nodes and spleen, is 

essential for the efficient transmission of disease to the brain. Once the prions reach the brain, 

interactions with other immune cell populations can provide either host protection or accelerate the 

neurodegeneration. In this review, we provide a detailed account of how factors such as 

inflammation, ageing and pathogen co-infection can affect prion disease pathogenesis and 

susceptibility. For example, we discuss how changes to the abundance, function and activation 

status of specific immune cell populations can affect the transmission of prion diseases by peripheral 

routes. We also describe how the effects of systemic inflammation on certain glial cell subsets in the 

brains of infected individuals can accelerate the neurodegeneration. A detailed understanding of 

the factors that affect prion disease transmission and pathogenesis is essential for the development 

of novel intervention strategies. 

Keywords: prions and prion disease; immune system; inflammation; aging; co-infection; 

susceptibility 

 

1. Introduction 

Prion diseases, also referred to as transmissible spongiform encephalopathies, are subacute, 

infectious, neurodegenerative diseases that affect humans and some domestic and free-ranging 

animal species to which there are no effective treatments. A characteristic feature of the prion diseases 

is the accumulation of PrPSc (abnormally folded isoforms of the mammalian host’s cellular prion 

protein, PrPC) in affected tissues [1]. The accumulation of PrPSc in the central nervous system (CNS) 

ultimately leads to the development of spongiform pathology (vacuolation) and neurodegeneration. 

A unique feature of these diseases when compared to other neurodegenerative disorders is their 

transmissibility. Prion infectivity co-purifies with PrPSc implying that prion particles are mostly, if 

not entirely, comprised of infectious proteins [2]. 

The cellular PrPC glycoprotein is encoded by the PRNP gene and is expressed on the surface of 

most cell types via its glycosylphosphatidylinositol anchor. In the CNS, Prnp is expressed 

predominantly in neurons, astrocytes and oligodendrocytes when compared to microglia ([3]; 

https://www.brainrnaseq.org/), and expression of the PrPC protein may be important in maintaining 

myelin homeostasis [4]. Despite this widespread expression, the precise function of PrPC remains the 

subject of much debate. However, transgenic mice in which the Prnp gene is ablated (Prnp−/− mice) 
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are fertile and appear to be developmentally normal [5,6]. Likewise, Norwegian dairy goats that lack 

PrPC expression due to the presence of an early stop-codon mutation in their PRNP gene are also 

healthy [7]. In humans, several naturally-occurring loss-of-function mutations in PRNP have been 

identified and appear to be tolerated [8]. Cellular PrPC is also expressed in most immune cell lineages 

and may act as an uptake receptor for certain pathogens [9], or modulate cell phenotype [10]. 

However, although PrPC is expressed highly in key cell populations within the B cell follicles of the 

secondary lymphoid organs (SLO), PrPC deficiency has little impact on the induction of antigen-

specific antibody responses [11]. 

Expression of PrPC is, however, essential for prion replication in host cells [5]. During prion 

disease, important post-translational changes occur to the structure of the PrPC molecule that lead to 

the formation of PrPSc [12]. These changes affect the physicochemical and biologic characteristics of 

the PrP molecule, such that prion disease-specific PrPSc is relatively resistant to proteinase digestion 

(when compared to PrPC), can form insoluble aggregates and can induce the autocatalytic conversion 

of further copies of PrPC into PrPSc. 

To date, a variety of different types of prion diseases have been described. The spontaneous 

prion diseases, such as sporadic Creutzfeldt–Jakob disease (sCJD) in humans, appear to have an 

unknown aetiology. This disease typically affects elderly individuals (>60 years old), with a 

worldwide incidence of approximately 1 case/million population/year. Disease is considered to arise 

through the spontaneous generation and accumulation of prions in the brains of affected individuals. 

Some prion diseases can be inherited, and are linked to specific mutations in the PRNP gene that 

appear to predispose the individuals that carry these mutations to prion diseases such as Gerstmann–

Sträussler–Scheinker disease (GSS) and fatal familial insomnia [13]. Prion diseases can also be 

acquired and transmitted between individuals, including natural sheep scrapie, chronic wasting 

disease in cervid species and bovine spongiform encephalopathy (BSE) in cattle. The demonstration 

that consumption of BSE-contaminated food during the UK BSE epidemic was responsible for the 

occurrence of variant Creutzfeldt–Jakob disease (vCJD) in younger people (median age of onset ~29 

years old) [14,15] showed how some prion diseases could have zoonotic potential with important 

consequences for human health. Although sCJD is not considered to be an acquired disease, 

accidental iatrogenic transmissions have been recorded: for example after the transplantation of 

tissues (dura mater grafts) or tissue products (pituitary-derived human growth hormones) derived 

from the brains of sCJD-infected donors, and the use of contaminated surgical instruments [13]. 

Examples of accidental iatrogenic vCJD transmissions have similarly been reported due to the 

transfusion of blood or blood products from vCJD-infected donors (for a detailed account of the 

transmission of prions between species, see [16]). 

An understanding of the factors that can affect prion disease transmission and pathogenesis is 

important for managing disease risk and the development of effective treatments. Early studies in 

mice revealed that some prion strains accumulated to high levels within days in SLO after peripheral 

injection, and before the prions had spread to the brain [17]. Subsequent studies showed that specific 

antibody responses to agents responsible for prion diseases were not induced, despite the high 

burdens of prions within the SLO in infected mice [18–20]. With hindsight, we now know that this 

lack of an anti-prion (PrPSc-specific) antibody response is most likely due the tolerance of the immune 

system to cellular PrPC. However, although prion infections do not induce strong prion-specific 

immunity in the majority of infected individuals, the interactions between the prions and certain 

immune cell populations are essential for disease development, whereas interactions with some 

immune cells can provide host protection. For example, the study by Eklund and colleagues was the 

first to suggest that cells within the SLO may actually be sites of prion replication [17]. Soon 

afterwards, other studies revealed that this peripheral phase of prion replication in SLO such as the 

spleen was important for the efficient transmission of disease to the CNS [21]. These studies were 

soon accompanied by others that showed how modulation of the immune system around the time of 

peripheral exposure could have a profound influence prion disease pathogenesis [22–25]. 

Here we discuss how the peripherally-acquired prions exploit certain tissues and immune cells 

to establish infection. We focus on the peripherally-acquired prion diseases such as natural sheep 
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scrapie, chronic wasting disease in cervid species and BSE in cattle, as these are considered to be 

transmitted by the oral route through the ingestion of food or pasture contaminated with prions. The 

consumption of food contaminated with BSE prions was similarly the original cause of vCJD in 

humans (for an in-depth review on transmission routes, see [16]). We also provide a detailed account 

of how inflammation, ageing and pathogen co-infection can have a significant impact on prion 

disease pathogenesis and susceptibility by causing changes to the abundance, function and activation 

status of specific immune cell populations. 

2. Splenectomy before Intraperitoneal Prion Infection Extends Survival Times 

At the time of writing, five decades have passed since it was originally revealed that the actions 

of the host immune system could modulate prion disease pathogenesis and susceptibility. The 

immune system is essential in providing protection against infections with many conventional 

pathogens. However, quite the opposite has been shown to occur in animals infected with prions by 

peripheral routes of exposure such as the peritoneal cavity, by subcutaneous injection or via the 

gastrointestinal tract. Experiments revealed that high levels of scrapie prions accumulated in the 

spleens of mice within days after peripheral injection and this occurred before the detection of prions 

in CNS tissues [17,26] (Figure 1A). The impact that this early, non-CNS, prion accumulation had on 

disease pathogenesis was not known at the time and investigated in a subsequent set of seminal 

experiments. In that study, the spleens were removed from mice (splenectomy), and once healed, 

they were subsequently infected with prions [21]. The spleen contains many specialized immune cell 

populations that are localized in specific niches and these play an important role in providing 

protection against systemic pathogens, and the removal of their antigens and toxins from the blood-

stream [27]. Contrary to these properties, splenectomy prior to, or up to 60 days after an 

intraperitoneal (IP) prion infection, significantly delayed the onset of the clinical signs of disease [21] 

(Figure 1B). This revealed that rather than providing host protection, the spleen and other elements 

of the immune system may conversely play an important role in the establishment of some prion 

infections. Additional experiments revealed that splenectomy had no effect on disease pathogenesis 

when the prions were injected with prions directly into the CNS by intracerebral (IC) injection [21]. 

This finding indicated that the spleen was not simply generating adaptive immune responses that 

directly caused neuronal damage in the brain. Many follow-up studies have since reinforced this 

conclusion, and shown that prion disease pathogenesis after IC injection is unaltered in the absence 

of T cells and B cells [28–30]. 

 

 

 

Figure 1. The spleen is an important early site of prion replication and neuroinvasion after peripheral 

infection. (A) In 1967, Eklund et al. [17] showed that high levels of RML scrapie prions accumulated 
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in the spleens of Swiss mice within days after subcutaneous injection, and this occurred before the 

prions were detected in the spinal cord and brain. Heatmap shows negative log10 of dilution of tissue 

suspension that contained 1 LD50/30 µL when injected intracerebrally into recipient mice. (B) In 1970, 

Fraser and Dickinson [21] showed that splenectomy before IP injection of C57BL/Dk mice with ME7 

scrapie prions significantly extended the survival times. Bars, mean ± SEM; n = 3–22 mice/group. (C) 

In 1989, Kimberlin and Walker [31] concluded that splenectomy did not extend survival times once 

infection was established in the spinal cord.  In their experiment Compton White mice were IP 

injected with 139A scrapie prions and the splenectomy performed at the times indicated after prion 

injection. Bars, mean ± SEM; n = 4–9 mice/group. 

Analysis of the build up or accumulation of prions in various tissues of mice after peripheral 

routes of exposure revealed that SLO such as the spleen were amongst the first to be targeted by 

prions [17]. Soon afterwards, the infection was also detectable in the spinal cord and at later stages in 

the brain (Figure 1A). Chronological analyses of natural host species, including sheep, cattle and 

cervids, infected with prions by peripheral routes of exposure have also demonstrated similar disease 

kinetics [32–34][35]. Importantly, these studies raised the suggestion that the initial accumulation of 

the prions in SLO such as the spleen was required for them to efficiently infect the nervous system, a 

process that was termed neuroinvasion. Indeed, comparison of the effects of splenectomy and disease 

kinetics revealed that the pathogenesis became independent of the spleen once infection was 

established in the spinal cord [31] (Figure 1C). Contemporary studies have since demonstrated the 

requirement for early prion accumulation in the local draining lymph nodes after prion infection via 

skin lesions [36], and the Peyer’s patches in the small intestine after oral exposure [37–40]. This 

requirement for initial targeting of certain prion strains to the SLO to establish infection has been 

termed lymphotropism. It is important, however, to mention that examples of non-lymphotrophic 

prion agent strains exist. Infection with non-lymphotrophic prion strains such as sCJD in humans do 

not appear to involve significant involvement of the SLO [16]. While it is plausible that sCJD may 

arise due to the spontaneous misfolding of prions in the brains of affected individuals, accidental 

iatrogenic transmissions of sCJD (iatrogenic CJD) in humans have occured between individuals via 

peripheral routes [16]. Since BSE in infection in cattle also appears to have little SLO involvement 

[16], this suggests that BSE prions have increased tropism for the bovine nervous system. This may 

potentially negate the need for BSE prions to be processed and amplified within bovine SLO to 

establish infection of the nervous system. 

The findings from the above studies raised the suggestion that treatments that prevented the 

early build up of certain prion lymphotrophic strains within SLO might help reduce disease 

transmission, for example by delaying or even preventing the spread of prions to the CNS. Those 

original experiments reported in the late 1960s and early 1970s, undertaken before prions were 

proposed and identified, stimulated an exciting and active period of research as tools such as 

transgenic and “knock-out” mice became available. These studies have identified many of the cellular 

components that the prions exploit to accumulate in SLO, and shown how modulation of the function 

or activation status of the cells in these tissues can affect disease pathogenesis and susceptibility. Over 

the years there have been many useful reviews that have described how prions exploit specific cell 

populations within the SLO to establish host infection [16,41–45]. Consequently, only the main 

studies are briefly described in this review, and we refer readers to the above publications if they 

would like to read further details. We instead focus on how immune stimulation, 

immunosuppression, pathogen co-infection and changes to the abundance, function or activation 

status of key immune cell populations can affect prion disease pathogenesis and susceptibility. 

3. Immune Stimulation Accelerates, Immunosuppression Delays 

The suggestion that the activation status of the host immune system could modulate the kinetics 

of a peripherally-acquired prion disease is not a recent concept and was first recognized in the 1970s. 

However, once again, the effect of immune stimulation and immunosuppression on prion disease 

pathogenesis where contrary to the effect such treatments might have been following infection with 

other pathogenic microorganisms. These studies showed that treatment with immune stimulants 



Int. J. Mol. Sci. 2020, 21, 7299 5 of 39 

 

such as the mitogen phytohaemagluttinin (PHA) [22] or BCG extract [23] could each accelerate the 

rate of onset of prion disease after infection by the IP route, and in the case of PHA significantly 

increase disease susceptibility [22]. In hamsters, the effects of intraperitoneal adenovirus infection on 

macrophages were similarly associated with a 20% reduction in disease duration when compared 

with animals infected only with prions [46]. Conversely, treatment with the anti-inflammatory 

steroid prednisone acetate extended survival times and reduced disease susceptibility [47]. Other 

anti-inflammatory treatments such as arachis oil or dextran sulphate 500 (single IP injection of 250 

µg) similarly delayed disease pathogenesis [24,25]. One study proposed that the reduced 

susceptibility of mice to IP scrapie prion infection given daily injections with the immune stimulatory 

CpG oligodeoxynucleotides (for 4 or 20 days after infection) was mediated through such actions on 

mononuclear phagocytes [48]. However, an independent follow-up study revealed that the repeated 

CpG treatment used in the above study [48] caused gross disturbances to the microarchitecture of the 

SLO, including ablation of the FDC networks [49], the key sites of prion replication in these tissues. 

At the time that many of the above studies were undertaken, little was understood of the 

underlying mechanisms responsible for the effects these treatments had on prion disease. However, 

these treatments were only effective when administered within a short time window immediately 

before or after the mice were injected with prions by the IP route. This implied that these treatments 

were modulating the abundance or activity of cells that may aid the propagation of the prions from 

the peritoneal cavity to their initial replication sites in the spleen. Alternatively, they could also affect 

the activity of phagocytic cells that could sequester and destroy the prions in the vicinity of the 

injection site or as they arrive in the spleen (see Section 6.3.). 

4. Major Histocompatibility Complex (MHC) 

The MHC class I and MHC class II molecules encoded by genes in the MHC complex enable 

short peptides from antigens, either endogenous or pathogen derived, to be displayed on the surfaces 

of host cells. MHC class I is expressed on all nucleated cells, whereas MHC class II is predominantly 

expressed on antigen presenting cells. T cells have receptors that specifically recognize these antigen-

derived peptides in association with the MHC molecule, the consequence of which is to mount an 

antigen-specific immune response. Variants in MHC gene allele expression and certain 

polymorphisms can affect the efficacy of the immune response and are important in the susceptibility 

to many infectious diseases [50]. 

Patients with vCJD were reported to have a significantly reduced frequency of the MHC class II 

type HLA-DQ7 compared to sCJD patients and controls [51]. This raised the suggestion that certain 

MHC class II molecules may have a direct role in vCJD pathogenesis, or alternatively, that MHC class 

II type HLA-DQ7 may be more effective at initiating a protective immune response following vCJD 

infection. However, an independent follow-up study that analysed the same and additional vCJD 

patients was unable to find any significant association between vCJD patients and MHC type [52]. 

Genetic deficiency in MHC class I and MHC class II in mice also had no effect on disease duration 

and susceptibility after IC injection with the Chandler mouse scrapie strain [53]. Together, these data 

indicate that variants in MHC type do not influence prion disease susceptibility. 

5. Prions First Replicate upon Follicular Dendritic Cells in SLO 

Mouse studies have shown that within days of peripheral infection, certain lymphotrophic 

prions accumulate upon the surface of stromal follicular dendritic cells (FDC) within the B cell 

follicles of SLO [54]. In the absence of FDC, the accumulation of prions in the spleen is blocked and 

disease susceptibility reduced [29,30,55,56] (Figure 2). These and many other subsequent studies have 

illustrated how the early targeting of certain prion strains to FDC is essential for efficient 

establishment of infection, and highlight a critical rate-limiting step in the neuroinvasion process. 

Indeed, data also suggest that the initial targeting of lymphotrophic prion strains to FDC is important 

to enable their adaptation to the host environment and to amplify them above the threshold required 

for neuroinvasion [57–60]. 
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Figure 2. Oral prion disease pathogenesis is impeded in the transient absence of follicular dendritic 

cells (FDC) at the time of infection [61]. (A) Immunohistochemical (IHC) analysis shows that the 

treatment of mice with a soluble lymphotoxin β receptor (LTβR-Ig) transiently ablates FDC (CD35+ 

cells, red) in secondary lymphoid tissues. (B) Prion accumulation (here shown as disease-specific PrP 

accumulation by IHC, red) is blocked in Peyer’s patches in the absence of FDC at the time of oral prion 

infection. (C) Oral prion disease susceptibility is blocked in the absence of FDC at the time of oral 

prion infection. Upper images show IHC detection of disease-specific PrP (brown) and lower H&E-

stained panels show presence of prion disease-specific vacuolation (spongiform pathology) in the 

brains of clinically-affected control mice. All sections counterstained with haematoxylin (blue). 

Adapted with permission from the American Society for Microbiology from [61] (J. Virol. 2003; 

77:6845–6854. https://doi.org/10.1128/JVI.77.12.6845-6854.2003). 

5.1. FDC Trap Prions in a Complement-Dependent Manner 

FDC express high levels of complement receptors 1 and 2 (CR1/CD35 and CR2/CD21) and use 

them to trap and retain intact antigens on their surface within antibody- and/or complement 

component-opsonized immune complexes. The long-term retention of antigens on FDC enables B 

cells to generate effective antigen-specific antibody responses [62–64]. FDC similarly trap and retain 

prions on their surfaces as complement-bound complexes [65–71]. 

The transient ablation of FDC or depletion of opsonising complement components such as C3 

can each impede prion accumulation in the spleen, delay neuroinvasion, and in some instances these 

defects can reduce disease susceptibility [61,65,72–75]. This suggests that factors affecting the size 

and abundance of FDC in SLO such as active immunisation [76] and LPS exposure [77], or their ability 

to trap and retain immune complexes, could have a significant impact on susceptibility to 

peripherally-acquired prion infections. 

5.2. Ageing Affects FDC and their Ability to Trap Prions 

As we age, our immune systems become less effective (termed immunosenescence) and the 

changes this causes correlate with the reduced efficacy of vaccines in elderly individuals, an increased 

susceptibility to infections, as well as the increased incidence of cancer and autoimmunity. However, 

just as immunosuppression can impede prion pathogenesis (Section 3), immunosenescence may have 

a similar effect. Several studies have shown that aged mice (≥18 months old) have reduced 

susceptibility to peripheral prion infections administered via the IP, intravenous and oral routes 

[59,78,79]. This reduced susceptibility in the aged mice coincides with disturbances to FDC networks 

that hinder their ability to trap and retain complement-opsonized immune complexes [78,80–82]. The 

effects of immunosenescence on FDC function may create a significant barrier to susceptibility to 

peripheral prion infections, especially for cross-species transmissions [59], and may help explain why 

the majority of clinical vCJD cases in the UK have been identified in young individuals, with 
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relatively few in the elderly [83]. A similar correlation between age, lymphoid follicle size and scrapie 

susceptibility has also been reported in sheep [84]. 

5.3. PrPC Abundance on FDC Affects Disease Susceptibility 

Expression of cellular PrPC is essential for prion replication, and changes to the expression level 

on host cells can affect disease kinetics [85]. FDC express high levels of PrPC and is essential for the 

replication of prions on their surface [56,57,86]. As expected, changes to the magnitude of PrPC 

expression in FDC can affect prion disease pathogenesis. Indeed, when PrPC expression is ablated 

only in FDC this blocks both prion replication in the spleen and neuroinvasion [57]. Spleens of 

neonatal mice [87] and aged mice [78] lack PrPC-expressing FDC, and this similarly impedes prion 

replication. Conversely, passive immunisation [88] or active immunisation [76] can each increase 

FDC abundance, network size and PrPC expression. Furthermore, the increased abundance and size 

of the FDC in the spleens of mice after active immunisation coincide with increased susceptibility to 

IP prion infection [76]. The magnitude of the PrPC expressed on FDC may also influence the tropism 

of prions to SLO [60], and affect the ability of those prions to transmit to other host species [58]. 

5.4. The Distance between FDC and Nerves Is Rate Limiting 

The SLO are highly innervated with neurons from both sympathetic and parasympathetic 

components of the peripheral nervous system. When the prions on the FDC surface are amplified to 

above the magnitude required to achieve neuroinvasion, they subsequently infect local sympathetic 

and parasympathetic neurons in the SLO and spread along them to the CNS [54,89,90]. Although the 

mechanism by which the prions are propagated between FDC and the peripheral nervous system is 

undetermined, the relative positioning between these cells and the density of sympathetic 

innervation in the SLO and both directly affect the rate of neuroinvasion [89,91]. This highlights 

another factor that could affect an individual’s risk of susceptibility to a peripherally-acquired prion 

infection. 

6. Propagation of Prions to FDC in Peyer’s Patches 

Many natural prion infections are transmitted by the oral route, such as following the ingestion 

of food or pasture contaminated with prions. After oral exposure, the initial replication of prions 

upon the FDC in the gut-associated lymphoid tissues (GALT) of the small intestine such as the Peyer’s 

patches and mature (FDC-containing) isolated lymphoid follicle is essential for efficient 

neuroinvasion [37–40]. A series of studies in mice has revealed how the prions exploit specific innate 

immune cell populations to establish infection upon FDC in the GALT. Furthermore, factors that 

modify the abundance or function of these cells can significantly alter susceptibility to orally-acquired 

prion infections. 

6.1. M Cells are the Gate Keepers of Prions in the Intestine 

A single layer of epithelial cells (enterocytes) connected by tight junctions helps to protect the 

body from the lumenal contents of the intestine. However, the specialized epithelial layer that covers 

the GALT, the follicle-associated epithelium (FAE), contains a unique population of phagocytic 

enterocytes known as M cells (reviewed in [92]). Through a process called transcytosis, these cells 

constitutively sample the lumenal contents of the intestine and transfer particles and pathogens 

across the FAE to the leukocytes and lymphocytes beneath it in their basolateral pocket structures. 

The transcytosis of particulate antigens by M cells is an important initial step in the induction of 

antigen-specific mucosal immune responses to certain pathogens and their toxins, and may also help 

maintain homeostasis in the commensal gut microbiome [92,93]. 

The ability of M cells to transcytose particles from the gut lumen into the GALT has been 

exploited by some orally-acquired pathogens as an efficient route of infection into host tissues. Prions 

also appear to exploit these characteristics. Within an hour after oral infection prions can be detected 

within M cells in the FAE of small intestinal Peyer’s patches, and the absence of these cells at the time 
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of oral exposure blocks disease transmission [54,94–96] (Figure 3A,B). Thus, M cells in the FAE 

overlying the GALT appear to be the initial gate keepers of oral prion infections in the small intestine. 

Certain pathogens, such as the bacterium Salmonella enterica serovar Typhimurium can 

specifically manipulate the characteristics of the enterocytes lining the intestine to aid infection, for 

example by inducing the rapid trans-differentiation of the enterocytes into M cells [97]. Treatments 

such as bacterial flagellin or exposure to a young commensal microbiota can similarly enhance M cell 

density in the Peyer’s patches of aged mice [98]. These examples raised the hypothesis that factors 

that modified the density of M cells in the gut epithelium might also influence oral prion disease 

pathogenesis. To test this hypothesis, mice were treated with the cytokine RANKL to increase the 

differentiation and abundance M cells throughout their intestines [99] (Figure 3C). This study showed 

that the RANKL-mediated increase in the abundance of M cells in small intestinal Peyer’s patches 

significantly increased susceptibility to oral prion infection by approximately 10 times [96] (Figure 

3D). 

 

Figure 3. The density of M cells in the epithelia covering the Peyer’s patches directly influences oral 

prion disease susceptibility [96]. (A) Immunofluorescence microscopy shows that RANKIEC mice 

specifically lack M cells (GP2+ cells, green) in the follicle-associated epithelia (FAE) of their Peyer’s 

patches. F-actin, blue. V, villus. (B) In the absence of M cells the accumulation of prions (PrPSc, black 

and PrP, brown, arrows) upon FDC (CR1/CR2+ cells, brown) in the Peyer’s patches of RANKIEC mice 

is blocked. (C) Immunofluorescence microscopy shows that systemic treatment of C57BL/6J mice with 

the cytokine RANKL increases the abundance of M cells (GP2+ cells, green) in the FAE. DAPI, cell 

nuclei, blue. SED, subepithelial dome. (D) RANKL treatment significantly increases susceptibility to 

oral prion infection by ~10X. PBS/1% vs. RANKL/1%, p = 0.120; PBS/0.1% vs. RANKL/0.1%, p < 0.0078; 

PBS/1% vs. RANKL/0.1%, p = 0.205; Log-rank [Mantel–Cox] test). Adapted from [96] under the terms 

of the Creative Commons Attribution Licence (CC-BY-4.0; 

https://creativecommons.org/licenses/by/4.0/). 

M cells express high levels of the cellular PrPC on their apical surfaces [100], and this can be used 

as an uptake receptor for certain pathogenic microorganisms such as Brucella abortus [9]. Although 

pathogen infections and inflammation may enhance PrPC expression in the intestine [101], ablation 
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of PrPC throughout the gut epithelium did not affect oral prion disease pathogenesis [102]. Changes 

to the expression level of PrPC in M cells are therefore unlikely to affect susceptibility to oral prion 

infections. 

The density of M cells in the Peyer’s patches of aged mice is substantially reduced when 

compared to young mice [98]. Since oral prion disease is blocked in mice in the absence of M cells 

[95], the lack of these cells in aged mice most likely contributes to their reduced susceptibility to oral 

prion infection [78]. However, the age-related decline in M cells could be reversed with young 

microbiota or administration of certain bacterial ligands [98], suggesting that the reduced 

susceptibility to oral prion infection in aged animals could be reversed under the right conditions. 

Together, these studies show how the modulation of M cell density by factors such as ageing, 

co-infection with certain gastrointestinal pathogens, inflammation or exposure to microbial stimuli 

[97,98,103–105] may be important risk factors that can increase or reduce oral prion disease 

susceptibility. For example, if immunosenescence is also associated with a reduced M cell density in 

elderly humans, this may contribute to their much lower incidence of vCJD cases caused by dietary 

exposure to BSE prions. 

6.2. Conventional DC Shuttle Prions to FDC 

The mononuclear phagocytes (MNP) arise from hematopoietic precursor cells in the bone 

marrow and are a heterogeneous population of monocytes, conventional dendritic cells (cDC), and 

tissue macrophages. The cDC are an entirely distinct lineage from the stromal derived FDC [106] and 

are strategically located throughout the body to sample the local environment for pathogens and their 

antigens. After antigen uptake, these cells typically undergo a degree of maturation and migrate 

toward the draining lymphoid tissue to initiate a specific immune response. Some cDC populations 

can retain antigens in their native states and transfer them intact to naïve B cells in order to initiate a 

specific antibody response [107]. The migratory characteristics of cDC are exploited by prions to 

ensure their efficient transport from the site of exposure to the draining SLO [108–111]. Mouse cDC 

and other MNP in the intestine express CD11c (integrin alpha X) highly [112]. In the transient absence 

of CD11c+ MNP at the time of oral exposure, the early accumulation of prions within Peyer’s patches 

is blocked and disease susceptibility reduced [108,109]. When the ability of CD11c+ MNP to migrate 

into B cell follicles was blocked, this similarly impeded oral prion disease [111]. 

These studies suggest that prions exploit the migratory characteristics of certain CD11c+ MNP 

populations such as the cDC to ensure their efficient delivery to FDC in Peyer’s patches. Many distinct 

MNP populations have been identified in Peyer’s patches, and these have been shown to occupy 

specific anatomical niches [113,114]. The CD8α+ cDC, for example, are localized within the 

interfollicular regions of the Peyer’s patches [114]. However, factors that specifically affect these cells 

are unlikely to have significant impact, as the specific deficiency or dysfunction of CD8+CD11c+MNP 

has no effect on prion disease susceptibility [115,116]. 

6.3. Macrophages Can Destroy Prions 

The region of the Peyer’s patches beneath the M cell-containing FAE is known as the 

subepithelial dome (SED), and contains an abundant and mixed population of cDC and 

macrophages. Prions can be detected within the macrophages in the SED within a few hours after 

oral infection [54,94,117]. Tissue macrophages play important roles in host protection against many 

infectious diseases by phagocytosing and destroying pathogens. In the early 1980s, data from in vitro 

studies indicated that peritoneal macrophages could similarly phagocytose and degrade scrapie 

prions, implying a host-protective role in infected animals [118,119]. Consistent with this, the 

depletion of these cells around the time of oral exposure enhances the accumulation of prions within 

the Peyer’s patches [120,121]. 

The ability of tissue macrophages to phagocytose and destroy prions raises the possibility that 

factors or treatments that stimulate this activity could help reduce oral prion disease transmission. 

However, macrophages can also provide important homeostatic support to certain cell populations 

in the intestine such as M cells and enteric nerves [122–124]. Impairment of this macrophage-derived 
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support, for example as a consequence of pathogen co-infection or inflammation in the intestine, 

could indirectly affect M cell function or gut motility and transit time [125,126]. Thus, changes to 

these homeostatic roles in intestinal macrophages could have a significant impact on the M cell-

mediated uptake of prions into Peyer’s patches, or affect their ability to infect enteric nerves. 

7. Chronic Inflammation Can Facilitate Prion Targeting in Non-SLO Tissues 

Chronic inflammation in tissues can induce the formation of granulomas within them. Under 

some circumstances, these granulomas can contain ectopic germinal centres with networks of PrPC-

expressing FDC. Studies in mice have shown that the development of granulomas in the kidney, as 

a consequence of nephritis, can facilitate the replication of prions in these tissues in prion-infected 

mice and the excretion of infectious prions in urine [127,128]. When induced in the mammary glands 

of scrapie-affected sheep, for example in response to mastitis, these can similarly act as novel sites of 

prion replication and transmit prions to suckling lambs via milk [129–131]. Lymphotrophic prions 

can accumulate in subcutaneous soft tissue granulomas in association with an inflammation-

dependent PrPC-expressing stromal cell population [132], although a subsequent study has suggested 

a role for a FDC-like cell population [133]. However, not all forms of tissue granulomas appear to be 

capable of supporting prion accumulation in infected individuals. Granulomas can form in the 

intestine, for example in the submucosa around the invading larvae of helminth pathogens such as 

Heligmosomoides polygyrus. These granulomas contain abundant populations of MNP, but due to the 

absence of FDC or other PrPC-expressing stromal cells they do not contain PrPSc deposits in mice 

orally co-infected with prions [134]. 

8. Pathogen Co-Infections Can Affect Oral Prion Disease 

8.1. Gastrointestinal Helminths 

Mammals are often exposed to and infected with gastrointestinal helminth pathogens in their 

natural environments. Trichuris muris and H. polygyrus are natural helminth pathogens of mice, and 

have been used to study the effects of gastrointestinal helminth infections on oral prion disease 

pathogenesis. These helminth pathogens affect different niches in the intestine. H. polygyrus infection, 

for example, is restricted to the duodenum of the small intestine and causes pathology to the mucosa 

within it. Co-infection of mice with H. polygyrus around the time of oral prion exposure reduced the 

early accumulation of prions upon FDC in the Peyer’s patches and extended disease duration 

[134,135] (Figure 4A). The delayed prion disease pathogenesis in the mice co-infected with H. 

polygyrus was associated with an altered distribution of CD11c+ MNP in their Peyer’s patches with a 

specific increase in abundance in the B cell mantle region (Figure 4B). This implied that the altered 

distribution of the cDC in the Peyer’s patches of the co-infected mice may have impeded the ability 

of these cells to efficiently propagate the prions to the FDC within the B cell follicles [134]. 

Infection with T. muris, in contrast, is restricted to the large intestine, where it causes significant 

pathology to the epithelium and lamina propria in the caecum (Figure 4C). Co-infection with T. muris 

around the time of oral prion exposure coincided with the earlier accumulation of prions (PrPSc) 

within the caecal patches (Figure 4D). Despite this effect, all the co-infected mice developed clinical 

prion disease with similar neuropathology (Figure 4E), survival times and disease susceptibility to 

mice infected with prions alone [136]. These data are consistent with findings from experimental mice 

and natural host species such as sheep, goats and white-tailed deer that show that the GALT in the 

large intestine (such as the caecal patches) are not early sites of prion replication and neuroinvasion 

after oral infection [32,136–138]. The low density of M cells in the FAE overlying the large intestinal 

GALT [139], in addition to the thick mucus layer covering the epithelium at this site [140], is most 

likely responsible for the relative inability of the large intestinal GALT to acquire particulate antigens 

such as prions [136]. 

8.2. Pathogenic Bacteria 



Int. J. Mol. Sci. 2020, 21, 7299 11 of 39 

 

Oral infection of mice with the pathogenic bacterium S. Typhimurium can cause significant 

pathology and inflammation in the large intestine. The reduced survival times observed in mice co-

infected with S. Typhimurium were reported to be a consequence of the effects of colitis on the uptake 

of prions from the gut lumen, or the upregulated expression of PrPC in the intestine and mesenteric 

lymph nodes [101]. However, Prnp expression is also upregulated in the mesenteric lymph nodes 

during infection of the large intestine with T. muris (Figure 4F) but this was not associated with 

shortened survival times when co-infected with prions [136]. As mentioned above (Section 6.1), S. 

Typhimurium can inject factors into enterocytes that enhance the abundance of M cells in the gut 

epithelium to aid infection [97]. Exposure to bacterial flagellin can also increase the abundance of M 

cells in the FAE [98]. Although not tested in the above study [101], the reduced survival times in the 

mice co-infected with S. Typhimurium may also be a consequence of the effects on the abundance of 

M cells in the small intestinal Peyer’s patches. 

 

Figure 4. Effect of co-infections with gastrointestinal helminths on oral prion disease pathogenesis 

in.mice. Panels A and B illustrate the effects of co-infection with Heligmosomoides polygyrus in the small 

intestine [134]. C57BL/6J mice were first orally-infected with H. polygyrus. L3 larvae and orally 

infected with ME7 scrapie prions 8 days later. (A) The frequency of PrPSc-containing Peyer’s patches 

was lower in mice co-infected with H. polygyrus. (B) Immunofluorescent analysis showed that the 

distribution of CD11c+ mononuclear phagocytes (green) was disturbed in the Peyer’s patches on d 8 

after H. polygyrus infection. FAE, follicle-associated epithelium; SED, subepithelial dome; Fo, follicle; 
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V, villus; dpi, days post-infection. Cartoon shows the anatomical boundaries in the Peyer’s patch. 

Panels C-E illustrate the effects of co-infection with Trichuris muris in the large intestine [134]. 

C57BL/6J mice were first orally-infected T. muris infective eggs and orally infected with ME7 scrapie 

prions and the days indicated after the helminth infection. (C) Arrows show the close association of 

T. muris with the caecal epithelium and lamina propria and the damage caused to the epithelium. (D) 

In mice infected with prions alone PrPSc was undetectable in the caecal patches at 105 dpi. However, 

high levels of PrPSc were detected in the caecal patches of the mice co-infected with T. muris. (E) High 

levels of prion-specific vacuolation (H&E), PrP accumulation, reactive astrocytes (GFAP+ cells, 

brown) and active microglia (AIF1+ cells, brown) were detected in the brains of mice from each 

infection group. Counterstain, haematoxylin, blue. (F) Upregulated Prnp expression in the mesenteric 

lymph nodes of T. muris-infected mice. *, p < 0.05. Panels A and B are adapted from [134]under the 

terms of the Creative Commons Attribution Licence (CC-BY-4.0; 

https://creativecommons.org/licenses/by/4.0/). Panels C–E are adapted from [40] under the terms of 

the Creative Commons Unported Licence (CC-BY-3.0; https://creativecommons.org/licenses/by/3.0/). 

A fascinating study has described how interactions between M cells, a specific population of 

enteric nerves and components of the commensal gut microbiota can together provide protection 

against oral Salmonella infection [141]. Gut-innervating nociceptors are a specialized subset of sensory 

neurons that respond to pain and harmful stimuli, and these were found to be closely associated with 

M cells in Peyer’s patches [142]. Furthermore, stimulation from nociceptors, for example following 

Salmonella infection, could suppress the abundance of M cells in Peyer’s patches and this was 

accompanied by an increased abundance of the commensal, segmented filamentous bacteria (SFB), 

on the lumenal surface of the FAE [141]. The combined effects of the nociceptor-mediated reduction 

in M cell density and increased abundance of SFB on the FAE reduced susceptibility of the mice to 

oral Salmonella infection [141]. This study raises the intriguing hypothesis that nociceptor-mediated 

stimulation in response to certain pathogenic microorganisms, harmful stimuli, noxious substances 

or inflammatory mediators in the small intestine could similarly reduce susceptibility to orally-

acquired prion infections. 

9. CNS Prion Disease 

Once the prions enter the brain, their build up ultimately leads to the development of the 

characteristic spongiform pathology and extensive neurodegeneration in targeted brain regions [143]. 

CNS prion infections are also accompanied by extensive microglial and astrocyte activation in 

affected regions [144]. The precise mechanism that causes the neurodegeneration during CNS prion 

disease remains to be fully understood, but as discussed below, CNS inflammation, or the actions of 

certain immune cell populations or inflammatory mediators can have a significant impact. For 

example, although the underlying mechanism was not addressed, prion disease was accelerated in 

infected mice with concurrent inflammation directly within the CNS caused by the induction of 

experimental allergic encephalitis (EAE, a commonly used mouse model of multiple sclerosis in 

humans) [145]. 

9.1. The Yin and Yang of the Microglia 

The microglia are the resident macrophages of the CNS, and a change in their status from resting 

to activated is one of the earliest neuropathological features in the brain during prion disease, and 

occurs before the development of the neuropathology [146–148]. The microglia are established by 

embryonic day 8 in the brain from yolk sac-derived progenitors, and are mostly maintained by self-

renewal in a CSF1R-dependent manner [149,150]. Deficiency in the monocyte chemokine receptor 

CCR2 does not affect microglia abundance or CNS prion disease [151], indicating that the microglial 

expansion that occurs during prion disease is a consequence of the local proliferation of CNS-resident 

cells [152]. As the studies described below show, changes to the abundance and phenotype of the 

microglia in the prion disease-affected brain can affect the rate of the neurodegeneration. 

9.1.1. Microglia Can Phagocytose and Destroy Prions in the Steady State 
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The microglia, just like the macrophages in other tissues, are highly phagocytic cells that help 

remove apoptotic cells (by a process known as efferocytosis) and provide a first line of defence against 

pathogens. Intracellular accumulations of prions can be detected within microglia in affected brain 

regions [153], but these cells are not important sites of prion replication [154]. This apparent inability 

of the microglia to replicate prions may be a consequence of their reduced expression level of Prnp, 

when compared to neurons and astrocytes [3]. Although it is important to mention that factors other 

than the magnitude of Prnp are likely to play a role, as the transgenic expression of high levels of Prnp 

in T cells and B cells was insufficient to sustain prion replication within them [155,156]. Instead, data 

suggest that microglia, like the tissue macrophages, similarly provide host protection by 

phagocytosing and destroying the prions. 

The differentiation, proliferation and survival of microglia and tissue macrophages is controlled 

by signalling through the cytokine colony-stimulating factor 1 receptor (CSF1R) [157]. Deficiencies 

in, or pharmacological blockade of CSF1R-signalling, can both block microglia differentiation and 

survival in the brain. The cytokine IL-34 can also bind to CSF1R, in addition to colony-stimulating 

factor 1 (CSF1), and stimulation via this cytokine similarly plays an essential role in microglia 

differentiation [158]. A series of studies have shown that the partial ablation of microglia in 

ganciclovir-treated CD11b-HSVTK mice (transgenic mice expressing thymidine kinase of Herpes 

simplex virus via the CD11b (Itgam) promoter; [159]), their partial deficiency in IL-34-/- mice [159] or 

their partial deficiency after treatment with a kinase inhibitor (PLX5622) that targets CSF1R [160] 

(Figure 5) can each accelerate CNS prion disease. These effects coincided with the increased 

accumulation and deposition of prions in the brain, indicating that the microglia are host protective 

during CNS prion disease by phagocytosing and destroying prions. However, some important 

caveats should be considered. Peripheral macrophage and mononuclear phagocytes populations are 

also ablated to differing extents in the above ablation models, and the influence this has on disease 

pathogenesis should be considered. For example, although PLX5622 has been widely used to 

specifically ablate microglia, this treatment also causes long-term effects on the turnover and function 

of bone marrow-derived, circulating, and tissue-resident macrophages [161]. High levels of 

lymphotrophic prions also accumulate in the SLO even after their direct injection into the brain by IC 

injection [56] and subsequently spread back to the brain [59,80]. As the accumulation of prions is 

enhanced in SLO in the absence of tissue macrophages [120,121], their absence in the above models 

may have contributed to the increased accumulation of prions in the CNS. It is also plausible that the 

ganciclovir-mediated ablation of the microglia in transgenic CD11b-HSVTK mice triggered an 

inflammatory cytokine response in the brain, and this may have stimulated a neurotoxic profile in 

the remaining microglia or other glial cells. 

 

Figure 5. Accelerated CNS prion disease in the absence of microglia. (A) Survival curve shows 

enhanced onset of clinical prion disease in mice treated with the CSF1R-targeting kinase inhibitor 
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PLX5622. (B) Immunohistochemical analysis shows increased PrP accumulation (brown), reduced 

abundance of microglia (AIF1/Iba1+ cells, red), increased reactive astrocyte activation (GFAP+ cells, 

red) and prion-specific vacuolation (arrows, H&E panel) in PLX5622-treated mice at 100 days after IC 

injection with RML prions. Adapted with permission from the American Society for Microbiology 

from [160] (J. Virol. 2018;92:e00549-18, https://doi.org/10.1128/JVI.00549-18). 

9.1.2. Microglia Engulf Apoptotic Bodies 

Milk fat globule epidermal growth factor 8 (MFGE8) is a secreted factor that binds to exposed 

phosphatidyl serine residues exposed on the surfaces of apoptotic bodies to facilitate their clearance 

by phagocytic cells, including microglia. CNS prion disease is accelerated in mice deficient in MFGE8 

and coincides with the increased accumulation of prions in the brain [162]. This suggests that the 

clearance of prions by microglia may be mediated via their indirect removal of infected apoptotic 

neurons. Phagocytes can bind MFGE8-opsonised apoptotic bodies through interactions with the 

integrins αvβ3 and αvβ5. Whether these integrins and other related receptors facilitate the 

phagocytosis of prions by microglia is uncertain. Triggering receptor expressed in myeloid cells-2 

(TREM2) also contributes to the phagocytosis of apoptotic neurons and is upregulated in microglia 

during prion disease [163]. Signal regulatory protein α (SIRPα), conversely, acts as a negative 

regulator of phagocytosis in microglia and other MNP populations [164]. However, prion uptake by 

microglia occurs independently of TREM2 and SIRPα, as CNS disease is unaltered in transgenic mice 

that lack these receptors [163,165]. Sialoadhesin (CD169) specifically binds to sialylated glycoproteins 

and is expressed by various MNP populations [166], including activated microglia [167]. Although 

PrPSc is extensively sialylated [168], deficiency in sialoadhesin similarly does not affect the 

development of neuropathology during CNS prion disease [169]. Thus, the engulfment of prions by 

microglia is indirectly mediated via binding to MFGE8 but occurs independently of SIPRα, TREM2 

and sialoadhesin. 

9.1.3. Microglia Can Cause Neurodegeneration 

Despite the proposed host-protective role for the microglia during CNS prion disease, alterations 

to their activation status can lead to neurotoxicity. Prion infection in the steady state does not evoke 

a typical pro-inflammatory cytokine response [148,168,170]. The microglial characteristics during the 

early stages of CNS prion disease are instead similar to the anti-inflammatory profile exhibited by 

macrophages following their engulfment of apoptotic cells [171]. This is consistent with data showing 

that CNS prion disease is unaltered in the steady state in mice lacking the NLRP3 inflammasome 

[172] (essential for release of IL-1β), NF-κB signalling [173] or MyD88 signalling [174]. Treatment of 

scrapie-affected sheep with the glucocorticoid dexamethasone during the clinical phase similarly had 

no effect on the development of neuropathology [175]. Modest levels of the anti-inflammatory 

cytokine TGF-β are expressed in the CNS during prion disease [176,177]. Whether this cytokine is 

expressed in the prion disease-affected regions of the brain at sufficient levels to constrain the local 

induction of pro-inflammatory microglial responses, or mediate neurogenic properties [178] remains 

to be determined. However, it is interesting to note that when the availability of TGF-β in the brain 

is blocked, this exacerbates the neuropathology [179]. 

When the accumulation of PrPSc, neurodegeneration and microglial phenotype was compared 

across brain regions in mouse prion disease models, it was noted that the neurodegeneration was 

restricted to areas of the brain where PrPSc accumulation was also associated with an upregulated 

innate immune response in the microglia [147,148,168]. The precise trigger that mediates the switch 

in the activation status of the microglia in the steady state is uncertain. However, it is evident that 

microglia respond to changes in the composition of the carbohydrates displayed on the surface of 

PrPSc in such way, that a reduction in sialic acid residue content can induce a pro-inflammatory 

response [180]. 

Infection of the brain with prions has been suggested to induce a “primed state” in the microglia 

that enables these cells to rapidly respond to subsequent exposure to pro-inflammatory stimuli [181]. 

When the microglia are stimulated in this manner it can have a significant impact on CNS prion 
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disease pathogenesis. For example, central and systemic treatment of mice with LPS during the CNS 

phase of prion infection triggers the rapid release of pro-inflammatory cytokines and mediators, and 

this is accompanied by increased microglial activation, increased neurodegeneration and accelerated 

disease progression [182–184]. This suggests that the microglial response during prion disease 

favours a homeostatic and potentially pro-resolving/anti-inflammatory phenotype. However, when 

exposed to pro-inflammatory stimuli such as bacterial LPS, this phenotype appears to be lost, 

polarising the microglia towards an activated phenotype which can heighten the rate of 

neurodegeneration. Indeed, as the prion infection proceeds in the brain, the homeostatic 

transcriptomic signatures in the microglia are replaced by neuroinflammatory signatures [168]. These 

data show how the effects of systemic and central inflammation on microglial status can exacerbate 

CNS prion disease. 

9.1.4. Microglia as Therapeutic Targets 

Taken together, these studies raise the suggestion of whether manipulating the abundance or 

phenotype of microglia may have therapeutic potential during CNS prion disease. One example may 

include the blocking of environmental cues which stimulate the microglial pro-inflammatory and 

neurotoxic phenotypes. Ultimately, manipulating the phenotype of the microglia to optimize prion 

clearance, and likewise the production of pro-resolving factors (including TGF-β) may serve as 

beneficial factors. 

Experiments in mice suggest that such approaches may be beneficial in individuals with a prion 

infection in the brain, but the wider impacts of long-term administration of immunosuppressive 

drugs should not be overlooked. One study, for example, has shown how oral treatment with the 

immunosuppressant FK506 from the onset of the clinical signs was effective in suppressing microglial 

responses and reducing disease susceptibility in a mouse sCJD model [185]. Inhibition of microglial 

proliferation or “priming” may also have efficacy. Whereas treatment with the CSF1R kinase 

inhibitor PLX5622 partially ablates the microglia [160], treatment with the CSF1R-specific kinase 

inhibitor GW2580 reduces microglial proliferation and skews the cells towards a neuroprotective 

phenotype[150]. Coincident with the induction of these potentially neuroprotective effects, treatment 

of mice with GW2580 or an anti-CSF1R blocking antibody, has been shown to slow the rate of 

neurodegeneration and extend survival times in mice with CNS prion disease [152]. 

9.1.5. The Commensal Gut Microbiome Constitutively Modulates Microglia Status 

The mammalian gastrointestinal tract is colonized by a huge and diverse community of 

commensal microorganisms and is estimated to include over 1000 different bacterial species. These 

microorganisms and the metabolites they produce provide a range of beneficial and protective effects 

on their mammalian host. These include the production of essential nutrients such as vitamins [186], 

outcompeting with pathogens [187] and aiding the regulation and development of the immune 

system [98,141,188,189]. An exciting set of studies has also shown how the components of gut 

commensal microbiota and their metabolites can also modulate the development and function of cells 

in the CNS, for example by directly stimulating enteric nerves, promoting the release of 

neuropeptides from enteroendocrine cells or producing important brain bioactive mediators and 

neurotransmitters including dopamine, serotonin and γ-aminobutyric acid (reviewed in [190,191]). 

The commensal microbiota also constitutively regulates the development and function of the 

microglia in the brain. Germ-free mice that completely lack a commensal microbiota have defects in 

microglia development, differentiation and function, and their response to LPS stimulation or LCMV 

infection are diminished [192]. Similar effects on microglia status were also observed when 

conventionally-housed SPF mice were treated with broad-spectrum antibiotics. Disturbances to the 

commensal microbiota in the intestine have been proposed as risk factors that affect susceptibility 

and the pathogenesis of many neurodegenerative disorders including Parkinson’s disease, 

Alzheimer’s disease, amyotrophic lateral sclerosis and Huntington’s disease (reviewed in [193]). The 

effects of signals from certain bacteria on T cells in the small intestine can also exacerbate the 
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pathogenesis of EAE in the spinal cords of mice [194], implying a similar pathogenic role for changes 

to components of the small intestinal microbiota in multiple sclerosis patients. 

However, despite the prominent activation and involvement of the microglia in the brain during 

prion disease, the absence of the commensal microbiota does not affect the development of the 

neurodegeneration in the steady state [195,196]. Whether the microglia in the brains of prion-infected 

germ-free mice are less sensitive to subsequent neurotoxic activation by pro-inflammatory stimuli 

remains to be determined. Treatment of prion-infected mice with the tetracycline antibiotics 

(doxycycline, minocycline and tetracycline) around the onset of the clinical phase has been shown to 

extend survival times [197]. Tetracycline antibiotics can suppress cytokine synthesis [198] and this 

might have a beneficial effect on CNS prion disease by reducing systemic inflammation. However, 

these antibiotics have also been shown to block PrPC–PrPSc conversion and neurotoxicity [199]. 

9.2. Reactive Astrocytes: Neuroprotective or Neurotoxic? 

Astrocytes are important glial cells that provide homeostatic support to neurons in the steady 

state. For example, these cells can induce the formation of excitatory synapses through production of 

mediators such as thrombospondins, SPARC-like 1 and glypicans [200,201]. Astrocytes can also 

prune synapses to refine neural circuitry to ultimately modulate synaptic plasticity [202]. However, 

dysfunctional and reactive astrocytes can gain neurotoxic properties following brain injury in the 

ageing brain and in certain neurodegenerative disorders [203,204]. 

The contrasting neuroprotective and neurotoxic properties of reactive astrocytes imply that, just 

like the microglia, these cells may similarly have contrasting roles during CNS prion infections: on 

the one hand providing homeostatic support to infected/damaged neurons, while on the other hand 

causing neurotoxicity and driving neuronal death. For example, the production of MFGE8 by 

astrocytes aids the phagocytosis and clearance of prion-infected and apoptotic neurons by microglia 

in some mouse strains [162]. However, it is important to note that reactive astrocytes are also capable 

of phagocytosing apoptotic neurons [205], challenging the conclusion that the phagocytosis and 

clearance of prions in the brain is restricted to the microglia [159,160]. Unlike the microglia [154], 

astrocytes may also be important sources of prion replication in the brain [206]. 

The accumulation of misfolded PrPSc in the brain during prion disease triggers the unfolded 

protein response (UPR) [207]. This alters the astrocyte secretome, reduces their synaptogenic 

properties and stimulates the production of neurotoxic factors which together enhance the rate of 

neurodegeneration [203]. Specifically, phosphorylation of PERK signalling in astrocytes causes the 

transient shutdown of protein synthesis via phosphorylation of eIF2α. The pharmacological targeting 

of certain signalling pathways in astrocytes has been shown to have efficacy in reducing hypoxia-

induced CNS edema [208]. Similar pharmacological targeting of PERK signalling in astrocytes in mice 

can provide neuroprotection during CNS prion disease, providing an indication that treatments that 

modulate the phenotype of the reactive astrocytes may have therapeutic potential [203]. 

9.2.1. Microglia Can Modify the Phenotype of Reactive Astrocytes 

Astrocytes and the microglia can interact with each other in the brain through direct contact and 

production of secretory factors [209]. For example, astrocyte-derived CSF1/IL-34, TGF-β2 and 

cholesterol are essential for microglial survival [210]. The reactive astrocytes have been classified into 

two main functional and transcriptional subclasses. The A1 subclass of reactive astrocytes appear to 

exhibit neurotoxic properties, whereas the A2 astrocytes produce neurotrophic factors and can 

provide neuroprotection [211]. A seminal study has shown how contact with microglia and 

microglia-derived factors is essential for the induction of A1 neurotoxic reactive astrocyte activation 

[211]. For example, the production of the cytokines TNF-α, IL-1α and complement component C1q 

by the microglia in response to systemic LPS treatment predominantly induce an A1 phenotype and 

transcriptomic response in the reactive astrocytes [211]. In the absence of microglia (Csf1r −/− mice) or 

these microglial-derived factors, the LPS-mediated induction of A1 astrocytes is blocked. The A1 

reactive astrocytes that are induced by systemic LPS treatment also have a distinct transcriptomic 

signature from the A2 subset [211] (Figure 6A). While the administration of LPS does not itself appear 
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to induce significant neurotoxicity, data indicate that neuronal injury is required for these cells to 

become susceptible to astrocyte-mediated cytotoxicity [212]. Whereas the expression of certain A1 

reactive astrocyte-associated genes has been reported during the preclinical phase of prion disease, 

this polarity is lost as the infection proceeds towards the terminal stage [177,213]. Although the 

reactive astrocytes in the prion disease-affected brain have been suggested to be neurotoxic [203], 

they display a mixed A1 and A2 transcriptomic signature [177,214] and notably express high levels 

of CD44 [215] and complement component C3 [203,214] (Figure 6B–D). Whereas CNS prion disease 

was unaltered in mice deficient in TNF-α [216,217] or C1q [65,66], the combined deficiency in TNF-

α, IL-1α and C1q was shown to accelerate the disease [214]. Although complement C3 expression 

was reduced in the astrocytes in the infected mice with a combined deficiency in these microglial-

derived factors, this had little effect on GFAP expression or the transcriptomic signature of the 

reactive astrocytes [214] (Figure 6B). This suggests that in the steady state, factors independent of 

microglial-derived TNF-α, IL-1α and C1q are required for the activation of astrocytes in the prion 

disease-affected brain. 

Further studies are required to determine whether microglia are required for induction of 

complement component C3+ reactive astrocytes during prion disease. When microglia were partially 

ablated using the CSF1R-targeting kinase inhibitor PLX5622, the overall expression of A1 and A2 

reactive astrocyte-associated transcripts in the brains of mice infected with prions was enhanced 

[177]. This suggests a potential additional neuroprotective role for the microglia in the prion disease-

affected brain by limiting neurotoxic reactive astrocyte activation. However, it is important to note 

that the retention of just 5% microglia after treatment with the CSF1R-targeting kinase inhibitor 

PLX3397 was sufficient to induce A1 reactive astrocyte activation after systemic LPS treatment [211] 

(Figure 6A). Transmissions to mice with a complete and specific deficiency in microglia will help to 

resolve this issue [218]. 

 

Figure 6. Induction of a mixed A1 neurotoxic and A2 neuroprotective reactive astrocyte phenotype 

during CNS prion disease. (A) Systemic LPS treatment induces an A1 neurotoxic transcriptional 

signature in reactive astrocytes in the brain. In microglia-deficient Csf1r−/− mice the LPS-mediated 

induction of A1 neurotoxic reactive astrocytes is blocked. However, A1 neurotoxic reactive astrocytes 

are still induced after microglia-depletion by PLX-3397 treatment (~95% reduction) [211]. (B) A mixed 

A1 neurotoxic and A2 neuroprotective reactive astrocyte transcriptional signature was observed in 

the reactive astrocytes in the brains of wild-type (WT) mice terminally affected with RML prions. 

Deficiency in the microglial-derived factors TNF-α, IL-1α and C1qa (TKO) had little influence on the 

induction of this response [214]. (C) Immunofluorescence microscopy shows that GFAP+ (red) 

reactive astrocytes express high levels of complement component C3 (green) in the prion disease-
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affected brain [214]. Nuclei detected with DAPI (blue). (D) Immunofluorescence microscopy shows 

that GFAP+ (red) reactive astrocytes with abundant disease-specific PrP (magenta) express high levels 

of CD44 variant 6 (green) in the prion disease-affected brain [215]. Panel A is adapted from [211] with 

permission from the Nature Customer Service Centre GmbH (Liddelow SA et al. Neurotoxic 

astrocytes are induced by activated microglia. Nature 2017;541:481-487, 

https://doi.org/10.1038/nature21029). Panels B and C are adapted from [214] under the terms of the 

Creative Commons Licences (CC-BY-4.0; https://creativecommons.org/licenses/by/4.0/, and CC0-1.0; 

https://creativecommons.org/publicdomain/zero/1.0/). Panel D is adapted from [215] under the terms 

of the Creative Commons Attribution Licence (CC-BY-4.0; 

https://creativecommons.org/licenses/by/4.0/). 

9.2.2. Systemic Inflammation and Reactive Astrocyte Activation During Prion Disease 

The demonstration that the effects of systemic LPS treatment on microglia can indirectly induce 

neurotoxic A1 reactive astrocyte activation [211] raises the possibility that pro-inflammatory 

mediators could have a significant impact on reactive astrocyte phenotype and neurodegeneration 

during prion disease. Systemic LPS treatment, for example, enhances neuronal apoptosis in the brains 

of mice infected with prions, and accelerates disease progression [182–184]. The effects of systemic 

LPS treatment on CNS prion disease coincide with the enhanced abundance and inflammatory 

activation of the microglia, as well as elevated production of the pro-inflammatory cytokines TNF-α, 

IL-1β and IL-6, and cytotoxic mediators such as nitric oxide [182–184]. These experiments were 

published before the demonstration that LPS treatment also induced neurotoxic A1 reactive astrocyte 

activation [211]. However, a subsequent study showed that the reactive astrocytes in the brains of 

infected mice centrally-treated with either TNF-α or IL-1β also had enhanced chemokine responses 

and increased nuclear localisation of the transcription factor NF-κB [219]. 

The effects of systemic inflammation on the reactive astrocytes could each have a significant 

impact on CNS prion disease. To investigate this further we analysed mRNA micro-array expression 

data from a published study of the effects of systemic LPS treatment on the hippocampus of mice 

infected with ME7 scrapie prions (NCBI GEO accession no: GSE23182; [184]). Here, the mice were 

systemically injected (IP) with LPS before the terminal phase of prion disease (at 18 weeks post-IC 

injection with prions). Parallel sets of mice were injected with PBS or normal brain homogenate as 

controls. This analysis also revealed a predominantly A1-reactive astrocyte-associated transcriptional 

signature in the hippocampus during the pre-terminal phase of prion disease (prions + PBS; Figure 

7), consistent with published studies [177,213]. Importantly, this transcriptional signature was 

significantly enhanced after LPS treatment (prions + LPS; Figure 7). As anticipated [211], the systemic 

treatment of uninfected mice with LPS (NBH + LPS) also induced the expression of pan- and A1-

reactive astrocyte-associated transcripts with limited induction of A2- reactive astrocyte-associated 

transcripts. However, this polarity was not observed in prion-infected mice after LPS treatment. 

Instead, LPS treatment was accompanied by the elevated expression of pan-, A1- and A2-reactive 

astrocyte-associated transcripts (prions+LPS; Figure 7). This analysis illustrates how peripheral 

exposure to pro-inflammatory stimuli such as bacterial LPS could have a significant impact on the 

phenotype of the reactive astrocytes in the brains of individuals infected with prions. Furthermore, 

the neuronal damage caused by CNS prion disease may render the infected neuron more susceptible 

to LPS-induced astrocyte-mediated cytotoxicity [212] 
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Figure 7. Systemic LPS treatment elevates the expression of pan-, A1 neurotoxic- and A2 

neuroprotective reactive astrocyte-associated genes in the hippocampus of mice infected with ME7 

scrapie prions. Analysis of a published microarray dataset (NCBI GEO accession no: GSE23182; [184]) 

of the effects of LPS treatment on astrocyte-associated gene expression in the brains of mice infected 

with prions. Mice were systemically injected (IP) with at 18 weeks post-IC injection with prions. 

Hippocampi were removed 6 h later and gene expression compared by microarray. Parallel sets of 

mice were injected with PBS or normal brain homogenate (NBr) as controls. Heatmap shows log2 fold 

change when compared to uninfected control mice injected with PBS. n = 3 mice/group. 

The precise consequences that these LPS-induced effects on the reactive astrocyte transcriptome 

have on CNS prion disease are uncertain and require further study. Similarly, experiments are also 

required to determine whether these effects are a consequence of the indirect effects of LPS-

stimulation on the microglia [211], or cell-intrinsic responses in the astrocytes themselves, or a 

combination of the two. While the expression of specific sets of transcripts can be helpful markers to 

classify cell phenotype [211], their roles in A1- and A2-reactive astrocyte activation also remains to 

be determined. Despite these uncertainties, this analysis clearly shows that systemic inflammation 

such as that induced by exposure to LPS can have a significant impact on the reactive astrocytes 

during CNS prion disease. Other stimuli including the cytokine GM-CSF can also promote the 

pathogenic activation of astrocytes [220], and could similarly have the potential to exacerbate CNS 

prion disease. 

9.3. Pathogen Co-Infection Can Modify CNS Prion Disease 

9.3.1. Virus Co-Infections 

Studies have revealed how host cellular responses or the pathology caused by certain viral co-

infections can affect CNS prion disease pathogenesis. For example, mice succumbed to infection with 

the Chandler mouse-passaged scrapie isolate much earlier when given a respiratory adenovirus 

infection towards the clinical phase [221]. Piry virus infection in mice causes a non-lethal arbovirus 

encephalitis in regions of the brain including the hippocampus. Co-infection of with Piry virus altered 

the morphology of the microglia in the brains of mice with CNS prion disease. These cells displayed 

an enhanced ramified appearance, but this did not affect the neurodegeneration or clinical signs [222]. 

Peripheral co-infection with an apathogenic murine retrovirus (molecular clone Mov3 of Moloney 

murine leukaemia virus) was also associated with enhanced microglial activation in the brains of 

mice infected with RML scrapie prions [223]. Here, the enhanced microglial activation in the co-

infected mice was accompanied by increased prion clearance and increased lysosomal-autophagy 

activation in the microglia. However, the effect of retrovirus co-infection on CNS prion disease was 

transient, as the disease kinetics returned to levels similar to mice infected with prions alone when 

the microglial activation had declined [223]. 
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Infection with the Friend retrovirus complex can also enhance reactive astrocyte activation in 

the brains of mice infected with prions [224]. However, the effect this had on disease pathogenesis is 

uncertain, because although the clinical presentation was altered in the co-infected mice, survival 

times were not. 

9.3.2. Gastrointestinal Helminth Parasites 

Little is known of underlying molecular mechanisms responsible for the effects that the virus 

co-infections described above have on prion disease pathogenesis in the brain. However, a recent 

study gives insight into how the production of pro-inflammatory cytokines in response to co-

infection with a gastrointestinal helminth parasite could accelerate CNS prion disease [213]. The 

natural mouse gastrointestinal helminth pathogen T. muris establishes infection exclusively in the 

large intestine. When C57Bl/6J mice are infected with a high dose of infective T. muris eggs (ca. 200) 

this induces a protective CD4+ T helper cell type 2 (Th2)-polarized immune response. Conversely, 

when the mice are infected with a low dose of ca. 20 infected eggs this stimulates a non-protective 

parasite-specific Th1-polarized response that includes the production of the pro-inflammatory 

cytokine interferon (IFN)-γ [213,225,226] (Figure 8A). Co-infection of C57Bl/6J mice with a low dose 

of T. muris accelerated clinical prion disease (Figure 8B). The effects of T. muris co-infection on CNS 

prion disease were specific to an IFN-γ-mediated systemic response, as co-infection with a high 

parasite dose that induced a Th2 response had no effect [213]. The accelerated prion disease in the T. 

muris co-infected mice coincided with the enhanced expression of certain A1 astrocyte-associated 

genes [213] (Figure 8C). Stimulation of astrocytes with IFN-γ can induce neurotoxic activity [227]. 

Since the reactive astrocytes in the co-infected mice specifically expressed high levels of IFN-γ 

receptor 1 (IFNGR1), this suggested that the IFN-γ produced in response to the parasite infection in 

the intestine had enhanced the neurotoxic phenotype of the reactive astrocytes (Figure 8D). Elevated 

IFNGR1 expression was also detected in reactive astrocytes in mice infected with prions alone [213]. 

However, since IFN-γ is not induced in mice infected with prions alone in the steady state [213,228], 

the induction of IFNGR1 in the reactive astrocytes in response to CNS prion disease most likely 

primes them to respond to subsequent IFN-γ-mediated stimulation. Furthermore, the A1 astrocyte-

associated genes Gbp2 and Psmb8 are each inducible in astrocytes by IFN-γ stimulation [229,230]. 
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Figure 8. Accelerated CNS prion disease in mice co-infected with a gastrointestinal helminth during 

the preclinical phase [213]. Mice were injected IC with ME7 scrapie prions and 105 days later they 

were orally co-infected with ~20 infective T. muris eggs. Mice were sampled 35 days later (d 140) or 

maintained until the development of clinical disease. (A) High levels of IFN- in the serum of mice 

co-infected with prions and T. muris. (B) Survival plot shows accelerated onset of clinical prion disease 

in mice co-infected with prions and T. muris. (C) Significantly increased expression of the A1 reactive 

astrocyte-associated genes Gbp2, Psmb8 and Srgn in the brains of mice co-infected prions with T. muris. 

(D) Immunofluorescent microscopical detection of high levels of IFNGR1 (green) in GFAP+ reactive 

astrocytes (red) in the brains of mice infected with prions alone or co-infected with prions and T. 

muris. *, p < 0.05; **, p < 0.01; ***, p < 0.001. Figure adapted from [213] under the terms of the Creative 

Commons Attribution Licence (CC-BY-4.0; https://creativecommons.org/licenses/by/4.0/). 

Although low numbers of CD4+ and CD8+ T cells can infiltrate the brain during CNS prion 

disease [53], these cells are unlikely to contribute to the neurodegeneration in the steady state 

[28,30,231]. Interestingly, co-infection with T. muris also appeared to enhance the abundance of CD8+ 

T cells in the brains of mice infected with prions. It is plausible that IFN-γ-mediated stimulation in 

the co-infected mice enhanced the permeability of the blood–brain barrier enabling these cells to 

access the CNS [232]. CD8+ T cells with a pro-inflammatory and cytotoxic transcriptome have also 

been detected in the cerebrospinal fluid and brains of Alzheimer’s disease patients [233]. Other 

disturbances to the gastrointestinal tract could also affect the abundance of potentially pathogenic T 
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cells in the intestine and have pathological consequences in the CNS. For example, factors produced 

by certain bacteria strains in the small intestine can induce autoreactive T cells and this is associated 

with enhanced EAE severity [194]. Further studies are required to explore whether the CD8+ T cells 

that infiltrate the brains of mice co-infected with prions and T. muris also have pathogenic properties. 

Infections with gastrointestinal helminth pathogens are common in natural prion disease-

susceptible host species. For example, the nematode parasite Teladorsagia circumcincta causes infection 

in the abomasum of sheep. When lambs with natural sheep scrapie were co-infected with T. 

circumcincta during the preclinical phase, this also coincided with shortened prion disease survival 

times [135]. The effects of the helminth co-infection on the rate of development of the neuropathology 

were not determined in this study. However, this study raises the possibility that the systemic release 

of inflammatory mediators in response to helminth infection in the abomasum may have similarly 

accelerated the development of neuropathology within the CNS. 

9.4. The Contrasting Effects of Type I Interferons 

The production of type I IFN (IFN-α and IFN-β) provides an important first line of defence in 

host cells against viral infections. However, their production in the brain can have diverging 

consequences and has been linked to both protective, anti-inflammatory and detrimental effects 

(reviewed in [234]). Similarly contrasting roles for type I interferons during CNS prion disease have 

also been reported. Data from one laboratory suggested that type I IFN-mediated signalling via the 

IFN-α receptor 1 (IFNAR1) may have pathological consequences during CNS prion disease in the 

steady state, as survival times were extended in Ifnar1−/− mice infected with ME7 scrapie prions [235]. 

Here, the absence of type I IFN signalling during CNS prion disease coincided with suppressed 

microglial and astrocytic activation, as well as reduced phagocytic activity in the microglia in areas 

of the brain associated with neurodegeneration. The endoplasmic adaptor molecule, stimulator of 

IFN genes (STING), is a cytosolic sensor of DNA damage and endoplasmic reticulum stress and a 

potent inducer of type I IFN [236]. In the absence of STING the production of IFN-β by microglia 

from the brains of prion-infected mice was blocked. This implies that the STING-mediated detection 

of damaged neurons by microglia stimulates the production of type I IFN production during CNS 

prion disease, and this may enhance the rate of neurodegeneration [235]. However, it is important to 

note that induction of IFN-β has not been observed in patients with sCJD or in independent studies 

of mice infected with ME7 scrapie prions [237,238]. 

Conversely, data from another series of studies have proposed that type I IFN may play a 

protective role [239,240]. In contrast to data above [235], prion disease developed earlier in Ifnar1−/− 

mice infected with 22L scrapie prions, whereas treatment with a type I IFN antagonist (RO8191) 

extended survival times [240]. The reasons behind these discrepancies are not immediately apparent, 

but further studies may help to identify specific type I IFN regulators that influence the rate of 

development of CNS prion disease in certain individuals. 

9.5. COVID-19 

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes 

coronavirus disease 2019 (COVID-19) [241]. This highly infectious disease has rapidly spread 

worldwide and, at the time of writing (August 2020) had been attributed to at least 240,000 deaths 

[242]. A striking characteristic of this infection in the UK was that >90% of COVID-19-related deaths 

in the UK occurred in individuals who were >60 years old [243]. In these patients, dementia was 

identified as a highly significant co-morbidity factor for risk of hospitalized COVID-19 and death 

[244,245]. Whether COVID-19 enhances the progression of the neurodegeneration in these elderly 

individuals remains to be determined. However, a range of studies have discussed how systemic 

infection and gastrointestinal infections could exacerbate the cognitive decline or neuropathology in 

patients with Alzheimer’s disease [246,247], Parkinson’s disease [248] and amyotrophic lateral 

sclerosis or frontotemporal dementia [249]. 

A recent case report of a > 60-year-old patient reported that the onset of clinical sCJD signs 

occurred concurrently with those of COVID-19 [250]. Further studies are clearly necessary to 
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investigate this association, and coincidence cannot be entirely excluded. However, considering data 

discussed in the above sections, it is tempting to speculate that the strong inflammatory responses 

that have been described in patients with severe COVID-19 disease [251] could exacerbate the 

neuropathology. For example, viral load in COVID-19 patients correlates highly with serum TNF-α 

levels, and severe COVID-19 disease is associated with high serum TNF-α [251]. As described above 

(Section 9.2.1), TNF-α is an important inducer of neurotoxic A1 reactive astrocytes in the brain [211]. 

Furthermore, TNF-α administration exacerbates the clinical signs in mice infected with prions [252] 

and exaggerates the reactive astrocyte activation [219]. Viral load in COVID-19 patients also 

correlates highly with serum IFN-γ levels [251], and those requiring intensive care treatment have 

high serum IFN-γ levels [253]. This cytokine can similarly stimulate neurotoxic reactive astrocyte 

activation [227], and IFNGR1 expression is upregulated in reactive astrocytes during CNS prion 

disease [213], in aging human brains and patients with Parkinson’s disease and Alzheimer’s disease 

[227,254]. Thus, it is plausible that the systemic production of high levels of pro-inflammatory 

mediators such as TNF-α and IFN-γ in response to infection with the SARS-Cov-2 virus could 

accelerate the neurodegeneration in patients with concurrent prion disease or other 

neurodegenerative disorders. 

10. Conclusions 

Despite decades of intensive research, there are still no effective treatments that can be used to 

block prion disease susceptibility or intervene in the disease process. As a consequence, the onset of 

clinical prion disease is invariably fatal in affected individuals. Many of the studies discussed 

throughout this review show how modulation of immune cell abundance or function can have 

protective effects on prion disease pathogenesis and susceptibility. Similar changes, either around 

the time of prion exposure or towards the clinical phase, could influence an individual’s risk of being 

infected and developing disease. This could explain why some individuals develop clinical disease 

and others do not, despite exposure to similar amounts of prions. For example, the UK population is 

likely to have been widely exposed to the BSE agent through the consumption of contaminated food 

during the BSE epidemic. Despite this, the incidence of probable and definite clinical vCJD cases has 

fortunately been relatively low. Since data from BSE transmission to transgenic mice expressing 

human PrPC indicate that there is a significant barrier to the cross-species transmission of BSE prions 

to humans (known as the species barrier effect) [255], it is feasible that, in some individuals, the effects 

of inflammation around the time of exposure may have increased their susceptibility to oral prion 

infection. 

Conversely, a range of studies have raised the credible prospect that immunotherapeutic 

approaches, such as passive or active immunisation, may have efficacy against these currently 

untreatable and devastating disorders (reviewed in [256,257]). For example, transgenic mice that are 

engineered to secrete anti-PrP antibodies are protected against peripheral prion infections [258]. 

Passive immunisation with monoclonal anti-PrP antibodies is similarly protective in mice but large 

quantities of anti-PrP antibodies were administered for the duration of the experiment [259]. At the 

time of writing, a clinical trial in the UK was underway to test the efficacy of anti-PrP antibody 

treatment (using monoclonal antibody PRN100) in six sCJD patients [260]. Of course, the blood–brain 

barrier limits the entry of large blood-borne molecules such as antibodies into the brain [261]. 

Therefore, to be effective against the CNS phase of prion disease, these must be administered directly 

into the CNS of affected individuals, although use of camelid-derived PrP-specific heavy chain 

antibodies, or nanobodies, may offer an alternative approach [262]. 

However, since each of these examples involve the administration of antibodies against the PrP 

molecule, the potential for them to bind to cellular PrPC (especially on neurons) and cause 

autoimmunity or neurotoxicity must be considered [263,264]. Fortunately a detailed assessment of 

the impact of the binding of anti-PrP antibodies to different domains of the PrPC molecule offers 

useful advice for future antibody-based treatments: antibodies that bind to the globular protein 

domain can be neurotoxic, whereas those that bind to the flexible tail of PrPC appear to be 

neuroprotective [263]. Antibodies are considered to provide protection through mechanisms 
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including the elimination of prions from affected tissue or blocking PrPC–PrPSc conversion. However, 

stimulation with certain anti-PrP antibodies can induce anti-inflammatory macrophage polarisation 

and, by doing so, protect mice from an otherwise lethal influenza infection [10]. It will be interesting 

to determine whether similar anti-PrP antibody-mediated effects could indirectly limit the neurotoxic 

activation of microglia during prion disease [147,168]. 

Prion disease has been transmitted in natural host species, including humans, via the oral route 

after ingestion of food or pasture contaminated with prions (discussed in [16]). An effective anti-

prion vaccine will therefore need to induce both mucosal (IgA) response and systemic (IgG) antibody 

responses to protect against prion invasion from the intestine and the subsequent effects of prion 

accumulation in tissues. Fortunately, experimental studies in mice and white-tailed deer have 

provided proof of principle that mucosal immunisation against PrPC can provide partial protection 

against orally-acquired prion disease [265,266]. The enterocytes that line the intestine can transcytose 

IgG into the intestinal lumen, and can subsequently transport IgG-antigen complexes back across the 

epithelium by a process known as reverse transcytosis [267]. It remains to be determined whether 

anti-PrPC antibodies might in some instances enhance the transcytosis of prions across into Peyer’s 

patches and by doing so increase disease susceptibility [268]. 

Finally, natural, rare instances of high-titre, anti-PrPC antibodies have been detected in the 

bloodstream of some humans. In one study, serum samples were analysed from 128 individuals with 

various pathogenic prion disease-associated PRNP mutation and 78 control individuals that lacked 

these mutations but had a positive family history of genetic prion disease [269]. While disease-

associated PRNP mutations did not generally stimulate antibody responses to PrPC, some individuals 

in this study did have anti-PrPC antibodies (IgG subclass) in their sera. However, the presence and 

titres of these anti-PrPC antibodies were similar across the subject groups, arguing against them 

providing protection against prion disease or directly contributing to the neurodegeneration. In a 

separate study, serum samples from over 48,000 Swiss hospital patients were screened. Amongst this 

large collection of samples, 21 individuals were identified with potentially-protective high-titre anti-

PrP antibody titres [270] (Figure 9A). In some individuals, these titres were maintained for at least 8 

months (Figure 9B). An additional genetic screen of large-scale antibody repertoire sequences derived 

from circulating and naïve B cells from healthy donors also identified the existence of some 

potentially-protective PrPC-specific antibody clones [270S] (Figure 9C). Further research is now 

necessary to determine whether these are sufficient to offer in protection to these individuals against 

prion infections in vivo. The demonstration that potentially-protective anti-PrP antibodies were 

detected in some individuals without obvious signs of neurotoxicity raises hope that antibody-based 

intervention strategies against prion diseases may be tolerated without significant adverse reactions. 

 

Figure 9. Detection of protective anti-PrP antibodies in human serum and immunoglobulin 

repertoires [270]. (A) Violin plot/box plot showing detection of 21 individuals (solid black circles) with 

high-titre anti-PrP antibody titres in serum samples from 41,718 Swiss hospital patients. (B) Anti-PrP 
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reactivity was maintained for at least 8 months in some individuals. (C) Identification of HCDR3 

sequences similar to a synthetic phage-derived anti-PrP Fab clone (Fab71) in three different datasets 

of human antibody repertoires from healthy donors. (D) The amino acid sequence of Fab17 VH3-30 

compared to the HCDR3 regions identified in the different healthy donor databases that differed from 

Fab71 by ≤3 residues. Orange boxes indicate amino acids distinct from Fab71. Adapted from [270] 

under the terms of the Creative Commons Attribution Licence (CC-BY-4.0; 

https://creativecommons.org/licenses/by/4.0/). 
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Abbreviations 

BSE Bovine spongiform encephalopathy 

cDC Conventional dendritic cell 

CNS Central nervous system 

CSF1/R Colony-stimulating factor 1/receptor 

FAE Follicle-associated epithelium 

FDC Follicular dendritic cell 

GALT Gut-associated lymphoid tissue 

GSS Gerstmann–Sträussler–Scheinker disease 

IC Intracerebral 

IFN Interferon 

IFNGR1 Interferon gamma receptor 1 

IL Interleukin 

IP Intraperitoneal 

LPS Lipopolysaccharide 

MFGE8 Milk fat globule epidermal growth factor 8 

MHC Major histocompatibility complex 

MNP Mononuclear phagocyte 

PrPC Cellular PrP isoform 

PrPSc Prion disease-specific PrP isoform 

sCJD Sporadic Creutzfeldt–Jakob disease 

SED Subepithelial dome 

SFB Segmented filamentous bacteria 

SLO Secondary lymphoid organ 

TGF Transforming growth factor 

TNF Tumour necrosis factor 

UPR Unfolded protein response 

vCJD Variant Creutzfeldt–Jakob disease  
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