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Abstract: Knee osteoarthritis (OA) is a condition mainly characterized by cartilage degradation.
Currently, no effective treatment exists to slow down the progression of OA-related cartilage damage.
Selective COX-2 inhibitors may, next to their pain killing properties, act chondroprotective in vivo.
To determine whether the route of administration is important for the efficacy of the chondroprotective
properties of selective COX-2 inhibitors, a systematic review was performed according to the PRISMA
guidelines. Studies investigating OA-related cartilage damage of selective COX-2 inhibitors in vivo
were included. Nine of the fourteen preclinical studies demonstrated chondroprotective effects of
selective COX-2 inhibitors using systemic administration. Five clinical studies were included and,
although in general non-randomized, failed to demonstrate chondroprotective actions of oral selective
COX-2 inhibitors. All of the four preclinical studies using bolus intra-articular injections demonstrated
chondroprotective actions, while one of the three preclinical studies using a slow release system
demonstrated chondroprotective actions. Despite the limited evidence in clinical studies that have
used the oral administration route, there seems to be a preclinical basis for considering selective COX-2
inhibitors as disease modifying osteoarthritis drugs when used intra-articularly. Intra-articularly
injected selective COX-2 inhibitors may hold the potential to provide chondroprotective effects in vivo
in clinical studies.

Keywords: selective COX-2 inhibitors; intra-articular injection; knee osteoarthritis; DMOADs

1. Introduction

Knee osteoarthritis (OA) is a condition that leads to pain and is mainly characterized by cartilage
degradation [1]. Currently, drug treatments provide symptomatic pain relief but no effective treatment
exists to slow down progression of OA-related cartilage damage [1]. Pain-killing drug therapies
include non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs provide pain relief by blocking
cyclooxygenase (COX)-dependent prostanoid synthesis. Prostanoids are an important family of
signaling molecules present in synovial fluid [2]. At least two COX isoforms have been described,
COX-1 and COX-2, the latter being considered as the inflammatory isoform [3]. Selective COX-2
inhibitors have been developed to specifically target the inflammatory COX-2 while circumventing
inhibition of the COX-1 isoform. While selective COX-2 inhibitors may provide an effective means for
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pain relief, targeting the inflammatory COX-2 may be also a promising approach to inhibit cartilage
degradation and thereby slow down knee OA progression [3]. This hypothesis is supported by the
accumulating evidence showing that inflammation precedes OA disease progression [3,4].

From the anti-nerve growth factor clinical trials it became clear that next to a substantial
improvement in pain, patients also displayed structural OA disease progression [5]. This emphasizes
the importance of treatment strategies not only providing pain relief, which will lead to a vicious
self-perpetuating cycle of joint overloading and OA progression, but also providing the ability for
disease modification.

The actions of non-selective COX inhibitors on cartilage degradation in vitro and in vivo have
been excellently reviewed in the past [6]. Moreover, ex vivo and in vivo actions of the selective COX-2
inhibitor celecoxib on cartilage degradation, synovial inflammation and osteoclast metabolism have
also been reviewed and date back to 2011 [7]. Recently, an updated review of studies published until
2016 has been conducted on the OA disease-modifying actions of celecoxib on different OA tissues.
This review confirms the contradictive reports regarding the chondroprotective actions of celecoxib
both ex vivo and in vivo. Based on these reviews, it still remains obscure whether selective COX-2
inhibitors can be used in vivo to protect cartilage and slow down the progression of knee OA. One of
the explanations of the contradictive reports found in the literature regarding the potential of selective
COX-2 inhibitors may be related to the route of administration. Specifically, scarcely vascularized
tissues such as cartilage and meniscus, which are important participants in knee OA, may be modified
differentially after systemic oral treatment compared to intra-articular treatment [8,9]. To date, the role
of the route of administration on the chondroprotective effects of selective COX-2 inhibitors remains
unclear. Therefore, the objective of this review was to systematically review available literature on
chondroprotective properties of selective COX-2 inhibitors in preclinical models for OA or in clinical
OA studies depending on the route of administration.

2. Results

The search strategy yielded 25 articles for inclusion (Figure 1). We identified preclinical and
clinical studies investigating chondroprotective actions of selective COX-2 inhibitors either via systemic
administration or via intra-articular delivery. Using the SYRCLE’s risk of bias tool for preclinical studies,
we observed that outcome measurements were in general blinded, but randomization sequences were
not always reported increasing the risk for selection bias (supplementary data) [10]. For clinical studies,
the Cochrane risk bias tool revealed that clinical studies were non-randomized, displaying a high risk
of selection and performance bias (supplementary data) [11].

The following sections will discuss the main results of the included 25 studies and compare
chondroprotective actions of selective COX-2 inhibitors when used systemically or intra-articularly.

2.1. Preclinical Studies: Oral and Intraperitoneal Administration

Fourteen of the included studies have investigated chondroprotective actions of selective COX-2
inhibitors after systemic administration (Table 1). Most studies focused on chondroprotective actions
of the selective COX-2 inhibitor celecoxib [12–21], while other studies investigated chondroprotective
actions of meloxicam [22,23] and etoricoxib [24,25]. Four studies that investigated chondroprotective
actions of selective COX-2 inhibitors in surgically induced OA models failed to demonstrate
chondroprotective actions when the drug was administered directly after OA induction [12,14,18,22].
On the other hand, Dai et al. demonstrated chondroprotective actions of celecoxib, as evidenced by an
improved macroscopic and histological OARSI score, in a surgically induced pig OA model, in which
treatment was started one week after surgery [20]. Further support of chondroprotective actions of
selective COX-2 inhibitors comes from a study in a surgically induced rat OA model, where treatment
with oral etoricoxib decreased OA-related cartilage damage as evidenced by an improved Pritzker
score compared to controls [24]. Chondroprotective actions of celecoxib were also shown in a study in
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which the Achilles tendon transection rat knee OA model was used [15]. It was shown that compared
to controls, chondrocyte apoptosis was lower after oral administration of celecoxib [15].
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Figure 1. PRISMA flowchart showing the yield of the search and inclusion of studies leading to the 25
included studies.

Next to surgically induced OA models, the monosodium iodoacetate (MIA) rat OA model [16,17,23],
the collagenase OA model [13,19] and the spontaneous OA mouse model (STR/Ort) [21] were also used
to investigate chondroprotective actions of selective COX-2 inhibitors celecoxib [13,16,17,19,21] and
meloxicam [23]. In these studies, chondroprotective actions of selective COX-2 inhibitors were observed
after oral administration as evidenced by improved histological scores compared to the controls.

While the aforementioned studies investigated chondroprotective actions of drugs administered
orally, one study investigated chondroprotective actions of etoricoxib when administered
intraperitoneally [25]. In this study, treatment with intraperitoneal etoricoxib injections was started
two days after surgically inducing OA using the destabilization of the medial meniscus (DMM) mouse
model [25] and histological analysis did not demonstrate a reduction in OA-related cartilage damage.

In conclusion, there is conflicting evidence regarding the chondroprotective actions of systemically
administered selective COX-2 inhibitors since five studies did not show chondroprotective actions,
while nine studies showed chondroprotective actions after systemic administration with selective
COX-2 inhibitors.
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Table 1. The schematic of studies investigating chondroprotective effects of systemically administered selective COX-2 inhibitors.

Preclinical Studies Using Oral Administration

Authors Species COX-2 Inhibitor OA Model Dosing Regime Start of Treatment Timepoint of
Evaluation

Evaluation of Cartilage
Degradation Main Findings

Mastbergen et al. [12] Canine Celecoxib Groove Daily 200 mg Directly after surgery 15 weeks after
OA induction

Histology:Modified Mankin
Biochemistry: PG content,

synthesis and release

No difference in histological
scores, no difference in PG

content, synthesis or release

Huh et al. [13] Rabbit Celecoxib Collagenase Daily 100 mg/kg Directly after
OA induction

4 weeks after
OA induction

Histology: Colombo score for
cartilage and synovitis score
for synoviummRNA analysis

PTGS1, PTGS2, MMP1
and MMP3

Improved histological score
in celecoxib group vs.

control, decreased MMP-1
mRNA expression in

celecoxib group vs. control

Jones et al. [22] Rat Meloxicam MCLT + ACLT
+ MMx Daily 3 mg/kg Directly after

OA induction
8 weeks after
OA induction Histology:Modified Mankin No difference in histological

score meloxicam vs. control

Fukai et al. [14] Mouse Celecoxib MCLT + MMx Daily 10 mg/kg
or 30 mg/ kg Directly after surgery 12 weeks after

OA induction Histology:Pritzker score No difference in Pritzker
score celecoxib vs. control.

Ou et al. [15] Rat Celecoxib Achilles tendon
transection Daily 24 mg/kg Directly after surgery Histology:Type II collagen

Tunel staining

No difference in type II
collagen content in celecoxib

vs. control, decreased
chondrocyte apoptosis in

celecoxib group.

Ashkavand et al. [16] Rat Celecoxib MIA Daily 100 mg/kg Directly after
OA induction

15 days after
OA induction

Histology: Own
developed score

Improved histological score
in the celecoxib group.

Superior chondroprotective
effects when celecoxib is
combined with silymarin

Moon et al. [17] Rat Celecoxib MIA Daily 2.5 mg/kg Directly after
OA induction

7 days after
OA induction Histology:Modified Mankin

No difference in Modified
Mankin celecoxib vs. control.
Synergistic beneficial action

when celecoxib is
added to rebamipide

Panahifar et al. [18] Rat Celecoxib ACLT + MCLT
+ MMx

Daily
2.86 mg/kg Directly after surgery 4,8 and 12 weeks after

OA induction Histology: Modified Mankin No difference in histological
score celecoxib vs. control.

Li [19] Rat Celecoxib Collagenase Daily 0.25 mg 6 weeks after surgery 10 weeks after
OA induction

Histology: Colombo score and
Biochemistry:CTX-II content in

serum, Caspase 3 activity in
tissue homogenate

Improved histological score
in celecoxib group vs.
control, higher CTX-II

content in celecoxib group,
lower Caspase 3 activity in

celecoxib group.
More pronounced effects

when celecoxib is combined
with diacerein
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Table 1. Cont.

Preclinical Studies Using Oral Administration

Authors Species COX-2 Inhibitor OA Model Dosing Regime Start of Treatment Timepoint of
Evaluation

Evaluation of Cartilage
Degradation Main Findings

Dai [20] Pig Celecoxib MMx 20 mg/kg daily 1 week after surgery 12 weeks after surgery

Macroscopic:|OARSI
scoreHistology:OARSI
scoreCOL-II and AGC

immunohistochemistry

Improved macroscopic and
histological score celecoxib

group vs. control,
no difference in COL-II and

AGC expression

Nagy [23] Rat Meloxicam MIA Daily 0.2 mg/kg
or 1 mg/kg

3 weeks after
OA induction

11 weeks after
OA induction Histology: OARSI score

Improved histological score
at both doses meloxicam

compared to control

Tu [21] Mouse Celecoxib Spontaneous OA
(STR/Ort mouse) Daily 8 mg/kg 3 months old mice 4 weeks after

start treatment Histology: OARSI score Improved OARSI score in
celecoxib group vs. controls,

Wen [24] Rat Etoricoxib ACLT
6.7 mg/kg or

33.3 mg/kg three
times per week

8 weeks after surgery 21 weeks after surgery Histology: Pritzker score
for cartilage

Improved histological score
in the etoricoxib group

versus control

Preclinical Studies Using Intra-Peritoneal Injections

Liu [25] Mouse Etoricoxib DMM

5 mg/kg,
10 mg/kg,

20 mg/kg three
times per week

2 days after
OA induction 30 days after surgery Histology: OARSI score

No difference in histological
score etoricoxib
versus control.

ACLT: Anterior Cruciate Ligament Transection, CLX: celecoxib, DMM: destabilization medial meniscus, ETX: etoricoxib, MCLT: Medial Collateral Ligament Transection, MIAl: Monosodium
Iodoacetate, MMx: medial meniscectomy, NP: nanoparticle, pMMx: partial medial meniscectomy, PG: proteoglycan.
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2.2. Preclinical Studies: Intra-Articular Administration

Next to in vivo studies investigating chondroprotective actions of selective COX-2 inhibitors
administered orally, seven studies focused on their chondroprotective actions when used intra-articularly
(Table 2). These studies evaluated several selective COX-2 inhibitors such as celecoxib [26–29],
parecoxib [30], meloxicam [31] and etoricoxib [32]. All studies used surgically induced OA models.
Chondroprotective actions, as evidenced by improved histological scores, were shown in three studies
after intra-articular administration with selective COX-2 inhibitors [26,30,31]. Four studies investigated
chondroprotective actions of selective COX-2 inhibitors when incorporated in a drug delivery system
(DDS). Dong et al. used celecoxib-loaded liposomes or liposomes loaded with a combination of
celecoxib and hyaluronic acid to study OA-related cartilage damage in a surgically induced rabbit
OA model [27]. No difference in histological scores was reported when rats received celecoxib-loaded
liposomes, while liposomes loaded with both celecoxib and hyaluronic acid exerted a chondroprotective
effect compared to control injections [27].

In an earlier study [28], our group has investigated chondroprotective effects of celecoxib-loaded
polyesteramide (PEA) microspheres in a surgically induced rat OA model. While celecoxib-loaded
microspheres reduced PGE2 as measured in homogenates from knees in this experiment, we could
not find chondroprotective effects of celecoxib-loaded PEA microspheres as measured by the OARSI
score [28]. In another study, Tellegen et al. [29] evaluated effects of the aforementioned celecoxib-loaded
PEA microspheres on cartilage degeneration in a surgically induced rat OA model. Consistent with our
study, no chondroprotective action of celecoxib-loaded PEA microspheres was observed. In contrast to
the findings of the aforementioned two studies, one study investigating controlled release of etoricoxib
demonstrated chondroprotective actions as evidenced by improved histological scores compared to
controls [32].

In conclusion, when used intra-articularly, three studies report chondroprotective actions of
selective COX-2 inhibitors. On the other hand, there is conflicting evidence regarding chondroprotective
actions of selective COX-2 inhibitors incorporated in intra-articular drug delivery systems: two studies
failed to demonstrate chondroprotective actions, one study shows chondroprotective actions only
when celecoxib is combined with HA and one study demonstrated chondroprotective activity.
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Table 2. The schematic of studies investigating chondroprotective effects of intra-articularly administered selective COX-2 inhibitors.

Preclinical Studies Using Intra-Articular Injections

Authors Species COX-2 Inhibitor OA Model Dosing Regime Start of Treatment Timepoint of Evaluation Evaluation of Cartilage Damage Main Findings

Jean et al. [30] Rat Parecoxib ACLT
Weekly 100 µg
parecoxib for

5 consecutive weeks

Eight weeks
after surgery 20 weeks after surgery Histology: Mankin score

Improved histological scores
in the parecoxib group
compared to controls

Jiang et al. [26] Rabbit Celecoxib ACLT+ PCLT
+ MMx

Weekly 1.2 mg
celecoxib for

5 consecutive weeks

Directly
after surgery 12 weeks after surgery Histology: Mankin score

Improved histological scores
in the Celecoxib group
compared to controls

Dong et al. [27] Rat Celecoxib ACLT+ PCLT+
MCLT + MMx

Single injection:
0.15 mg celecoxib

incorporated in DDS

One week
after surgery 2 weeks after surgery Histology: Colombo score

Improved histological score
only when celecoxib is

combined with HA in a DDS
compared to controls

Wen et al. [31] Rat Meloxicam ACLT
Weekly 0.25 or 1 mg

meloxicam for
5 consecutive weeks

Five weeks
after surgery 20 weeks after surgery Histology: Pritzker score

Lower Pritzker score in the
meloxicam group

versus control

Janssen et al. [28] Rat Celecoxib ACLT + pMMx
Single injection:

0.015 mg celecoxib
incorporated in DDS

Four weeks
after surgery 16 weeks after surgery Histology: OARSI score

No difference in histological
score in celecoxib loaded
microspheres vs. control

Tellegen et al. [29] Rat Celecoxib ACLT + pMMx

Single injection: 0.015,
0.115 or 0.195 mg

celecoxib
incorporated in DDS

Four weeks
after surgery 16 weeks after surgery Histology: OARSI score

No difference in histological
score in celecoxib loaded
microspheres vs. control

Liu et al. [32] Rat Etoricoxib ACLT

Three injections:
- 10 µM etoricoxib in
100 µL NaCl- 6.93 µg

ETX-NPs, drug
loading unclear

Three, six and nine
weeks after surgery 12 weeks after surgery Histology: OARSI score

Immunohistochemistry

Improved histological score
in ETX-NP, but not ETX,

compared to control.

ACLT: Anterior Cruciate Ligament Transection, CLX: celecoxib, DDS: drug delivery system, ETX: etoricoxib, HA: hyaluronic acid, MCLT: Medial Collateral Ligament Transection,
MMS: modified mankin score, MMx: medial meniscectomy, NP: nanoparticle, pMMx: partial medial meniscectomy.
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2.3. Clinical Studies

Four clinical studies investigated chondroprotective actions of selective COX-2 inhibitors via oral
administration, while there were no studies investigating chondroprotective actions of selective COX-2
inhibitors after intra-articular administration (Table 3).

Tindall et al. [33] included patients diagnosed with knee OA in a prospective open-label trial.
Patients with OA received celecoxib orally at two dosages throughout a 12-month study period.
Long-term celecoxib treatment did not result in significant changes of joint space width (JSW) at 1 year
after treatment as assessed radiographically. Moreover, when radiographic knee OA progression
during the study was compared to radiographic knee OA progression prior to the start of the study,
no significant differences were detected [33].

Sawitzke et al. [34] conducted a placebo-controlled study of patients with knee OA in which
patients received placebo or celecoxib orally on a daily basis. No significant differences were found in
JSW loss compared to placebo at 24 months, while Kellgren and Lawrence grade 2 knees showed a
trend towards less JSW loss. In contrast to the findings of the aforementioned clinical studies, a study
performed by de Boer et al. suggested that celecoxib might exert chondroprotective actions [35]. In this
study, patients with end-stage knee OA were treated with orally supplemented celecoxib 28 days
prior to total knee replacement surgery. Compared to patients that did not receive celecoxib, cartilage
samples of patients that received celecoxib showed increased proteoglycan (PG) synthesis, decreased
PG release and an increased PG content.

Raynould et al. conducted a study in which patients with knee OA were enrolled receiving
celecoxib orally throughout a 12-month study period [36]. After correcting for potential confounders,
celecoxib treatment did not show any protective effect on cartilage volume loss compared to a historical
knee OA cohort loss, as assessed by quantitative MRI.

In conclusion, evidence of chondroprotective actions of selective COX-2 inhibitors in human
patients is low, since three human in vivo studies failed to show chondroprotective effects of orally
administered celecoxib, while only one study suggests that celecoxib may act chondroprotective
in humans.

The selectivity of the COX-2 inhibitors that were used in the preclinical and clinical studies
described in this review has been compared by Riendeau et al. [37]. The COX-2 selectivity may play
a role in the chondroprotective outcome of a selective COX-2 inhibitor, but the number of studies
described in this systematic review was too small to draw any conclusions. An overview of the
half maximal inhibitory concentration (IC50) values for COX-1 and COX-2 of these selective COX-2
inhibitors together with the COX-1/COX-2 IC50 ratio is provided in Table 4.
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Table 3. The schematic overview of clinical studies investigating chondroprotective effects of systemically administered selective COX-2 inhibitors.

Clinical Studies Using Oral Administration

Authors Species COX-2 Inhibitor OA Grade Dosing Regime Treatment Duration Evaluation of Cartilage Damage Chondroprotection

Tindall et al. [33] Human Celecoxib K&L 2 and 3 Daily 200 or 400 mg 12 months Radiographs of the knee

No difference in JSW, subchondral
sclerosis, cysts, malalignment or

tilting after 12 months of treatment
with celecoxib

Sawitzke et al. [34] Human Celecoxib K&L 2 and 3 Daily 200 mg 24 months Radiographs of the knee No significant differences in JSW loss
in celecoxib vs. controls

De Boer et al. [35] Human Celecoxib Not specified Daily 200 mg 4 weeks
Biochemical cartilage analysis:PG

synthesis rate, PG release
and PG content

Increased PG synthesis rate,
decreased PG release and increased

PG content in the celecoxib group vs.
controls. Decreased release of il-1,

TNF-α and mmp-activity in celecoxib
group vs. control

Raynauld et al. [36] Human Celecoxib K&L 2 and 3 Daily 200 mg 12 months Quantitative MRI
No difference in cartilage volume loss

in celecoxib group vs. a historical
cohort control group

JSW: Joint space width, K&L: Kellgren and Lawrence, PG: proteoglycan.
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Table 4. The schematic overview of the half maximal inhibitory concentration (IC50) values and the
COX-1/COX-2 IC50 ratio of various selective COX-2 inhibitors. Adapted from [37].

Drug IC50 COX-1 (µM) IC50 COX-2 (µM) COX-1/COX-2 IC50 Ratio

Meloxicam 1.4 0.7 2
Celecoxib 6.7 0.87 7.7
Etoricoxib 116 1.1 105
Parecoxib 26.1 0.87 30

3. Discussion

The main finding of this systematic review is that the administration route plays a major role in
determining chondroprotective actions of selective COX-2 inhibitors. The intra-articular administration
route may be promising, since studies using bolus intra-articular administration of selective COX-2
inhibitors show chondroprotective effects. On the other hand, conflicting evidence exists when selective
COX-2 inhibitors are incorporated into a drug delivery system. While preclinical studies point out
to a potential chondroprotective role of COX-2 inhibitors, clinical studies did not investigate the
intra-articular administration route and failed to confirm chondroprotective actions of systemically
administered selective COX-2 inhibitors.

Discrepancies in chondroprotective actions of selective COX-2 inhibitors observed in the preclinical
studies may be related to the route of administration. While six of the fourteen studies using systemic
administration failed to demonstrate chondroprotective actions of selective COX-2 inhibitors, all studies
that applied intra-articular bolus injections demonstrated chondroprotective actions. Interestingly,
all clinical studies included in this systematic review evaluated chondroprotective actions using
the systemic administration route. Since these studies failed to demonstrate chondroprotective
actions, it will be of interest to investigate the chondroprotective actions of selective COX-2 inhibitors
using the intra-articular administration route for clinical studies. We did not encounter studies
comparing chondroprotective effects of systemic versus intra-articularly administration of selective
COX-2 inhibitors, but we believe this will be of interest to investigate in the future.

Improved chondroprotection of intra-articular injections with selective COX-2 inhibitor compared
to a saline control condition may be related to increased bioavailability of the drug in the knee joint
compared to systemic administrations. In addition, in a total joint disease such as knee OA [38–41],
intra-articular administration of drugs may be more effective compared to systemic treatment due to
the presence of scarcely vascularized tissues such as cartilage and meniscus [8]. Since COX-2 inhibitors
can have an effect on all joint tissues, it is unclear whether the chondroprotective effect is a direct result
of COX-2 inhibition in chondrocytes or an effect of COX-2 inhibition of other joint tissues.

Others and we failed to show a reduction of OA-related cartilage damage by celecoxib,
when incorporated in an intra-articular drug delivery system [28,29]. It is a possibility that prolonged
release of celecoxib may counteract potential chondroprotective effects due to increased loading of the
affected joint indirectly caused by the analgesic effects of COX-2 inhibitors. These findings corroborate
earlier observations in clinical studies, in which patients treated with anti-NGF demonstrated an
increase in OA-related cartilage damage possibly due to joint overloading [5].

COX-2 inhibitors are expected to have anti-inflammatory effects by inhibiting the synthesis of
prostanoids. Prostanoid subtypes are considered as inflammatory mediators [2] and are involved in
cartilage degradation [3], but also in other pathophysiologic OA processes in different joint tissues such
as synovial fibrosis and chondrocyte hypertrophy [42,43]. However, also anti-inflammatory actions of
certain prostanoid subtypes have been shown [2], and therefore identifying downstream targets of the
COX-2 pathway may further aid in anti-inflammatory treatment for knee OA. Inflammatory processes
have been suggested to precede knee OA [4,44] and to be involved in structural disease progression [4].
A window of opportunity may exist, in which modulating the inflammatory status of the knee joint
via intra-articular treatment with selective COX-2 inhibitors may lead to OA disease modification.
The initiation of treatment may thus be important for the treatment outcome. The studies performed
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by Wen et al. [24] and Dai et al. [20] did not start treatment shortly after surgery and demonstrated
chondroprotective actions of orally administered COX-2 inhibitors. It can be hypothesized that
inhibiting inflammation directly after inducing a joint trauma may compromise cartilage regeneration,
since inflammation is part of the early phases of natural tissue regeneration after a trauma [45].
This may explain why studies in surgical OA models fail to show chondroprotective effects when
starting treatment directly after surgery. Moreover, the lack of a chondroprotective effect in clinical
studies may be related to the stage of disease. Patients with knee OA are diagnosed in a stadium
when the disease has progressed towards its end-stage [46], and it can be hypothesized that at
this stage the disease is in an irreversible stadium where drug-based disease modification is not
effective anymore. In addition, knee OA is a heterogeneous disease showing variability in the rate
of disease progression in human subjects [47], while also the existence of distinct OA subtypes
has been suggested [18,48], suggesting that patient-tailored drug treatment needs to be developed.
Finally, the outcome measurements of clinical studies, such as joint space narrowing on conventional
radiography, may not be sensitive enough. With the ongoing advancements in cartilage imaging [49],
advanced techniques such as 7-tesla MRI imaging [49] may provide a more sensitive means to evaluate
multiple outcome domains relevant to the clinical and pathophysiological aspects of disease modifying
osteoarthritis drug (DMOAD)-mediated disease modification.

4. Materials and Methods

4.1. Search Strategy and Data Extraction

MEDLINE and EMBASE databases were systematically searched on all studies relating
intra-articular or oral treatment of knee OA patients with selective COX-2 inhibitors. The search was
conducted in May 2020 according to the search strategy and data collection guidelines of the preferred
reporting items for systematic reviews and meta-analyses (PRISMA) statement. A manual search of
the Cochrane library yielded no relevant articles. Upon reading the full-text key papers snowballing
searching manually reference lists of the included articles was allowed. Disagreements between the
reviewers were resolved by consensus.

After disregarding duplicates, the title and the abstract of articles were independently screened
by two observers according to predefined criteria. The search query was as follows:

(“Osteoarthritis”[Mesh] OR OA OR osteoarthritis) AND (“Knee”[Mesh] OR Knee [tiab]) AND
(((COX-2 [tiab] OR COX2 [tiab] OR Cyclooxygenase 2 [tiab] OR”Cyclooxygenase 2”[Mesh]) AND
(inhibitor [tiab] or inhibition [tiab] or limitation [tiab] or limiting [tiab])) OR celecoxib [tiab] OR
etoricoxib [tiab] OR rofecoxib [tiab] or valdecoxib [tiab] or lumiracoxib [tiab] or mavacoxib [tiab] or
meloxicam [tiab] or VA441 [tiab] or MK-0966 [tiab] or gw406381 [tiab] or SC-58635 [tiab] or VA692
[tiab] or VA694 [tiab] or SC-236 [tiab]) AND ((oral [tiab] AND (suppletion [tiab] OR supplements [tiab]
OR supplementation [tiab] OR treatment [tiab] OR ingestion [tiab] OR medication [tiab] OR tablets
[tiab] OR intake [tiab] OR absorption [tiab])) OR treatment OR ((intraarticular [tiab] OR intra-articular
[tiab]) AND (injection [tiab] OR therapy [tiab] OR supplementation [tiab] OR suppletion [tiab]))).

4.2. Articles Were Selected Based on Inclusion and Exclusion Criteria

Inclusion criteria:

i. Presenting data about chondroprotective effects of COX-2 inhibitors; The chondroprotective
effect is defined as any effect that leads to significantly less cartilage degradation evidenced
either through imaging, biochemical analysis or on histology.

ii. Either in vivo animal studies or clinical studies involving human knee OA patients;
iii. Intra-articular therapies with COX-2 inhibitors;
iv. Systemic therapies with COX-2 inhibitors.
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Exclusion criteria:

i. Studies solely investigating non-selective cox-inhibitors;
ii. Studies investigating actions of celecoxib inhibitors on pain modulation in knee OA;
iii. Studies investigating other joints than the knee;
iv. Studies reporting solely in vitro data.

Two observers systematically extracted study data based on the inclusion and exclusion criteria.
The risk of bias of the included studies was evaluated using the SYRCLE’s risk of bias tool for animal
studies [10] and the Cochrane risk of bias tool [11] for human studies.

5. Conclusions

To date there is conflicting evidence regarding the ability of selective COX-2 inhibitors to be used
as DMOADs. Preclinical studies have used different routes of administration, which may alter the
chondroprotective outcome of selective COX-2 inhibitors in the knee joint where scarcely vascularized
tissues are present. Other factors such as the OA model type, type of selective COX-2 inhibitor
and disease stage seem also to be involved in the chondroprotective outcome of selective COX-2
inhibitors. Despite the limited evidence of data in clinical studies, there seems to be a preclinical basis
for considering selective COX-2 inhibitors as DMOADs specifically when used intra-articularly.

6. Patents

TJM Welting is listed as inventor on patents: WO2017178251, WO2017178253 and US 20130123314. PJ
Emans and LW van Rhijn are listed as inventors on patent US 20130123314. LW van Rhijn, PJ Emans and
TJM Welting have shares in Chondropeptix and are CDO, CMO and CSO of Chondropeptix, respectively.
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DDS Drug Delivery System
DMM Destabilization of the medial meniscus
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HA Hyaluronic acid
JSW Joint space width
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MMx Medial meniscus transection
MRI Magnetic Resonance Imaging
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