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Abstract: Despite relevant advances made in therapies for cardiovascular diseases (CVDs), they still
represent the first cause of death worldwide. Cardiac fibrosis and excessive extracellular matrix
(ECM) remodeling are common end-organ features in diseased hearts, leading to tissue stiffness,
impaired myocardial functional, and progression to heart failure. Although fibrosis has been largely
recognized to accompany and complicate various CVDs, events and mechanisms driving and
governing fibrosis are still not entirely elucidated, and clinical interventions targeting cardiac fibrosis
are not yet available. Immune cell types, both from innate and adaptive immunity, are involved not
just in the classical response to pathogens, but they take an active part in “sterile” inflammation,
in response to ischemia and other forms of injury. In this context, different cell types infiltrate
the injured heart and release distinct pro-inflammatory cytokines that initiate the fibrotic response
by triggering myofibroblast activation. The complex interplay between immune cells, fibroblasts,
and other non-immune/host-derived cells is now considered as the major driving force of cardiac
fibrosis. Here, we review and discuss the contribution of inflammatory cells of innate immunity,
including neutrophils, macrophages, natural killer cells, eosinophils and mast cells, in modulating
the myocardial microenvironment, by orchestrating the fibrogenic process in response to tissue injury.
A better understanding of the time frame, sequences of events during immune cells infiltration, and
their action in the injured inflammatory heart environment, may provide a rationale to design new
and more efficacious therapeutic interventions to reduce cardiac fibrosis.

Keywords: cardiac fibrosis; inflammation; neutrophils; macrophages; natural killer cells; eosinophils;
mast cells

1. Introduction

Chronic pathological disorders, including cardiovascular diseases (CVDs) [1,2], neurodegenerative
diseases [3,4], diabetes [5,6], metabolic syndrome [7,8], and cancer [9,10] share an inflammatory
microenvironment as a hallmark [11]. A Common feature of these complex diseases is the activation of
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“sterile” inflammatory pathways, in which immune cells represent relevant effectors and drivers for the
onset and progression of the disease [12], due to their extreme capability to reshape their phenotype [13],
to functionally [14], metabolically [15,16] adapting to the surrounding environment. Among these
inflammatory-mediated disorders, CVDs account as the leading cause of death worldwide. It is
now clear that, besides cardiomyocytes and endothelial cells, altered immune response during CVDs
impacts physiopathology, resolution, and/or progression of cardiac alterations. While some degree
of immune cell activation is essential to promote response to injury and activation of tissue repair
processes, unchecked activation may eventually lead to excess fibrosis, thus offsetting benefits.

A common final pathway of cardiac injury includes remodeling and fibrosis, contributing to heart
failure (HF) development [17–19]. Indeed, in several distinct pathophysiological conditions, including
cardiomyopathies, myocardial infarction (MI), pressure overload, and aging, the presence of cardiac
fibrosis is a shared feature [20–22].

Fibrotic remodeling of the extracellular matrix (ECM) is a healing mechanism, absolutely necessary
after myocardial injury. Yet, excess increase in myocardial fibrotic activity may result in stiffening of
the myocardium, contributing to adverse outcome, as cardiac fibrosis is characterized by diastolic
dysfunction [21], ventricular wall stiffening, reduced contractility, and impaired overall cardiac
performance. Major features of cardiac fibrosis include altered and uncontrolled accumulation of
ECM in the heart, due to its increased synthesis or decreased degradation [23,24]. Finally, myocardial
interstitial fibrosis induces left ventricular dysfunction, leading to the development of heart failure.

Qualitative and quantitative modifications of the cardiac microenvironment following cardiac
injury result from the crosstalk between a variety of cell types representing the “normal compartment”
of the heart, such as fibroblasts, endothelial cells, inflammatory and immune cells, as well as soluble
factors and the components of the ECM [25–27].

Here, we review and discuss the contribution of inflammatory cells from innate immunity to
fibrosis onset and progression, focusing on inflammatory cells of innate immunity: neutrophils,
macrophages, natural killer (NK) cells, eosinophils (EOs), and mast cells (MCs).

2. Host Non-Immune Cells and Fibrosis in the Heart

Cardiac cell populations and their mutual interactions sustain myocardial repair and regeneration
following an insult. Cardiac fibroblasts account for 60–70% of the total number of heart cells and are
key players in cardiac homeostasis maintenance [19]. Although cardiac fibroblasts are considered
essential modulators of ECM remodeling, other cell types, including immune cells, vascular cells,
and cardiomyocytes are implicated in cardiac fibrosis either directly (by secreting proteases or
antiproteases), or indirectly (by modulating fibroblast phenotype). Long-term stress conditions or
cardiomyocyte injury may trigger the release of fibrogenic cardiac mediators, leading to fibroblast
activation and myofibroblast trans-differentiation. Phenotypically, myofibroblasts significantly express
α-smooth muscle actin (α-SMA), ECM proteins including collagens, periostin, metalloproteinases
(MMPs), and as compared to fibroblasts, are more contractile with active migratory, proliferative,
and secretory properties [19,28,29]. While the pathophysiology of cardiac fibrosis is mostly attributed
to excessive synthesis and accumulation of ECM proteins by activated myofibroblasts, their origin
remains controversial [30,31].

Lineage tracing approaches suggest that resident fibroblasts are the primary source of activated
myofibroblasts involved in cardiac fibrosis [32,33]. Depending on the type of the pathological stimuli,
there are different transcriptional regulatory axes that control fibroblast plasticity: expression of surface
membrane signals (integrins, syndecans, angiotensin II type 1 receptor), promotion of fibrogenic
program through activation of myocardin-related transcription factor, and activation of intracellular
signaling cascades (RhoA, Wnt/β-catenin, AKT signaling, FAK, TGF-β/Smad-4, MAPK) [25,34–39].

Other cell types, including bone marrow-derived cells, endothelial cells, and perivascular Gli1+

progenitors have been described as additional sources of myofibroblasts [40–42]. The release of
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inflammatory mediators drives homing and migration to the heart of bone marrow progenitor cells,
which further transdifferentiate into myofibroblasts [43].

Vascular endothelial cells, the most abundant non-cardiomyocytes in heart, can also contribute to
fibrosis by acting as a source of myofibroblasts, via endothelial–mesenchymal transition (EndoMT),
acquiring a fibroblast-like phenotype [44,45]. In addition, endothelial cells activate fibroblasts by
releasing pro-inflammatory cytokines/chemokines, pro-fibrotic mediators such as transforming growth
factor-β1 (TGF-β1), fibroblast growth factors (FGFs), endothelin-1(ET-1) or by promoting the recruitment
of immune cells through expression of adhesion molecules (ICAM-1) [46,47]. Similarly, pericytes may
contribute to the fibrotic process through conversion to activated myofibroblasts, or through secretion
of fibrogenic mediators such as platelet-derived growth factor-β (PDGF-β); however, these cells remain
poorly characterized and their role remain less clear and documented [42].

Likewise, cardiomyocyte exhibit a fibrogenic profile and provide signals for macrophage
recruitment, in response to stress. It has been reported that angiotensin II–induced stimulation
of Ca2+/calmodulin-dependent protein kinase II (CaMKII ) contribute to priming and activation
of the NOD-like pyrin domain-containing protein 3 (NLRP3) inflammasome in cardiomyocytes,
which regulates the release of inflammatory cytokines IL-1β and IL-18 with fibrogenic activities [48].
Inflammasome activation in the heart can be triggered either by release of cell death-mediated
danger-associated molecular patterns (DAMPs), or by stress signals (e.g., ATP, ROS, in response to
non-ischemic conditions, such as pressure overload [49]. Targeting TGF-β receptor II signaling in
cardiomyocytes has been associated with reduced maladaptive hypertrophy and development of
cardiac fibrosis subjected to pressure overload [50].

As inflammation plays a crucial role in cardiac fibrosis, deciphering the role of immune cells on
the cardiac microenvironment may provide novel targeted strategies against fibrotic remodeling.

3. Major Inflammatory Cytokines in Cardiac Fibrosis

A finely tuned balance of proinflammatory and profibrotic cytokines orchestrates the fate of
bone marrow-derived heart-infiltrating cells and directly instructs the morpho-phenotype of the
affected heart. While acute inflammation is characterized by fast resolution of the associated vascular
changes, including edema and neutrophil infiltration, fibrosis results from persistent inflammatory
state, where tissue remodeling and tissue-repair processes occur simultaneously [51–54]. Chronic
fibrotic disorders share the steady and uncontrolled production of growth factors, proteolytic enzymes,
angiogenic factors and fibrogenic cytokines, resulting in aberrant deposition of connective tissue
components that progressively reshape and alter the normal tissue architecture [51–54].

TGF-β has been recognized as a major inducer and regulator of fibrosis in CVDs and
cancers [55–57]. Following induction of inflammatory response, TGF-β acts by increasing the
production of ECM components [58,59], together with enhanced mesenchymal cell proliferation,
migration, and accumulation [60,61]. In the heart, TGF-β is largely produced by fibroblasts,
macrophages, and T cells [62] although also cardiomyocytes are able to release TGF-β in response
to angiotensin-II [63,64]. TGF-β induces the activation of fibroblasts and myofibroblasts producing
inhibitor of metalloproteinases (TIMPs) [63,65,66] collagen I, collagen III, and fibronectin, thus
supporting fibrosis, in a Smad3-dependent manner [67–69].

Inflammatory interleukins play a crucial role in the inflammatory-driven fibrosis in the heart.
Interleukin-1 (IL-1) has been demonstrated to be largely increased in patients with chronic or
decompensated HF [70], independent of the ischemic, hypertensive, idiopathic etiology [70]. Different
mechanisms relating IL-1 to impaired systolic function have been proposed. For example, IL-1β
has been shown to decrease the beta-adrenergic responsiveness of L-type calcium channels in a
cAMP-independent manner [71]. Also, IL-1β has been associated with a reduced expression of genes
involved in the regulation of calcium homeostasis, including phospholamban, sarcoplasmic reticulum
calcium ATPase [72,73]. IL-1 is largely produced during the inflammatory phase of cardiac repair [74,75].
Beside its pro-inflammatory functions, IL-1 induces increased synthesis and production of MMPs by
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cardiac fibroblasts [76,77]. Interestingly, some members belonging to the IL-1 family, such as IL-33 and
ST2, are endowed with favorable cardiac effects [78]. IL-33 and ST2 regulate monocyte infiltration in
the heart and protect from hypertrophy and fibrosis [78].

Another crucial cytokine, also found increased during fibrosis is IL- 4, playing an active role in
the fibrogenic process by activating fibroblasts and collagen synthesis [79]. Similarly, IL-6 promotes
interstitial cardiac fibrosis via TGF-β, enhancing cardiac fibroblast proliferation, collagen production
and deposition [80,81].

4. Innate Immunity Cells Contribution to Cardiac Fibrosis

The inflammatory process, as a result of aberrant phenotype and functions of the innate and
adaptive immune system, is now recognized as a relevant hallmark in CVDs. Clinical and preclinical
studies have established that cardiac fibrosis is associated with inflammation, characterized by a rapid,
dynamic, and continuous innate immune response. The presence of innate immunity effector cells,
most of them being macrophages, neutrophils, NK cells, eosinophils, and MCs, has prompted research
in investigating their role and function in cardiac fibrosis.

4.1. Neutrophils

Neutrophils are the most abundant white cell type in human blood, representing 60–70% of
circulating leukocytes [82]. Neutrophils are short-lived cells, with a median lifespan of 4.3 h–5.4 days
in humans [83–85]. Although traditionally considered as a homogeneous population, accumulating
evidence has demonstrated their heterogeneity showing the existence of peculiar subsets with
phenotypic and functional differences able to display different roles both in homeostatic and pathological
conditions [86,87]. Several studies pointed out the central role of neutrophils and their mediators in
CVDs, including atherosclerosis, cardiac hypertrophy and fibrosis [88].

Neutrophils play a major role in injury resolution, as they activate and accumulate within minutes
following acute myocardial injury; they are responsible for debris removal as well as reparative
response orchestration. As the predominant phagocyte cells in blood, neutrophils are the first immune
cell type infiltrating the inflammatory site in response to release of alarmins, following cardiac insult,
thus being the earliest detectable immune population following ischemia onset [89] (Figure 1A).

Neutrophils appear to play a double-edged role in cardiac fibrosis related to pathological conditions
such as myocardial infarction, or myocarditis [90–92]. Neutrophil counts and hyperactivation have
been considered as predictor of cardiac tissues remodeling and adverse clinical outcomes in the acute
inflammatory phase after MI [93–95].

Once migrated into the heart tissues, neutrophils become activated and accumulate in the infarcted
border zone, releasing high levels of reactive oxygen species (ROS) and soluble mediators, including
inflammatory cytokines and proteolytic enzymes (such metalloproteinases) which exacerbate tissue
injury [94,96] (Figure 1B). ROS promote myocardial fibrosis, thus providing a link between cardiac
fibrosis and neutrophils. NADPH oxidase 4 (Nox4)-derived ROS regulate collagen synthesis in
cardiac fibroblast through AT-1 pathway [97] and by activating Akt/mTOR and NFκB signaling. Nox4
inhibition attenuated cardiac remodeling [98] (Figure 1B).

Following cardiac injury, neutrophils release IL-1β through NLRP3 activation [99], and upregulate
IL-1R in cardiomyocytes (Figure 1B) and cardiac fibroblasts, promoting myocardial apoptosis, fibrosis
and inflammation. Recently it was suggested that calcium-sensing receptor on neutrophil orchestrate
IL-1β release via NLRP3 inflammasome activation [100].
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Figure 1. Neutrophils in cardiac fibrosis. (A) Neutrophils massively infiltrate the infarcted area
in the first few hours being the earliest detectable immune population following ischemia onset.
(B) Neutrophils can release large amount of pro-fibrotic agents, such as Interleukin-1 (IL-1)β, NOX4,
and metalloproteinases (MMPs), which, along with the generation of ROS, instruct cardiac fibroblasts
to produce collagen and support collagen deposition, in an Akt/mTOR, NFκB-dependent manner.
(C) N2-like neutrophils accumulate in the infarcted area and release TGF-β, thus favouring collagen
production and deposition by cardiac fibroblasts. (D) Injured cardiomyocytes are able to activate
pro-fibrotic/pro inflammatory/TGF-β producing myofibroblasts, using IL-1β, S100A8, and S100a9
producing neutrophils, as bystander cells. (E) Neutrophils can also impact MI and fibrosis by releasing
extracellular traps (NETs). NETs promote the recruitment and activation of platelets that are a
relevant source of TGF-β, thus indirectly supporting fibrosis. (F) Apoptotic neutrophil elimination
by macrophages represent a crucial anti-inflammatory and pro-resolving signal itself. Apoptotic
neutrophils induce anti-inflammatory mediators, including TGF-β, IL-10, and resolvins, which are
pivotal in driving pro-resolving microenvironment.

The contribution of neutrophils to cardiac fibrosis, however, remains to be fully elucidated.
In this respect, Horckmans et al., have demonstrated that neutrophil-depleted mice subjected to
acute myocardial infarction (aMI) actually showed worsening cardiac function and increased fibrosis
compared to the wild-type counterpart [89]. Indeed, neutrophil depletion in mice induced the reduction
of splenic Ly6Chigh monocytes and the parallel increase of macrophage proliferation within the infarct
area [89]. Moreover, 7 days post aMI, a significant down-regulation of IL-12, TNF-α, IFN-γ, IL-10,
IL-1β (M1 markers), and up-regulation of CX3CR1, Arginase, Ym1, and IL-4 (M2 markers) was
observed in Ly6G-depleted versus control mice, suggesting that neutrophils are crucial to inducing
macrophage polarization towards the M1 phenotype [89]. Moreover, they found that macrophages in
neutrophil-depleted mice showed impaired scavenging ability to clear apoptotic cardiomyocytes due
to the reduction of the phagocytosis receptor MertK, resulting in increase of inflammation [89].

The peculiar role of neutrophils following MI was also highlighted by Daseke et al., that have
recently explored neutrophil contribution to myocardial infarction [92]. Indeed, by performing an
aptamer proteomics of cardiac neutrophils isolated from the infarct region, they demonstrated that
neutrophils undergo a polarization process from N1 to N2 phenotype over the first week of MI [92]
(Figure 1C). In particular, Daseke et al., showed that immediately after MI, neutrophils express
pro-inflammatory genes, displaying a high degranulation profile characterized by a high MMP activity,
yet after three days they exhibited a reparative signature, characterized by up-regulation of fibronectin,
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galectin-3, and fibrinogen expression, all molecules capable to contribute to ECM reorganization [92]
(Figure 1C).

At the molecular level, it has been shown that neutrophils, stimulated by angiotensin II, release
S100a8/S100a9 that can bind several receptors, including the toll-like receptor 4 and more importantly,
RAGE which is expressed by fibroblasts [101]. S100a8/S100a9-RAGE binding induced phosphorylation
of NFκB, activating inflammatory responses in cardiac fibroblasts and promoting cytokines secretion
and cell migration, without affecting the proliferation and differentiation into myofibroblast, resulting
in increased cardiac fibrosis [101].

Neutrophil-dependent upregulation of IL-1β enhances MMP9 activity, and its binding to IL-1R
stimulate a matrix-degrading program in fibroblasts, while delaying myofibroblast conversion [102,103]
(Figure 1D). This was correlated with excessive fibrosis and increased collagen content induced by the
neutrophil’s depletion [104]. Thus, strategies to block acute neutrophil-driven inflammation should be
carefully evaluated since they could enhance cardiac fibrosis and remodeling [104].

Apoptotic neutrophil elimination by macrophages represent a crucial anti-inflammatory and
pro-resolving signal itself [105,106]. Apoptotic neutrophils induce anti-inflammatory mediators,
including TGF-β, IL-10 and resolvins [107,108] that are pivotal in driving pro-resolving
microenvironment (Figure 1F). However, the tissue repair response may promote a fibrogenic
macrophage phenotype [109], since TGF-β is the master regulator of collagen deposition and
fibrosis [110,111].

Neutrophils can also impact MI and fibrosis by releasing extracellular traps (NETs) [112,113].
NETs are constituted by DNA and antimicrobial proteins that generate a complex network that entrap
extracellular pathogens, favoring their elimination [112,113]. Apart from their antimicrobial host
defense activities, NETosis occurs also under non-infectious conditions, such as hypoxia, myocardial
ischemia/reperfusion, and myocarditis. Fibroblasts exposed to NETs in vitro have been reported to
support the ability of fibroblasts to transdifferentiate, enhancing their ability to proliferate, migrate
and producing collagen.

Accordingly, NETs were found in proximity to α-SMA-positive fibroblasts and expressed IL-17 in
tissue sections from patients with fibrotic intestinal lung disease [114]. NETs promote recruitment and
activation of platelets [115] that are a significant source of TGF-β, so indirectly promoting fibrosis. NETs
were found to stimulate in vitro macrophage polarization toward a reparative phenotype. Recently,
it has been reported that NETs drive in vitro macrophage polarization toward an anti-inflammatory,
pro-fibrotic M2 phenotype.

Finally, NETs seem to have a crucial role in initiating excessive deposition of collagen and fibrosis,
thus likely contributing to heart failure [89,112,114,116,117]. Future studies will be required to better
understand the mechanisms linking neutrophil-initiated inflammation to cardiac fibrosis.

4.2. Macrophages

Macrophages are heterogeneous, highly plastic cells of the innate immune system, involved
in the primary response against microorganisms, inflammation, homeostasis, and tissue
regeneration/repair [118]. Tissue regeneration is necessary for the development of an efficient healing
process, and uncontrolled regulation of these mechanisms leads to fibrotic and scarring responses.
Macrophages have been recently identified as critical regulators of fibrosis in several organs, including
lung, liver, and heart [119–122]. In the heart, diverse macrophage populations, derived both from
resident tissue macrophages and bone marrow progenitors, cooperate in the initiation, maintenance
and resolution of the fibrogenic response [123–126].

Depletion or alteration of macrophages, either in the initial proinflammatory or during the
final regenerative phases, have been associated with important consequences for cardiac functional
recovery [127,128]. Given macrophages plasticity, they can exert both profibrotic and anti-fibrotic
activities [128]. During the first phase of tissue inflammation, macrophages acquire a “classically
activated” (M1-like) state; they express the chemokine receptor CCR2 and are associated with the
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release of proinflammatory cytokines (e.g., IL-1β, IL-6, TNF-α) and with phagocytic and proteolytic
activity, that exacerbates the inflammatory process [129]. In the later phase, macrophages switch into a
reparative phenotype, producing anti-inflammatory cytokines, chemokines, and growth factors such
as IL-10, TGF-β, VEGF, angiotensin II, FGF, and PDGF [130,131]. The transition to this reparative state
seems to be induced via nuclear receptor subfamily 4 group A member 1 (NR4A1) [127] (Figure 2A).
On the other hand, “alternatively activated” (M2-like) macrophages regulate the degradation of
extracellular matrix components through the release of MMPs, and secrete TGF-β to stimulate the
activation of cardiac fibroblasts to collagen-secreting myofibroblasts, which are primarily involved in
scar formation and cardiac fibrosis [132] (Figure 2A).
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Figure 2. Macrophages in cardiac fibrosis. (A) During the first phase of tissue inflammation,
macrophages acquire a “classically activated” (M1-like) state. In the later phase, macrophages
switch into a reparative phenotype, producing anti-inflammatory cytokines, chemokines, and growth
factors such as IL-10, TGF-β, VEGF, angiotensin II, bFGF, and PDGF [114,115]. The transition to this
reparative state seems to be induced via nuclear receptor subfamily 4 group A member 1 (NR4A1).
M2-like macrophages also produce the pro-fibrotic agent TGF-β that induce collagen secreting and
collagen stabilizing myofibroblasts. High numbers of macrophages accumulate in the damaged heart,
localizing in proximity to myofibroblasts, that, by producing TGF-β, angiotensin II, PDGF, TNFα,
and IL-1β, stimulate induce the differentiation of cardiac fibroblasts into myofibroblasts in an autocrine
manner. (B) Some of the cardiac infiltrating fibroblast can originate from a circulating monocytic
CD14+ cell subset, termed fibrocytes. Under profibrotic stimulation, these cells have been shown
to increase the expression of ECM components, such as collagen and fibronectin, and of the mature
myofibroblast marker α-SMA. Increased number of circulating fibrocyte has been observed during
cardiac fibrosis, in response to the augmented circulating levels of MCP-1/CCL2, CCL4, and CCL3.
(C) Neoregulin-1 (NRG-1) can exert antifibrotic and anti-inflammatory effects acting on macrophages in
an ErbB4-mediated manner. After fibrotic stimuli, NRG-1, released from damaged endothelial cells in
the endocardium, activates ErB4 and downregulates the PI3K/Akt pathway and the phosphorylation of
STAT3 thus reducing the release of proinflammatory mediators such as IL-1β, iNOS, IL-6, and TNF-α.
The activation of ErbB4 results in the reduction of new monocytes recruitment and suppression of
the inflammatory state. (D) Ly6Chigh macrophages infiltrate in hypoxic areas in a hypoxia-inducible
factor (HIF-1α)-dependent manner and inhibits TGF-β cardiac fibroblast activation by the release of
oncostatin M (OSM).
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High number of macrophages accumulates at the site where cardiac injury occurs, in close
proximity to myofibroblasts [133]. In turn, myofibroblasts are able to release cytokines such as
TGF-β, angiotensin II, PDGF, TNFα, and IL-1β, to stimulate differentiation of cardiac fibroblasts into
myofibroblasts in an autocrine manner (Figure 2A). Simões and colleagues showed that macrophages
may directly contribute to scar collagen production in zebrafish and mouse models of heart injury [134].
These data are in line with the hypothesis on the hematopoietic origin of myofibroblast [135,136].
Some of the cardiac infiltrating fibroblasts appear to originate from a circulating monocytic subset
of CD14+ cells, also called “fibrocytes”, that have been identified in human subjects and endowed
with stemness features [137,138] (Figure 2B). Under profibrotic stimulation, these cells have been
shown to increase the expression of ECM components, such as collagen and fibronectin, and of
the mature myofibroblast marker α-SMA in in vivo and in vitro experimental models [139–142].
Increased number of circulating fibrocytes have been observed during cardiac fibrosis, in response
to the augmented circulating levels of MCP-1/CCL2, CCL4, and CCL3 [136,138,143–145] (Figure 2B).
This suggests that the stimulation of chemokine receptors contribute to the pro-fibrotic pathway, causing
a recruitment of myofibroblast progenitors to the injured site. Interestingly, CCL2 overexpression
has been demonstrated to correlate with increased macrophage infiltration, dilatative remodeling,
and fibrosis, in murine cardiac muscle [146], and depletion of CCR2+ macrophages resulted in smaller
infarct size [147]. Likewise, CCL2-null mice appeared to be protected against mineralocorticoid-induced
cardiac fibrosis [148]. In this scenario, CCL2 appear as a master regulator of fibrosis via recruitment of
monocytic-derived fibrocytes [148].

In contrast to the peripheral blood monocytic populations recruited, macrophages residing in the
cavity of the pericardial space and expressing the transcription factor Gata6, have been observed to
directly migrate into the injured site and prevent fibrosis, improving functional cardiac recovery after
ischemic injury [149].

Mechanisms that influence macrophage response are represented by efferocytosis, DAMPs
production, hypoxia, and ECM remodeling [150]. Deficiency of the phagocytic receptor MertK was
shown to reduce the clearance of apoptotic cells by macrophages leading to delayed inflammation
resolution after MI, adverse remodeling, and impaired cardiac function [151]. MertK receptor along with
the neutrophil gelatinase-associated lipocalin (NGAL) was identified as key inducer of macrophages
with high efferocytosis capacity [89,151]. However, ongoing cardiomyocyte death—a feature of severe
infarction or prolonged ischemic injury—promotes a pro-inflammatory macrophage phenotype with
less efferocytotic activity [152], namely a macrophage committed to eliminate apoptotic neutrophil
and dead cell debris in response to heart injury [153,154]. Interestingly, following the engulfment
with dead cells, macrophages acquire pro-regenerative/fibrotic feature by secreting TGF-β and IL-10,
with reduced IL-12 release [153,154]. Therefore, persistence of dead cells debris leads to an increased
secretion of DAMPs, which contribute to maintain continuous inflammatory signals acting on TLR4,
resulting in reduction of infarct size, decreased activation of NF-κB and downregulation of IL-1β,
CCL2/MCP-1, and IL-6 expression [155]. TLR4/TLR6-IRAK4/1 signaling was reported to enhance
cardiac oxidative stress and subsequently activate NLRP3 inflammasome, thus inducing the cleavage
and release of IL-1β and promoting cardiac fibrosis in rat [156].

Proteolytic release of the endogenous activator of epidermal growth factor receptors (ErbBs),
neuregulin-1 (NRG-1), is involved in the adaptation of cardiovascular system to stress [157,158].
In diabetic rats with chronic heart failure, NRG-1 was observed to reverse myocardial interstitial
fibrosis [159]. NRG-1 seems to exert antifibrotic and anti-inflammatory effects acting on macrophages
in an ErbB4-mediated manner [160–162]. After fibrotic stimuli, NRG-1, released from damaged
endothelial cells in the endocardium, activates ErB4 and downregulates the PI3K/Akt pathway and
the phosphorylation of STAT3 thus reducing the release of proinflammatory mediators such as IL-1β,
iNOS, IL-6 and TNF-α (Figure 2C). The activation of ErbB4 results in the reduction of new monocytes
recruitment and suppression of the inflammatory state [162] (Figure 2C).
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Another critical regulator of cardiac fibrosis is represented by hypoxia [163] (Figure 2D). In a murine
model of cardiac remodeling, Ly6Chigh macrophages infiltrate in hypoxic areas in a hypoxia-inducible
factor (HIF-1α)-dependent manner, and inhibit TGF-β cardiac fibroblast activation via release of
oncostatin M (OSM) [163]. OSM appear to have cardio protective effects on cardiomyocytes and
fibroblast activating ERK signaling [164,165] (Figure 2D). In addition, the secretion of OSM induces in
cardiomyocytes the production of the essential trafficking regulator of macrophages, the regenerating
islet-derived 3β (Reg3β), causing a positive feedback loop which controls accumulation of macrophages
in the heart [164].

Macrophages contribute to ECM remodeling process by secreting MMPs, the enzymes responsible
for the degradation of matrix architecture. Several studies reported MMPs as regulators of macrophages
phenotype and functions [103]. Surprisingly, high levels of MMP9 were described to associate to
the surface of activated macrophages stimulating the cleavage of the α2-integrin protein (CD18) in
lung, suggesting a mechanism of macrophage interaction with ECM components [166]. Since high
level of MMP9 has been reported in patients, associated with adverse ventricular remodeling [167],
and upregulation of MMP14 was correlated with reduced post MI survival and cardiac function in
mice [168], it might be hypothesized the involvement of a similar mechanism. Moreover, the provisional
fibrin structure exhibits growth factor-binding capacity [169]. Thus, the interaction with released PDGF,
VEGF, and TGF-β may modulate macrophages functions and regulate the activation of myofibroblast
(Figure 2A).

4.3. NK Cells

NK cells have been classified as type-I innate lymphoid cells [170]. They are large granular
lymphocytes of innate immunity, involved in the recognition and elimination of virus-infected
and malignant-transformed cells [171]. Based on surface antigen expression of CD56 (Neural
cell adhesion molecule-NCAM) and CD16 (FcγRIIIa), two main NK cell subsets have been
characterized. CD56dimCD16+ NK cells (90–95% of peripheral blood NKs) have cytolytic activities,
by producing perforin, granzyme, and exerting antibody-dependent cellular cytotoxicity (ADCC) [171].
CD56brightCD16- NKs (5–10% of peripheral blood NKs) acts via IFN-γ and TNF-α secretion [171].
Beside their role in tumor immunosurveillance, NK cells acquire “builder” rather than “killer”
activities in specific pathophysiological contexts. Within the developing decidua, NK cells account
for 50% of lymphocytes, acquire the CD56superbrightCD16- subsets and produce VEGF, PlGF,
and CXCL8/IL-8 [172,173]. These decidual-NK cells (dNKs) are necessary for the formation of
spiral artery that provide oxygen and nutrients to the developing fetus [172,173]. In different solid
cancers, including non-small cell lung cancer (NSCLC) [174] and colorectal cancer (CRC) [175],
NK cell have been demonstrated to acquire pro-angiogenic phenotype and function, described as
CD56brightCD16-CD9+CD49a+VEGF+CXCL-8+IFN-γ low, similar to dNKs [176–180].

NK cells account for over 1% of cardiac lymphocytes and participate to the regulation of process
involved in cardiac diseases [181]. In patients with coronary artery diseases (CAD), NK cells have
been found to be decreased in number and function, but not altered in their phenotype [182]. Also, NK
cell deficit was found more frequently in patients with acute coronary syndrome [183].

NK cells have been reported to play a crucial role in repairing damaged tissues and maintaining
tissue homeostasis [184]. NK cells have been reported to exhibit protective activities against acute viral
pathogens such as CVB and murine cytomegalovirus induced myocarditis in vivo [185].

Studies in murine models and humans demonstrated NK cell capability to resolve and prevent
fibrosis in the liver. Mice in which fibrosis has been experimentally induced by carbon tetrachloride
experienced reduced severity of diseases following NK cell transfer. NK cells have been extensively
demonstrated to be able to target activated fibroblasts, the major orchestrators of fibrosis.

In an experimental model of acute myocarditis (EAM), it has been found that activated NK cells
accumulate in the heart and release perforin, granzyme-B and IFNγ, along with enhanced expression
of CD69, TRAIL, and CD27 activation markers (Figure 3A). This NK cell hyperactivation results in
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decreased cardiac fibrosis by inhibiting eosinophil activation and inducing eosinophil apoptosis, within
an anti-inflammatory microenvironment (Figure 3A).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 10 of 27 
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Figure 3. Natural killer (NK) cells in cardiac fibrosis. (A) Activated NK cells have been found to
accumulate in the heart and release granzyme-B and IFN-γ, along with enhanced expression of CD69,
TRAIL, and CD27 activation markers. This NK cell hyperactivation result in decreased cardiac fibrosis
by inhibiting eosinophil activation and inducing eosinophil apoptosis, within an anti-inflammatory
microenvironment. (B) Following myocardial infarction, expansion of NK cells from c-Kit+ bone
marrow cells have been reported to protect the heart by reducing cardiomyocyte apoptosis [186],
deposition of collagen and subsequent fibrosis, and by promoting neovascularization.

Depletion of NK cells, by anti-asialo GM1 antibody resulted in increased severity of myocarditis,
augmented collagen deposition and elevated fibrosis, with a 10-fold increase of SSChighLy6GlowSiglecF+

eosinophil infiltration.
NK cells also limit eosinophil infiltration in the heart, by altering eosinophil-related chemokine

production, eotaxin 1 (CCL11), eotaxin 2 (CCL24), CXCL9, and CXCL10, by resident cardiac fibroblasts
(Figure 3A).

Following myocardial infarction, expansion of NK cells from c-Kit+ bone marrow cells has been
reported to protect the heart by reducing cardiomyocyte apoptosis [186], deposition of collagen and
subsequent fibrosis [186], and by promoting neovascularization [187] (Figure 3B).

This clearly place NK cells as possible cellular effectors to develop cell therapy strategy to prevent
cardiac fibrosis.

4.4. Eosinophils

Eosinophils (EOs) can cause extensive damage to cells and tissues, but are also central in wound
healing, tissue repair, and fibrosis [188]. Different pathological conditions associated eosinophilia,
such as asthma [189], eosinophil myalgia syndrome, eosinophilic endomyocardial fibrosis [190],
idiopathic pulmonary fibrosis [190], scleroderma [190], and eosinophilic esophagitis, share aberrant
fibrosis as hallmark. Activated EOs infiltrate the site of inflammation and release degranulation
proteins, cytokines, and growth factors, thereby promoting tissue injury and remodeling.
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Several studies suggest significant roles for EOs in cardiac inflammation, fibrosis, and heart
failure [191–193].

Patients with elevated eosinophilia have been reported to be at higher risk to develop cardiac
complications [192,194], via IL-4 secretions, driving the progression of myocarditis to inflammatory
dilated cardiomyopathy [192]. An animal study employing a spontaneous mouse mutant with a
hyper-eosinophilic phenotype, showed that the development of heart disease associates with increased
infiltrations of EOs, overexpression of chemokines and cytokines involved in innate and adaptive
immunity including IL-4, eotaxin, and RANTES [194], which in turn activate cardiac fibroblasts to
release and deposit collagen [192] (Figure 4A).
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Figure 4. Eosinophils (EOs) in cardiac fibrosis. (A) Increased infiltrations of EOs, overexpressing
chemokines and cytokines involved in innate and adaptive immunity, such as IL-4, eotaxin, and RANTES
has been reported to support fibrosis, by activating cardiac fibroblasts to release and deposit collagen.
(B) Depletion of NK cells generated a pro-eosinophilic environment, as showed by the high increase of
cardiac-infiltrating EOs in vivo that was correlated with increased fibrosis.

Additionally, evidence suggests that EOs act like fibrotic mediators directly or through interactions
with NK cells. In a mouse model of experimental autoimmune myocarditis, depletion of NK cells
generates a pro-eosinophilic environment, as showed by the high increase of cardiac-infiltrating
eosinophils in vivo that was correlated with enhanced fibrosis [191] (Figure 4B).

Although evidence supports the hypothesis that EOs are important players in cardiac fibrosis,
further studies in suitable in vivo and ex vivo experimental models are needed. In this regard,
employing eosinophil-deficient and hyper eosinophilic mouse models, Diny et al., showed that EOs
drive progression of myocarditis to inflammatory dilated cardiomyopathy through IL-4 [194].

Further experimental studies employing EOs depleted animal models might address molecular
mechanisms involved in fibrogenic responses.

4.5. Mast Cells

Mast cells (MCs) are best known for their pleiotropic phenotypes and functions in inflammatory
processes such as allergy, infection, and tissue injury. In addition, other roles for MCs in several disorders,
including cardiac pathologies have been widely documented [195,196]. Being highly dependent on
the microenvironment in which they reside, MCs respond to inflammatory cytokines/chemokines,
bacterial/viral products and DAMPs, through multiple receptors, including TLRs and the IL-33
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receptor ST2 [197]. Primed MCs degranulate and secrete a plethora of mediators, including proteases,
lysosomal enzymes, pro/anti-inflammatory cytokines, as well as factors with pro- and anti-fibrotic
activities [196,198,199]. Given the MCs capability to produce both pro- and anti-fibrotic mediators,
several studies have reported controversial results and described MCs divergent functions, including
detrimental, neutral, or protective activities of MCs in cardiac remodeling and fibrosis. Discrepancies
in the literature could be related to limited human in vitro data and existing differences of MCs content
between animal models [198,199].

Under physiological conditions, low number of MCs reside within the myocardium. Notably,
increased number of MCs have been first associated with cardiac fibrosis more than 50 years ago in
human hearts with endocardial fibrosis [200] (Figure 5A).
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Figure 5. Mast cells (MCs) in cardiac fibrosis. (A) Accumulation of MCs in cardiac tissues has been
observed in several cardiovascular diseases (CVDs). (B) MCs secrete several pro-fibrogenic factors
such as bFGF, chymase and tryptase that have been long linked with cardiac fibrosis since can trigger
fibroblasts activation directly or by promoting AngII, and TGF-β1. MCs degranulation- derived
inflammatory cytokines, including TNF-α, IL-1β, can also drive fibrotic remodeling of the heart,
via TGF-β-producing fibroblasts and by enhancing collagen production and deposition in cardiac
fibroblasts. (C) MCs also act as anti-fibrotic mediators and anti-inflammatory cytokines/chemokines.
MCs can produce IL-10, IL-13, and IL-33, known as potent inhibitors of the fibrotic signaling by
blocking bone marrow fibroblast precursor cell migration in the heart and their differentiation towards
myofibroblasts, triggering cardiac tissue resident macrophage to display M2 anti-fibrotic phenotype and
attenuating tissue-remodeling and reduces fibrosis after cardiac injury, respectively. Finally, vascular
endothelial growth factor (VEGF)-producing MCs promote re-capillarization of the cardiac tissue and
reduce fibrosis.

Strengthening this relationship were other studies reporting high numbers of MCs in areas with
collagen deposition, in close proximity to the remodeling myocardium as described in explanted human
hearts with dilated cardiomyopathy and in animal models of experimentally induced hypertension,
myocardial infarction, and chronic cardiac volume overload [201–207] (Figure 5A). Accordingly, MCs
deficient mice models showed reduced inflammatory responses and myocardial damage following a
local insult [208]. MCs secrete fibrogenic products such as bFGF, chymase, and tryptase that have been
long linked with cardiac fibrosis as they can trigger fibroblast activation directly or by promoting AngII,
and TGFβ-1 [209]. MC degranulation-derived inflammatory cytokines including TNF-α, IL-1β [198]
can also drive fibrotic remodeling of the heart [198] (Figure 5B). Several in vivo studies in different
animal models reported reduced collagen deposition, after inhibition of MCs degranulation [210].
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In a rat model of spontaneous hypertension, inhibition of MCs degranulation prevented collagen
synthesis and fibrosis by normalizing IL-6 and increasing IL-10 levels, thus identifying new MCs
mechanisms independent of degranulation [211].

MCs also serve as sources of anti-fibrotic mediators and anti-inflammatory cytokines/chemokines.
Depending on the type of stimulus, MCs produce IL-10, IL-13, and IL-33, known as potent inhibitors of
the fibrotic signaling [43] (Figure 5C).

IL-10 has been reported to limit fibrosis in a murine model of pressure overload (PO)-induced
cardiac fibrosis, by blocking bone marrow fibroblast precursor cell migration in the heart and their
differentiation towards myofibroblasts [43] (Figure 5C).

IL-13 can trigger cardiac tissue resident macrophage to display M2 anti-fibrotic phenotype [212]
while IL-33, beside MCs activation via ST2, attenuates tissue-remodeling and reduces fibrosis after
cardiac injury [213], by protecting cardiac fibroblasts and cardiomyocytes during inflammatory injury
and hypoxia (Figure 5C). At the same time, other MCs products, such as VEGF [198], promote
re-capillarization of cardiac tissue and reduce fibrosis [214] (Figure 5C).

Additionally, degranulation products have been shown to reduce fibrosis and exert cardioprotective
roles [215]. MCs granules isolated from rat peritoneal fluid decreased fibrosis, enhanced survival
of cardiomyocytes and increased angiogenesis after acute myocardial infarction [215]. However,
few in vivo studies were able to demonstrate an anti-fibrotic role of MCs [216], while other evidence
suggests irrelevant roles of MCs in cardiac fibrosis [217]. In response to increased hemodynamic
load, no difference in fibrosis was observed in a MCs-deficient model mouse (C57BL/6-KitW-sh/W-sh),
when compared to wildtype mice [218]. Similarly, following MI, in a MC-deficient Cpa3cre+/− mice,
no roles for MCs in cardiac fibrosis were reported [218,219]. The contradictory conclusions point out
some limitations in defining correct clinical settings and in choosing appropriate animal models [220].

Beside several pre-clinical and clinical studies placing MC as a relevant orchestrator of cardiac
fibrosis, the exact mechanisms are not yet elucidated. Finally, MCs represent a valuable target for
therapeutic manipulation of fibrinogenesis, thus better understanding of their involvement is urgently
needed to stop and even reverse cardiac fibrosis.

5. Clinical Perspectives and Future Directions

Accumulating evidence indicates that myocardial fibrosis contributes to the pathogenesis of
diastolic dysfunction [221,222]. This is conceivable because the structural properties of the heart
are determined not only by the myocyte network, but also by interstitial connective tissue. Thus,
changes in the amount and composition of the extracellular matrix should affect the diastolic properties
of the LV. Ability to investigate this issue in patients has long been hampered by lack of suitable
methodology, because past investigations have been restricted to evaluating cardiac fibrosis in
tissue biopsies or at autopsy. The advent of cardiac magnetic resonance (CMR) has been shown to
provide an accurate, non-invasive means of detecting myocardial fibrosis, due to various forms of
cardiomyopathies [21,22,223,224]. Indeed, in patients with various degrees of cardiac impairment,
the extent of cardiac fibrosis reliably predicts the degree of diastolic dysfunction, and of adverse
outcome [225].

The obvious, important questions for future research are whether it is possible to induce
regression of cardiac fibrosis, and whether this eventually translates into better prognosis for CVD
patients. In spontaneously hypertensive rats (SHRs), the ACE-inhibitor lisinopril was administered
for 12 weeks either as low dose that did not normalize blood pressure, or a high dose, in comparison
with normotensive rats (Wistar–Kyoto (WKYs)). A regression in cardiac fibrosis was found with
both doses, independent of effects of blood pressure, which was associated with normalization
of LV diastolic stiffness [226]. In a following step, Brilla et al., investigated a small number
of hypertensive patients (n = 35) with left ventricular hypertrophy and diastolic dysfunction at
echocardiography. After 6 months treatment, reduction in cardiac hydroxyproline content was found,
while echocardiographic parameters of diastolic dysfunction had improved [227]. These promising
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results need to be replicated, and expanded, in larger randomized clinical trials. However, they pave
the road for future investigations in the field, the next conceptual and clinically relevant step being to
be able to directly interfere with the activation of immune response.

Finally, it should also be pointed out that a low grad of fibrosis, together with the initial
inflammatory events, are necessary events in reparative processes, such as the scar formation in the
heart, following acute injuries. These considerations, altogether, further suggest that dramatically
limiting inflammation in heart fibrosis could act as a double edge-sword.

6. Conclusions

Cardiac fibrosis has long been associated with adverse prognostic outcome in heart diseases.
Therefore, shedding light on the pathogenesis and consequences of fibrotic lesions on cardiac disfunction
are challenging aspects of the near future. Important issues regarding anti-fibrotic therapies and
development of diagnostic and prognostic tools also need further investigation. In addition to the
drugs currently used to treat heart failure, promising therapies targeting fibrosis are being developed,
but they are still in the early beginning.

Important information to move forward on novel anti-fibrotic strategies may arrive by dissecting
specific mechanisms switching human reparative responses in myocardial fibrosis and hear failure.

In this context, inflammation has a relevant role in instructing the immune environment necessary
to initiate and subsequently promote cardiac fibrosis. The crosstalk between immunological and
non-immunological tissue-resident cells in the injured heart still deserves elucidation on the major
mechanisms involved and the reciprocal timing. In this complex scenario a better understanding of
the time frame, sequences of events of the infiltration of the different immune cells and their actions in
the injured inflammatory heart environment, still represent relevant clinical unmet needs, necessary
to find the rational to better design novel therapeutic interventions to reduce cardiac fibrosis acting
on inflammation.
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