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Abstract: Protein Hot-Spots (HS) are experimentally determined amino acids, key to small ligand
binding and tend to be structural landmarks on protein–protein interactions. As such, they were
extensively approached by structure-based Machine Learning (ML) prediction methods. However,
the availability of a much larger array of protein sequences in comparison to determined tree-
dimensional structures indicates that a sequence-based HS predictor has the potential to be more useful
for the scientific community. Herein, we present SPOTONE, a new ML predictor able to accurately
classify protein HS via sequence-only features. This algorithm shows accuracy, AUROC, precision,
recall and F1-score of 0.82, 0.83, 0.91, 0.82 and 0.85, respectively, on an independent testing set.
The algorithm is deployed within a free-to-use webserver, only requiring the user to submit a FASTA
file with one or more protein sequences.
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1. Introduction

Hot-Spots (HS) can be defined as amino acid residues that upon alanine mutation generate a
change in binding free energy (∆∆Gbinding) higher than 2.0 kcal mol−1, in opposition to Null-Spots
(NS), which are unable to meet this threshold. Although the threshold of 2.0 kcal mol−1 can vary in
the definition of HS, a representative amount of studies on the subject typically use this cut-off [1–6].
HS are key elements in Protein–Protein Interactions (PPIs) and, as such, fundamental for a variety
of biochemical functions. The disruption of these interactions can alter entire pathways and is of
interest to therapeutic approaches [1,7]. These residues are also known to be important for protein
dimerization [8] and ligand binding [9]. Indeed, HS tend to be associated with the binding of small
ligands, hence becoming ideal subjects of study on target proteins for drug design approaches [9–11].

Databases of experimental determined HS and NS can be found in the literature: ASEdb [12],
BID [13], PIN [14] and SKEMPI [15]. More recently, SKEMPI 2.0 was released, making available a
larger amount of experimental information. However, most of the new information does not include
mutations to alanine (and the corresponding change in free binding energy), which is the material
under scope in the present work [16]. These databases can be used to deploy Machine-Learning (ML)
algorithms that take both the positive (HS) and negative (NS) information and construct a binary
classifier that should be able to predict, upon previously unforeseen amino acid residues in a protein,
its HS/NS status. Although ML is not limited to binary classification, on this problem and given
the available data format, binary classification was the most explored approach until now. Several
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algorithms have been proposed for HS computational predictions, using different ML approaches,
features and datasets [17–25]. Recently (2017), SPOTON [22], using information on both the protein
sequence and structure, achieved results of 0.95 accuracy on an independent testing set, making it
the best performing HS predictor at the time. Most of the high-performing HS predictors incorporate
structural information. Although yielding clearly robust results, it hinders the possibilities of a broader
deployment, since there are still fewer proteins for which a three-dimensional (3D) structure is available
in online repositories [26] compared to the determined and available protein sequences [27]. It is known
that sequence-based predictors tend to perform more poorly, in comparison with the ones engulfing
structural information. For example, Nguyen et al. (2013) [19] were able to achieve an accuracy of
0.79 and a precision of 0.75 using sequence-based frequency-derived features. More recently, Hu et al.
(2017) [20] achieved an F1-score of 0.80 using only sequence-based features while Liu et al. (2018) [21]
achieved an F1-score of 0.86 using sequence-based features and amino acid relative Solvent Accessible
Surface Area (SASA). The problem of HS computational determination is usually riddled with class
imbalance, as there are commonly more experimentally determine residues as NS than HS due to the
nature of PPIs. Conversely, the size of the dataset is usually not large enough to dilute this discrepancy.
As such, problems emerge on the dataset training, but, more importantly, on the analysis of the results.
We developed SPOTONE (hot SPOTs ON protein complexes with Extremely randomized trees), a HS
predictor that only makes use of protein sequence-based features, all of which were calculated with
an in-house Python pipeline. To avoid protein-centered overfitting, features concerning the whole
protein were not applied to the classification problem. This allowed us to avoid the predictor from
learning HS/NS only on a specific subset of proteins and be able to correctly classify even for unforeseen
subtypes of biological machineries. Furthermore, we deployed a rigorous train–test split that ensured
equality among classes, not only in the training and testing datasets, but also regarding the amino acid
types. The resulting platform and predictor are available at: http://moreiralab/resources/spotone.

2. Results

The results presented herein were attained following a ML pipeline, depicted in Figure 1, which lays
the overall steps involved in dataset preparation and prediction model training and refinement.
The detailed version of each step is further explored in the Material and Methods Section.

2.1. Dataset

We began by analyzing our dataset, the same previously mined and cleaned for SPOTON [22],
composed by 534 amino acid residues, of which 127 are HS and 407 are NS, from 53 protein–protein
complexes. Figure 2A shows the class distribution by amino acid type. Clearly, TYR, one of the most
common HS in nature, is an outlier. Secondly, it should be noted that MET and CYS have no registered
HS. Finally, it should also be noted that, due to the nature of the method used for HS experimental
determination, there are no ALA residues in either the HS or NS class (as already explained). Figure 2B
shows the split of the protein primary sequences into four equally long quartiles, which allowed us to
analyze the HS/NS distribution along these ordered sections. It should be noted that, in the first quartile
of the protein, the number of HS is at its highest value, although the number of NS is not equally as
high. In the last quartile of the protein sequences, the number of overall registered HS/NS is the lowest;
however, the proportion in which they stand favors the existence of HS rather than NS, in comparison
with the remaining quartiles. The comparison with the literature-based features can be consulted at the
landing page of our website. These features include secondary structure propensity, pKa associated
values, number of atoms of each type and standard area and mass associated values. Their analyses
can show tendencies of these features that correlate to their usefulness to the ML deployment.

http://moreiralab/resources/spotone
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Figure 1. Workflow of the Machine Learning pipeline. Firstly, the 534 amino acids were split into
experimentally determined HS (127) and NS (407). Secondly, 60% of the entries of both classes were
randomly picked for the train dataset while the remaining 40% were not used for the training phase
(20% for test and 20% for an independent test). All datasets were matched with their corresponding
173 features. The training data were used to train the models, which were tested on the test set to yield
HS/NS predictions. The predictions were then used to update probability thresholds and generate the
final model, which basically consists of the trained model with subsequent HS probability correction.
The final model was then applied to an independent test, which did not influence any step of the
process, in order to be evaluated. More details on the used method can be found in the Materials and
Methods Section.
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Figure 2. (A) Class distribution by amino acid type; and (B) class distribution by relative position in
the protein sequence. In both plots, the y-axis represents the amino acid count.

2.2. Machine-Learning Algorithms

Tables A1 and A2 in the Appendix A list the full results attained for the various algorithms
and methods. Table A1 shows that the in-house built features subset displayed one of the highest
performance metrics in comparison with any of the other features alone. It can be noticed that PSSM
led to a slight improvement, but the small difference of performance does not compensate the larger
amount of time needed for this feature calculation. The introduction of iFeatures, concerning the
whole protein, did not increase significantly the performance and introduced concerns related to
protein-centered overfitting, and as such was discarded of further studies.

The extremely randomized trees took the lead in most performance metrics, and it is clearly more
robust in what concerns the identification of HS, as denoted by the high recall score. It should be noted
that neither grid search parameter tuning nor prediction probability tuning according to amino acid
type performance was used before method selection to keep the independent test unbiased (further
explained in the Material and Methods Section). As such, all values presented in Table 1 concern
default settings. This allowed the selection of extremely randomized trees algorithm for parameter
tuning, as well as subsequent required alterations.
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Table 1. ML results in the training and testing sets using 5 different algorithms and evaluated using the
metrics accuracy (Acc), AUROC, precision (Prec), recall (Rec) and F1-score (F1).

Method Data Acc AUROC Prec Rec F1

Neural network
Train 0.81 0.73 0.81 0.81 0.81
Test 0.69 0.56 0.72 0.69 0.71

AdaBoost
Train 0.98 0.98 0.98 0.98 0.98
Test 0.71 0.56 0.77 0.71 0.74

Support Vector Machine Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

Extremely Randomized Trees Train 0.99 1.00 0.99 0.99 0.99
Test 0.81 0.77 0.88 0.81 0.83

To avoid the adaptation introduced and displayed in Table A3 leading to the generation of false
positives, we set half of the testing set aside, comprising 20% of the whole dataset. Table 2, which lists
the performance metrics of the parameter-tuned adapted model for both the training and the testing set,
shows a significant increase in the testing performance, while the training scores remain unchanged.
This trend was further validated by deploying the model in the independent testing set.

Table 2. Performance metrics on the same training and testing sets after updating the prediction
thresholds, and evaluated using the metrics accuracy (Acc), AUROC, precision (Prec), recall (Rec) and
F1-score (F1).

Data Acc AUROC Prec Rec F1

Training after threshold adaptation 0.99 0.99 0.99 0.99 0.99
Testing after threshold adaptation 0.85 0.88 0.93 0.85 0.87

Independent Testing after threshold adaptation 0.82 0.83 0.91 0.82 0.85

It should be noted that the “class_weight” parameter, available on the deployment of the extremely
randomized trees used was particularly relevant in tackling class imbalance, since, by setting it to
“balanced_subsample”, it generates and updates class weights based on the samples. A full comparison
with state-of-the-art predictions is shown in Table 3. Apart from SPOTON [22], two values for each
performance metric are listed: on the left is the value assessed with the dataset used on SPOTONE
and on the right are the values presented in the corresponding scientific papers for each method.
These values were attained from the pipeline used in SPOTON [22]; since the dataset is the same,
the performance comparison also stands equal. In the case of the sequence-based methods that are
not SPOTONE, we were not able to deploy our dataset as the webservers indicated were not active or
available; this applies to the methods of Nguyen et al. (2013) [19] (reported metrics in their dataset:
accuracy of 0.79, recall of 0.59, F1-score of 0.66 and precision of 0.75), Hu et al. (2017) [20] (reported
metrics in their dataset: recall of 0.67, F1-score of 0.80 and precision of 1.00) and Liu et al. (2018) [21]
(reported F1-score of 0.86 in their dataset).

Table 3. Structure-based HS prediction performances.

Metrics for Testing-set Evaluation
Structure-Based Methods

SPOTON [22] SBHD2 [23] KFC-A [24] KFC-B [25]

AUROC 0.91 0.69/0.69 0.66/– 0.67/-
Recall 0.98 0.70/0.77 0.53/0.85 0.28/0.62

F1-score 0.96 0.62/0.86 0.56/- 0.42/-
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3. Discussion

This work presents a significant improvement in HS prediction at the interface of protein–protein
complexes. However, more than the high performing metrics, the robustness of this model emerges
from a thorough treatment and splitting of the dataset, as well as from the exclusion of whole protein
sequence features, leaving only residue specific sequence-based features. Figures A1–A3 display the
performance of SPOTONE upon being applied to three different complexes (PDB ids: 1a4y, 1jck and
3sak), with insights on all the residues experimentally determined for these complexes and comparison
of this information to our HS/NS SPOTONE prediction. These three examples clearly show how well
the predictor works on a point-by-point example. Our final accuracy (0.82), recall (0.82) and precision
(0.91) highlight the existence of a very low number of falsely predicted HS as well as NS. Its closeness
in performance to the best structural based predictor is complemented with the high versatility of
using only sequence-based features prediction, which allows a much wider application in a variety of
biological problems.

Finally, all the work is available in a free-to-use platform that allows the user to input one or more
protein sequences in FASTA format (Box 1) and attain a detailed HS/NS prediction with corresponding
graphical interface. The platform is available at http://moreiralab.com/resources/spotone.

Box 1. Example FASTA file, with the different proteins’ chains separated by paragraphs and clear
identifiers initiated with “>”, separated from the single letter amino acid code chain with a paragraph.
This needs to be stored in a “.fasta” file to be submitted to SPOTONE.

>6Q1G:H|PDBID|CHAIN|SEQUENCE
ASQVQLQESGPGLVKPSGTLSLTCAISGGSISSSNWWTWVRQPPGKGLQWIGEIQHGGGTNYNPS
LKSRATIFVDVSKNHFSLRLSSVTAADTAVYYCAKVPPYCTSASCPDDYYYHYMDVWGKGTTVTV
SGASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL
SSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSCDKHHHHHH
>6Q1G:L|PDBID|CHAIN|SEQUENCE
ASSSELTQDPAVSVALGQTVRITCQGDSLRGYSASWYQLKPGQAPVLVIYGKNNRPSGIPDRFSGST
SGNRASLIITGTQAEDEADYYCNSRDTNGYRPVLFGGGTKLTVLGQPKGAPSVTLFPPSSEELQAN
KATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQ
VTHEGSTVEKTVAPTECS

4. Materials and Methods

The dataset used here was retrieved from our previous method, SPOTON [22], and is comprised
of 534 amino acid residues (127 positive-HS and 407 negative-NS). This dataset was constructed of data
merged from the experimental databases ASEdb [12], BID [13], PINT [14] and SKEMPI [15], and as
such comprises all literature available experimental data coming from alanine scanning mutagenesis.
We also highlight that sequence redundancy was already eliminated in our previous work. To address
this particular problem, we did not simply split the 534 samples into training and testing sets. Firstly,
we split all the samples into two datasets containing either HS or NS. Of these datasets, we extracted
20 different subsets from each (corresponding to the 20 possible amino acids). We randomly split these
40 sets (20 HS subsets and 20 NS subsets) in a 60:40 ratio, using “train_test_split” from scikit-learn [28].
Finally, we stitched the tables corresponding to the training set and the testing set back together.
Our process was devised to ensure that HS and NS were equally represented for each residue in both
the training set and the testing set. Unfortunately, ALA entries were completely absent from the
dataset (due to the experimental detection method typically used in wet labs) and CYS and MET only
had NS entries (as these residues have a lower/null incidence as key in PPIs). For the latter two cases,
we included them in the training set, as it would not be possible to assay their presence in the testing
set. Following this procedure, we ended up with a training set containing 312 residues and a testing set
containing 222 residues. We randomly split the final testing set in two, with 111 residues each; half the
testing set was used to fine-tune probability thresholds (see Prediction Probability Tuning), while the

http://moreiralab.com/resources/spotone


Int. J. Mol. Sci. 2020, 21, 7281 7 of 19

other half was set aside for fully independent test analysis, only having been used after selecting the
ML model and performing all parameter tuning.

4.1. Features

The following section reports the calculation of 173 features with an in-house Python pipeline and
literature-based information on amino acid characteristics. All the extracted features can be calculated
simply using the input sequence of a FASTA file. It should be noted that we only used sequence-based
features and, furthermore, we did not add any sequence feature about the protein as a “whole”,
which might have, due to the size of the dataset, promoted overfitting on a protein level. As shown in
Tables A1 and A2, pre-constructed whole-sequence based features and Position-Specific Scoring Matrix
(PSSM) were also tested. For the first, we used iFeature [29] and attained 14.056 whole sequence-based
features, for each of the chains. For PSSM, we used an in-house psiblast [30] deployment to extract
42 position conservation features.

4.2. One-hot Encoding (20 Features)

The first twenty features extracted for each amino acid residue were simply a one-hot encoded
representation of the amino acid; thus, for each amino acid, nineteen columns were filled with “0”,
and only one (with the corresponding value), was filled with “1”.

4.3. Relative Position Feature (1 Feature)

In Figure 2B, we display the abundance of NS/HS on the protein sequence quartiles. The quartiles
were defined by splitting the proteins’ length by four and analyzing the residues present in each of the
sections. As such, we used the numbering 1–4 (representing its relative position in the sequence) as a
feature that indicates the quartile in which each amino acid is present.

4.4. Literature-Based Features (19 Features)

Several amino acid properties are constantly determined, updated and made available online.
We downloaded 19 amino acid properties from the BioMagResBank [31] and associated each of
them with each of the amino acids; the features and corresponding values per amino acid used
are listed in Tables A4 and A5. Please note that this database is regularly updated to improve the
reliability of the experimental data. The statistical distribution of these properties regarding their
HS/NS on the dataset used are available in form of violin, scatter and boxplots on the landing page
(http://www.moreira.com/resources/spotone).

4.5. Window-Based Features (133 Features)

Window-based features were described with a “sliding windows” that stopped on the target
residue and considered the residues that stand close to it, sequence wise. We considered window
sizes of 2, 5, 7, 10, 25, 50 and 75 amino acid residues, and, for each target residue, averaged the values
corresponding to the features of in the Literature-Based Features Section on the residues comprised in
the windows. Thus, if we multiply the number of raw features (19) by the number of windows (7),
we added 133 features.

4.6. Machine-Learning Models Deployment

We exploited different algorithms: Neural Networks (“MLPClassifier”) [32], Random Forest
(“RandomForestClassifier”) [33], AdaBoost (“AdaBoostClassifier”), Support Vector Machine (“SVC”) [34]
and Extremely Randomized Trees (“ExtraTreesClassifier”) [35]. All of the algorithms were used from
their scikit-learn [28] deployment. The extremely randomized trees algorithm, similar to a random
forest, is based on decision trees. From the training set, the algorithm picks attributes at random and
generates subsets; by training these on the decision trees that comprise the model, an ensemble model is

http://www.moreira.com/resources/spotone
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built by majority vote. However, one of the main differences to other algorithms is that it chooses node
cut-points (the bifurcation points’ thresholds in a decision tree) fully at random; another significant
difference is that the full training set is used, instead of a bootstrap replica, for each of the decision trees
that comprise the ensemble model. This additional randomization is ideal in small datasets, in which
overfitting is more likely to occur on the training set without a proper test evaluation of robustness.
This method has proven to have successful results in solving other biological based problems [36,37].
After running all the methods in default scikit-learn [28] settings, we fine-tuned some parameters of
the extremely randomized trees [35] with a grid search (“GridSearchCV”, scikit-learn [28]), and the
following parameters were updated: “n_estimators”: 500; “bootstrap”: True; and class_weight:
“balanced_subsample”. The full set of parameters can be consulted in Table A6, the parameters not
referred were kept as default. Grid search was performed with 10-fold cross-validation.

4.7. Model Evaluation

To evaluate the models, we subjected both the training and the testing set to confusion matrix
analysis. This table relates the actual and the predicted instances (sample) and compares them by their
binary status of Negative (N) or Positive (P) in the prediction to their actual class of True (T) or False
(F). It further relates these in four different possible combination states: True Negative (TN) is when
the prediction is N and the actual is F; True Positive (TP) is when the prediction is P and the actual is T;
False Negative (FN) is when the prediction is N and the actual is T; and False Positive (FP) is when the
prediction is P and the actual is F.

The confusion matrix allows the calculation of several metrics, such as accuracy (Equation (1));
precision (Equation (2)); sensitivity, recall or True Positive Rate (recall, Equation (3)); False Positive Rate
(FPR, Equation (4)); F1-score (Equation (5)); and Area Under the Receiver Operating Characteristic
curve (AUROC, Equation (6)). All these metrics were used from the scikit-learn package 20.

accuracy =
TP+TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

FPR =
FP

FP + TN
(4)

F1− score =
2 ∗ (precision ∗ recall)
(precision + recall)

(5)

AUROC =

∫ 1

x=0
TPR

(
FPR−1(x)

)
dx (6)

4.8. Prediction Probability Tuning

We performed further inspection of the HS/NS prediction by amino acid, in addition to the whole
dataset, as can be seen in the “original” rows in Table A3. This inspection led us to notice that the
HS/NS ratio had a significant toll in model performance. For example, TYR had a robust prediction
of HS/NS; however, residues which had not such a balanced HS/NS ratio performed more poorly.
Although this is a classification problem, most classification methods calculate class probability before
yielding the predicted class, which is determined according to the higher probable class. As such,
we examined the probability associated to the positive class (HS). Upon inspection of classification
probabilities of the actual residues, it was noticed that, although not classified as HS, most of these
amino acids still had a higher probability of HS classification than NS. The adaptation value displayed
in Table A3 is the increase in probability of the HS class, added post-training, that allows higher HS



Int. J. Mol. Sci. 2020, 21, 7281 9 of 19

probability amino acids to reach the HS class (above 50%). This value was implemented following the
condition that it should not generate FP while increasing the amount of TP. As such, when, for each
amino acid, the maximum false negative HS probability was higher than the maximum true negative
HS probability, the HS probability (for that amino acid) was updated (Equation (7)). CYS, MET and
ALA were not displayed in Table A3 due to their absence from the testing set.

Correction factor = 0.50 – Maximum False Negative HS probability (7)

4.9. Webserver Implementation

The webserver was fully implemented with Python. Plotly [38] was used for dynamic graphical
representations; scikit-learn [28] was used to perform user submission treatment, analysis and
prediction; and in-house Python scripts were used to perform all feature extraction and intermediate
steps. Flask was used for overall server set-up and visual layout construction [39]. The output each
run includes a dynamic heatmap displaying the probability of HS, for each amino acid in the single or
more chains submitted by the user. The full table with the classification probabilities as well as binary
class before and after class probability tuning are also available for the user to download. A snapshot
of the webserver output is displayed in Figure 3.

Figure 3. Sample of the output page of SPOTONE.

5. Conclusions

SPOTONE is a thorough prediction algorithm that tackles HS classification in a problem-tailored
protocol. The pre-processing and ML steps can be the framework for further protein-based structural
biology problems, as are innovating in several processes: (1) by highlighting the importance of
protein-based overfitting versus amino acid based features; (2) by providing an answer with a set
of simple, replicable, in-house features that make use of freely available information and amino
acid position; (3) by considering the evaluation of the amino acid prediction capabilities instead
of simply the target features at hand; (4) by attributing specific weights to amino acid types as a
way to underline that these are not only features but also subsample spaces of the dataset; (5) by
introducing a viable sequence-based HS predictor; and (6) by providing an intuitive and biologically
relevant data interpretation tool (HS probability maps). Furthermore, SPOTONE as a webserver
(http://moreiralab.com/resources/spotone) is easily usable by non-proficient researchers, with an
intuitive framework.

http://moreiralab.com/resources/spotone
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Appendix A

Table A1. Performance metrics (training and testing datasets) for the three studied subsets: with only
the in-house features (one-hot encoding, relative position, literature based and window-based features),
using only PSSM features and the joint dataset with both in-house and PSSM features.

Dataset Classifier Name Subset Accuracy AUC Precision Recall F1-Score

In-house features Extremely Randomized Trees Train 0.99 1.00 0.99 0.99 0.99
Test 0.81 0.77 0.88 0.81 0.83

Neural Network Train 0.81 0.73 0.81 0.81 0.81
Test 0.69 0.56 0.72 0.69 0.71

AdaBoost Train 0.98 0.98 0.98 0.98 0.98
Test 0.71 0.56 0.77 0.71 0.74

Support Vector Machine Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

PSSM features Extremely Randomized Trees Train 0.96 0.98 0.97 0.96 0.97
Test 0.72 0.55 0.82 0.72 0.76

Neural Network Train 0.96 0.97 0.96 0.96 0.96
Test 0.70 0.57 0.74 0.70 0.72

AdaBoost Train 0.91 0.92 0.93 0.91 0.91
Test 0.73 0.60 0.79 0.73 0.75

Support Vector Machine Train 0.80 0.86 0.96 0.8 0.86
Test 0.76 0.64 0.92 0.76 0.82

In-house + PSSM Extremely Randomized Trees Train 1.00 1.00 1.00 1.00 1.00
Test 0.83 0.86 0.93 0.83 0.86

Neural Network Train 0.83 0.78 0.85 0.83 0.82
Test 0.56 0.50 0.52 0.56 0.53

AdaBoost Train 0.98 0.98 0.98 0.98 0.98
Test 0.72 0.60 0.74 0.72 0.73

Support Vector Machine Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

https://github.com/MoreiraLAB/spotone
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Table A2. Performance metrics for the subsets: The joint dataset with both in-house (one-hot encoding,
relative position, literature based and window-based features) and iFeature features (full sequence
features); the dataset with in-house, PSSM and iFeature features; and the dataset with only iFeatures.

Dataset Classifier Name Subset Accuracy AUC Precision Recall F1-Score

In-house +
iFeatures Extremely Randomized Trees Train 1.00 1.00 1.00 1.00 1.00

Test 0.83 0.77 0.85 0.83 0.84

Neural Network Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

AdaBoost Train 0.99 0.99 0.99 0.99 0.99
Test 0.81 0.75 0.83 0.81 0.82

Support Vector Machine Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

In-house + PSSM
+ iFeatures Extremely Randomized Trees Train 1.00 1.00 1.00 1.00 1.00

Test 0.83 0.77 0.84 0.83 0.83

Neural Network Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

AdaBoost Train 0.99 0.99 0.99 0.99 0.99
Test 0.77 0.69 0.79 0.77 0.78

Support Vector Machine Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

iFeatures Extremely Randomized Trees Train 0.83 0.80 0.90 0.83 0.85
Test 0.77 0.67 0.82 0.77 0.79

Neural Network Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

AdaBoost Train 0.83 0.76 0.86 0.83 0.84
Test 0.79 0.72 0.80 0.79 0.79

Support Vector Machine Train 0.77 0.00 1.00 0.77 0.87
Test 0.76 0.00 1.00 0.76 0.86

Table A3. Extremely randomized trees algorithm scores, by amino acid, in the testing set.

Amino Acid Adaptation
Value Accuracy Precision Recall Amount Used for

Threshold Adaptation

ASP
Original - 0.71 0.00 1.00

11
Adapted - - -

SER
Original - 1.00 0.00 0.00

4
Adapted - - -

GLN
Original - 0.67 0.00 0.00

6
Adapted - - -

LYS
Original - 1.00 1.00 1.00

12
Adapted - - -

ILE
Original

+0.15
0.80 0.00 0.00

5
Adapted 1.00 1.00 1.00

PRO
Original

+0.15
0.50 0.00 0.00

2
Adapted 1.00 1.00 1.00
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Table A3. Cont.

Amino Acid Adaptation
Value Accuracy Precision Recall Amount Used for

Threshold Adaptation

THR
Original - 1.00 1.00 1.00

8
Adapted - - -

PHE
Original

+0.25
0.75 0.00 0.00

4
Adapted 1.00 1.00 1.00

ASN
Original

+0.15
0.50 0.00 0.00

6
Adapted 0.83 0.67 1.00

GLY
Original - 1.00 0.00 0.00

1
Adapted - - -

HIS
Original - 0.80 0.00 0.00

5
Adapted - - -

LEU
Original

+0.06
0.50 0.00 0.00

4
Adapted 1.00 1.00 1.00

ARG
Original - 1.00 0.00 0.00

9
Adapted - - -

TRP
Original - 0.71 0.00 0.00

7
Adapted - - -

VAL
Original

+0.25
0.67 0.00 0.00

3
Adapted 0.67 0.00 0.00

GLU
Original - 0.85 0.00 0.00

13
Adapted - - -

TYR
Original - 0.55 0.33 0.67

11
Adapted - - -
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Table A4. Literature-based amino acid features, such as secondary structure propensity, pKa associated values, number of atoms of each type and standard area and
mass associated values, attained from BioMagResBank [31].

Amino
Acid

Helix
Propensity

Sheet
Propensity

Helix Propensity
Values

Sheet Propensity
Values

Molecular
Weight

pKa
Carboxylate

pKa
Amine

pKa Side
Chain

Number of
Carbons

ALA 1 1 1.45 0.97 89.09 2.30 9.90 0.00 3

CYS 2 2 0.77 1.30 121.16 1.80 10.80 8.65 3

ASP 2 3 0.98 0.80 133.10 2.00 10.00 4.04 4

GLU 1 4 1.53 0.26 147.13 2.20 9.70 4.39 5

PHE 3 2 1.12 1.28 165.19 1.80 9.10 0.00 9

GLY 4 3 0.53 0.81 75.07 2.40 9.80 0.00 2

HIS 3 5 1.24 0.71 155.16 1.80 9.20 6.75 6

ILE 5 6 1.00 1.60 131.17 2.40 9.70 0.00 6

LYS 5 5 1.07 0.74 146.19 2.20 9.20 11.00 6

LEU 1 2 1.34 1.22 131.17 2.40 9.60 0.00 6

MET 3 6 1.20 1.67 149.21 2.30 9.20 0.00 5

ASN 6 5 0.73 0.65 132.12 2.00 8.80 0.00 4

PRO 4 5 0.59 0.62 115.13 2.00 10.60 0.00 5

GLN 3 2 1.17 1.23 146.15 2.20 9.10 0.00 5

ARG 2 3 0.79 0.90 174.20 1.80 9.00 12.50 6

SER 2 5 0.79 0.72 105.09 2.10 9.20 0.00 3

THR 2 2 0.82 1.20 119.12 2.60 10.40 0.00 4

VAL 3 6 1.14 1.65 117.15 2.30 9.60 0.00 5

TRP 3 2 1.14 1.19 204.22 2.40 9.40 0.00 11

TYR 6 2 0.61 1.29 181.19 2.20 9.10 9.75 9
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Table A5. Literature-based amino acid features, such as secondary structure propensity, pKa associated values, number of atoms of each type and standard area and
mass associated values, attained from BioMagResBank [31].

Amino
Acid

Number of
Hydrogens

Number of
Nitrogen Atoms

Number of
Oxygens

Number of
Sulphur

Standard
Free Area

Protein
Standard Area

Folded
Buried Area

Mean
Fractional Area

Residue
Mass

Monoisotopic
Mass

ALA 7 1 2 0 118.10 31.50 86.60 0.74 71.08 71.04

CYS 7 1 2 1 146.10 13.90 132.30 0.91 103.14 103.01

ASP 7 1 4 0 158.70 60.90 97.80 0.62 115.09 115.03

GLU 9 1 4 0 186.20 72.30 113.90 0.62 129.12 129.04

PHE 11 1 2 0 222.80 28.70 194.10 0.88 147.18 147.07

GLY 5 1 2 0 88.10 25.20 62.90 0.72 57.05 57.02

HIS 9 3 2 0 202.50 46.70 155.80 0.78 137.14 137.06

ILE 13 1 2 0 181.00 23.00 158.00 0.88 113.16 113.08

LYS 14 2 2 0 225.80 110.30 115.50 0.52 128.17 128.10

LEU 13 1 2 0 193.10 29.00 164.10 0.85 113.16 113.08

MET 11 1 2 1 203.40 30.50 172.90 0.85 131.19 131.04

ASN 8 2 3 0 165.50 62.20 103.30 0.63 114.10 114.04

PRO 9 1 2 0 146.80 53.70 92.90 0.64 97.12 97.05

GLN 10 2 3 0 193.20 74.00 119.20 0.62 128.13 128.06

ARG 14 4 2 0 256.00 93.80 162.20 0.64 156.19 156.10

SER 7 1 3 0 129.80 44.20 85.60 0.66 87.08 87.03

THR 9 1 3 0 152.50 46.00 106.50 0.70 101.11 101.05

VAL 11 1 2 0 164.50 23.50 141.00 0.86 99.13 99.07

TRP 12 2 2 0 266.30 41.70 224.60 0.85 186.21 186.08

TYR 11 1 3 0 236.80 59.10 177.70 0.76 163.18 163.06
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Table A6. Extreme randomized trees parameters tested in the Grid Search.

Parameter Default Value Tested Values

n_estimators 100 (50,100,250,500,1000)

boostrap False (True, False)

class_weight None (None,”balanced_subsample”,”balanced”)

criterion “gini” (“gini”,”entropy”)

max_depth None (None,1,2,3)

min_samples_split 2 (2,3,4,5)

min_samples_leaf 1 (1,2,3)

max_leaf_nodes None (None,1,2,3)

max_samples None (None,1,2,5,10)

max_features “auto” (“auto”,”sqrt”,”log2”)

min_impurity_decrease 0.0 (0.0, 0.01, 0.001)

min_weight_fraction_leaf 0.0 (0.0, 0.01, 0.001)

Figure A1. (A) Structural representation of the complex between angiogenin and a ribonuclease
inhibitor: PDB ID 1a4y. Brighter red colors were attributed to residues with a higher probability of being
classified as HS. (B,C) Close-ins of all interfacial residues for which there is an experimental ∆∆Gbinding

value, and as such a HS/NS classification. Green boxes represent correctly predicted residues, whereas
red boxes represent incorrectly classified residues.
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Figure A2. (A). Depiction the complex between a T-Cell receptor beta chain and SEC3 superantigen:
PDB ID 1jck. Brighter red colors were attributed to residues with a higher probability of being classified
as HS. (B,C) Close-ins of all interfacial residues for which there is an experimental ∆∆Gbinding value,
and as such a HS/NS classification. Green boxes represent correctly predicted residues, whereas red
boxes represent incorrectly classified residues.
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Figure A3. (A). Depiction of chain C of the complex PDB ID 3sak. Brighter red colors were attributed
to residues with a higher probability of being classified as HS. (B,C) Close-ins of all interfacial residues
for which there is an experimental ∆∆Gbinding value, and as such a HS/NS classification. Green boxes
represent correctly predicted residues, whereas red boxes represent incorrectly classified residues.
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