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Abstract: The incidence of myocardial infarction, among the causes of cardiovascular morbidity and
mortality, is increasing globally. In this study, left ventricular (LV) dysfunction, including LV systolic
and diastolic function, was investigated in a rat myocardial ischemia/reperfusion injury model with
echocardiography. The homoisoflavanone sappanone A is known for its anti-inflammatory effects.
Using echocardiography, we found that sappanone A administration significantly improved LV
systolic and diastolic function in a rat myocardial ischemia/reperfusion injury model, especially in the
early phase development of myocardial infarction. Based on myocardial infarct size, serum cardiac
marker assay, and histopathological evaluation, sappanone A showed higher efficacy at the doses
used in our experiments than curcumin and was evaluated for its potential to improve LV function.

Keywords: acute myocardial infarction; coronary artery ligation; myocardial ischemia/reperfusion
injury; diastolic function; sappanone A

1. Introduction

Acute myocardial infarction (AMI) has recently emerged as one of the leading causes of increased
cardiovascular morbidity and mortality worldwide [1]. In the context of myocardial ischemia,
systolic myocardial dysfunction usually occurs before electrocardiogram (ECG) changes or chest
pain occur [2], so it is important to specifically evaluate left ventricular (LV) when diagnosing and
monitoring cardiovascular disease. Echocardiography, the best prognostic indicator for MI patients,
is a well-established and non-invasive diagnostic tool for evaluating LV function [3]. LV diastolic
function has become more important in recent years. Additionally, MI patients with LV diastolic
dysfunction have poorer postoperative outcomes, such as heart failure or cardiac death, than those
with only LV systolic dysfunction [4,5].

In cardiovascular research, rat myocardial ischemia/reperfusion (I/R) injury models are the most
commonly used animal models, and this animal model has been commonly used in efficacy studies
of new drugs, stem cell therapy, and mechanism studies [6–9]. With scientific and technological
advances, precise and accurate echocardiographic evaluation is possible even with rodents that have a
mean heart rate of over 300 bpm [10]. With modern technology, it is possible to set a rat myocardial

Int. J. Mol. Sci. 2020, 21, 6935; doi:10.3390/ijms21186935 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://dx.doi.org/10.3390/ijms21186935
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/18/6935?type=check_update&version=3


Int. J. Mol. Sci. 2020, 21, 6935 2 of 17

I/R injury model induced by transient ligation of left anterior descending (LAD) and proceed with
echocardiographic evaluation of LV function, including systolic and diastolic dysfunction [11,12].

Homoisoflavanones are a small class of natural products, which include sappanone A, a compound
isolated from the heartwood Caesalpinia sappan that has proven inhibitory activity against nitric
oxide (NO) production as well as against the expression of inducible nitric oxide synthase
(iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells [13].
This compound induces heme oxygenase (HO)-1 protein and increases nuclear translocation of the
nuclear factor-E2-related factor 2 (Nrf2) as well as the expression of Nrf2 target genes, such as
NAD(p)H:quinone oxidoreductase 1 (NQO1), in RAW264.7 cells [14]. Additionally, sappanone A
has been shown to inhibit RANKL-induced osteoclastogenesis in mouse bone marrow macrophages
(BMMs) and suppress inflammation-induced bone loss in a mouse model [15].

Despite the various anti-inflammatory effects of sappanone A, there has been no evaluation of its
cardiovascular protective effects in vivo, so we proceeded with this study to show the effectiveness
of sappanone A on LV dysfunction using echocardiography in a rat myocardial I/R injury model.
To evaluate the effectiveness of sappanone A in a rat myocardial I/R injury model, we assessed
LV systolic and diastolic function via echocardiography, performed serum cardiac marker assays,
histopathological examination, and mechanism analysis, and we determined LV infarction size.
Our findings will help future MI patients in the early stages of cardiovascular disease development.

2. Results

2.1. Experimental Design, Gross Examination, Myocardial Infarct Size, and Serum Cardiac Marker Results

To evaluate the cardioprotective effects of sappanone A isolated from the heartwood C. sappan,
as previously described [13] (Figure 1A), transient LAD ligation surgery and administration proceeded
according to the experimental design (Figure 1B). Figure 1C shows the representative gross picture
of the MI vehicle group, and the infarct regions were found below the ligation site at the apex area
(yellow arrow). Also, Figure 1D shows the representative LV slices of the treatment groups for
evaluating LV myocardial infarct size. The infarct size of the curcumin- and sappanone A-treated
groups decreased compared with the vehicle-treated MI group, and tended to alleviate myocardial
infarction, but only the sappanone A-treated group had statistical significance. The area of each LV
tissue slice was divided into four areas: PM, proximal medial, distal medial, and apex areas. The mean
and SEM values of the infarct size (%) for each slice are shown in Table 1. In particular, Sappanone A
treatment was associated with significantly smaller infarct sizes in the distal medial and apical areas.

Serum Creatine Kinase MB (CK-MB), Lactate dehydrogenase (LDH), and Aspartate
aminotransferase (AST) are important variables for the assessment of MI-induced models due to
myocardial cell damage and rupture [16]. As the results of the cardiac marker assays, serum CK-MB,
LDH, and AST levels in the rat myocardial I/R injury model group (MI+Veh) were significantly
increased compared with the normal control group. The curcumin and sappanone A treatment groups
tended to have lower levels of CK-MB, LDH, and AST, and sappanone A significantly reduced the
LDH and AST levels compared with those of the MI+Veh group out of the MI groups (Figure 1E).

Table 1. Myocardial infarct size (%) in each MI area region measured by TTC staining.

MI Area Region MI MI + Cur MI + SA

Papillary muscle (PM) 20.52 ± 11.54 25.68 ± 7.45 11.53 ± 8.35
Proximal medial 21.52 ± 2.63 23.19 ± 2.38 10.19 ± 6.31

Distal medial 33.09 ± 4.83 24.55 ± 3.12 # 9.64 ± 6.22
Apex 51.46 ± 9.33 # 25.01 ± 10.50 ### 12.39 ± 7.64

Total 31.65 ± 2.37 24.61 ± 2.53 ## 10.94 ± 5.95

Values are expressed as the mean ± SEM. # (p < 0.05), ## (p < 0.01), and ### (p < 0.001) indicate statistically significant
differences by one-way ANOVA test with Tukey’s post hoc correction.
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Figure 1. The experimental design and the positive effect on the infarct size and serum cardiac marker. 
(A) Chemical structure of sappanone A. (B) The animals were divided into four groups: Group A, 
Normal control; Group B, MI+Vehicle; Group C, MI+Curcumin 25 mg/kg; Group D, MI+Sappanone 
A 50 mg/kg. (C) Representative gross photograph of a heart on day 1 after MI surgery and the infarct 
area (yellow arrow). (D) Representative photographs of left ventricle slices of the groups and the 
infarct size of the left ventricles of the total and apex areas in each group (n = 5/group, right). # p < 0.05 
and ## p < 0.01 by one-way ANOVA test with Tukey’s post hoc correction. (E) Serum chemistry results 
of creatine kinase MB isozyme (CK-MB, n = 3/group), lactate dehydrogenase (LDH, n = 3/group), and 
aspartate aminotransferase (AST, n = 3/group) on day 1 after MI surgery. ** p < 0.01, *** p < 0.001, **** 
p < 0.0001 by two-way ANOVA test with Tukey’s post hoc correction. 

2.2. Echocardiographic Results 

Overall, cardiac function did not recover from day 1 to day 4, including systolic and diastolic 
function (Figure 2). EF and FS are representative values for evaluating the LV systolic function, and 
E’ and E/E’ ratio are the representative values for evaluating the LV diastolic function. The LV systolic 
function tends to increase in the sappanone A 50 mg/kg dose group compared with the MI + vehicle 
group. LV diastolic dysfunction did not recover in the MI + vehicle group until day 4, whereas in the 
curcumin-treated and sappanone A-treated groups, the absolute value of the E/E’ ratio was 
significantly decreased compared with the MI + vehicle group, which confirmed the cardioprotective 
effect on LV diastolic dysfunction. Also, sappanone A showed a higher efficacy at this dose than 
curcumin. In particular, the LV diastolic dysfunction was significantly alleviated in association with 
curcumin and sappanone A, and the E/E’ ratio in the sappanone A group improved the LV diastolic 
function to almost normal levels. The detailed results are described in Table 2. 

Figure 1. The experimental design and the positive effect on the infarct size and serum cardiac marker.
(A) Chemical structure of sappanone A. (B) The animals were divided into four groups: Group A,
Normal control; Group B, MI+Vehicle; Group C, MI+Curcumin 25 mg/kg; Group D, MI+Sappanone A
50 mg/kg. (C) Representative gross photograph of a heart on day 1 after MI surgery and the infarct area
(yellow arrow). (D) Representative photographs of left ventricle slices of the groups and the infarct
size of the left ventricles of the total and apex areas in each group (n = 5/group, right). # p < 0.05 and
## p < 0.01 by one-way ANOVA test with Tukey’s post hoc correction. (E) Serum chemistry results
of creatine kinase MB isozyme (CK-MB, n = 3/group), lactate dehydrogenase (LDH, n = 3/group),
and aspartate aminotransferase (AST, n = 3/group) on day 1 after MI surgery. ** p < 0.01, *** p < 0.001,
**** p < 0.0001 by two-way ANOVA test with Tukey’s post hoc correction.

2.2. Echocardiographic Results

Overall, cardiac function did not recover from day 1 to day 4, including systolic and diastolic
function (Figure 2). EF and FS are representative values for evaluating the LV systolic function, and E′

and E/E′ ratio are the representative values for evaluating the LV diastolic function. The LV systolic
function tends to increase in the sappanone A 50 mg/kg dose group compared with the MI + vehicle
group. LV diastolic dysfunction did not recover in the MI + vehicle group until day 4, whereas in the
curcumin-treated and sappanone A-treated groups, the absolute value of the E/E′ ratio was significantly
decreased compared with the MI + vehicle group, which confirmed the cardioprotective effect on
LV diastolic dysfunction. Also, sappanone A showed a higher efficacy at this dose than curcumin.
In particular, the LV diastolic dysfunction was significantly alleviated in association with curcumin
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and sappanone A, and the E/E′ ratio in the sappanone A group improved the LV diastolic function to
almost normal levels. The detailed results are described in Table 2.

Figure 2. Echocardiographic results (n = 5/group) and the representative echocardiographic images
of rat left ventricle on day 4 after MI surgery. Sappanone A significantly improved left ventricular
(LV) systolic and diastolic function. (A) Ejection fraction, EF; (B) Fractional shortening, FS; (C) Early
relaxation velocity on tissue Doppler, E′; (D) E/E′ ratio of LV diastolic function; (E) Representative
echocardiographic imaging on day 4 after MI surgery. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
by two-way ANOVA tests with Tukey’s post hoc correction.
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Table 2. Cardiac function measured by echocardiography.

Cardiac
Function

Day 1 Day 4

Normal MI MI+Cur MI+SA Normal MI MI+Cur MI+SA

EF, % 68.79 ± 4.59 *** 52.63 ± 4.85 * 58.81 ± 4.12 60.68 ± 2.82 64.13 ± 8.30 * 49.01 ± 5.06 54.39 ± 4.07 57.97 ± 4.70
FS, % 40.05 ± 3.66 *** 28.21 ± 3.18 * 32.48 ± 2.85 * 33.80 ± 1.98 36.69 ± 6.24 * 26.03 ± 3.28 29.55 ± 2.80 31.99 ± 3.30

HR, BPM 256.16 ± 21.28 302.19 ± 48.56 303.10 ± 20.50 259.16 ± 49.83 244.41 ± 30.13 263.63 ± 15.35 256.91 ± 38.13 244.75 ± 11.91
SV, µL 219.43 ± 27.86 182.83 ± 10.82 210.01 ± 23.71 216.28 ± 21.84 233.88 ± 23.15 206.55 ± 22.86 224.25 ± 28.84 228.74 ± 38.15

CO, mL/min 55.97 ± 6.27 54.97 ± 6.07 63.39 ± 8.80 62.82 ± 11.05 56.93 ± 7.21 54.23 ± 5.61 56.93 ± 2.95 55.90 ± 9.42
LVIDd, mm 7.73 ± 0.53 7.90 ± 0.27 7.96 ± 0.46 8.15 ± 0.52 8.18 ± 0.75 8.73 ± 0.15 8.63 ± 0.26 8.49 ± 0.71
LVIDs, mm 4.66 ± 0.53 * 5.66 ± 0.41 5.37 ± 0.41 5.43 ± 0.52 5.19 ± 0.89 6.36 ± 0.41 6.13 ± 0.20 5.88 ± 0.73
IVSd, mm 1.52 ± 0.05 1.53 ± 0.16 1.59 ± 0.16 1.54 ± 0.23 1.48 ± 0.20 1.36 ± 0.07 1.40 ± 0.16 1.41 ± 0.10
IVSs, mm 2.57 ± 0.11 2.24 ± 0.20 2.55 ± 0.22 2.65 ± 0.27 2.52 ± 0.24 2.19 ± 0.20 2.22 ± 0.21 2.34 ± 0.23

LVPWd, mm 1.66 ± 0.15 1.57 ± 0.12 1.70 ± 0.09 1.98 ± 0.55 1.57 ± 0.17 1.62 ± 0.27 1.57 ± 0.16 1.66 ± 0.12
LVPWs, mm 2.65 ± 0.23 2.36 ± 0.28 2.53 ± 0.07 2.69 ± 0.37 2.42 ± 0.26 2.28 ± 0.26 2.38 ± 0.24 2.58 ± 0.23

E′, mm/s 43.82 ± 5.66 ** 32.67 ± 2.14 * 37.82 ± 4.16 36.33 ± 2.95 40.23 ± 1.62 * 32.44 ± 2.62 34.93 ± 3.63 35.94 ± 5.40
E/A ratio 1.66 ± 0.32 2.10 ± 0.40 1.91 ± 0.37 1.75 ± 0.34 1.82 ± 0.28 1.95 ± 0.17 2.04 ± 0.50 2.16 ± 0.64
E/E′ ratio 21.09 ± 0.68 **** 25.74 ± 0.68 **** 22.26 ± 1.50 **** 20.92 ± 1.58 21.14 ± 0.68 *** 25.69 ± 0.54 ** 22.50 ± 1.83 *** 21.42 ± 1.29

Values are expressed as the mean ± standard deviation. EF, ejection fraction; FS, fractional shortening; SV, stroke
volume; CO, cardiac output; LVIDd, left ventricular internal diameter at diastole; LVIDs, left ventricular internal
diameter at systole; IVSd, interventricular septal thickness at diastole; IVSs, interventricular septal thickness at
systole; LVPWd, left ventricular posterior wall thickness at diastole; LVPWs, left ventricular posterior wall thickness
at systole; E′, early diastolic tissue doppler velocity; E/A, the ratio of the early (E) to late (A) ventricular filling
velocities; E/E′, the ratio of the early (E) to early diastolic tissue Doppler velocities. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001 by two-way ANOVA test with Tukey’s post hoc correction.

2.3. Histopathological Results

Representative photomicrographs of tissue stained with hematoxylin and eosin (H&E) are
shown in Figure 3A,B and Masson’s trichrome are shown in Figure 3C. In H&E-stained slide
sections, inflammatory cell infiltration is shown in epicardial, myocardial, and endocardial areas.
Masson’s trichrome staining revealed areas of marked fibroblast and collagen deposition. Figure 3A
shows histopathological changes in papillary muscle (PM), medial, and apex areas. Representative
photomicrographs of interest with high magnification are shown in Figure 3B (×40, ×400, ×1500).
Mixed cell (mixed state of lymphocytes and monocytes), lymphocyte (arrows) and mononuclear cells
(arrow heads) are shown in myocardial region (Top, ×400) and mononuclear cells (arrow heads) with
purulent (asterisk) are shown in endocardial region (Bottom, ×400). Representative cell image of the
mature lymphocyte (arrows) and mononuclear cells (arrow heads) are shown in Figure 3B with high
magnification (×1500). Sappanone A was associated with a significant reduction in inflammatory cells
infiltration in all epicardial regions and the medial myocardial region. The degree of fibrosis in all
regions in the MI + Veh group was higher than that seen in curcumin-treated and sappanone A-treated
groups, although these differences were only statistically significant in PM area (Figure 3C).
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Figure 3. Histopathological images and results in each left ventricle area on day 4 after MI
surgery. Representative photomicrographs are shown in hematoxylin and eosin and incidence of
histopathological changes (A,×12.5) and representative H&E photomicrographs with high magnification
(B, ×40, ×400, ×1500). Mature lymphocyte (arrows) and mononuclear cells (arrow heads) are shown
in myocardial region (Top, ×400) and mononuclear cells (arrow heads) with purulent (asterisk) are
shown in endocardial region (Bottom, ×400). Representative cell image of lymphocyte (arrow) and
mononuclear cell (arrow head) can be identified with high magnification (×1500). Representative
photomicrographs in Masson’s trichrome and fibrosis area percentage (C, ×12.5). * p < 0.05, indicate
statistically significant differences by one-way ANOVA with Tukey’s post hoc correction. Grading
of histopathological changes in each tissue area (papillary muscle, medial, and apex) of the rat left
ventricle. Grades 1, 2, 3, and 4 show minimal, slight, moderate, and severe pathological changes,
respectively. Values are mean ± standard error of the mean (SEM, n = 3).

2.4. Sappanone A Treatment Results in Changes of Multiple Cellular Processes in the Rat Myocardial I/R
Injury Model

To investigate molecular signatures affected by sappanone A in a rat myocardial I/R injury
model, we performed mRNA sequencing of left ventricle tissues from the normal group, MI group,
MI + Curcumin group and MI + Sappanone A group, and we compared mRNA abundances between the
different groups (Figure 4A). A total of 3568 DEGs with false discovery rates <0.05 and fold changes >1.5
were identified (Materials and Methods) from the MI versus normal, MI + Curcumin versus MI,
and MI + Sappanone A versus MI (2163, 2020, and 793 DEGs, respectively) comparisons (Figure 4B
and Supplementary Table S1). Large numbers of DEGs were identified from the MI + Sappanone A
versus MI (2020 DEGs) comparison, whereas only 793 DEGs were identified from the MI + Curcumin
versus MI comparison. Also, among these DEGs, 883 and 392 genes were shared with the DEGs
identified from the MI versus normal comparison (40.8% and 18.1% of the 2163 DEGs, respectively)
(Figure 4B). These data indicate that gene expression can be significantly altered by the sappanone A in
the rat myocardial I/R injury model. To systematically investigate the cellular processes associated
with sappanone A in this rat MI model, these shared DEGs were categorized into six clusters (C1-6)
based on their differential expression patterns (Figure 4C).
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differentially expressed genes (DEGs). (C) Clusters (C1-6) of the genes affected by curcumin or 
sappanone A. Red and green denote up- and down-regulation, respectively. The number of DEGs in 
each cluster is denoted. (D,E) Cellular processes represented by DEGs in C1-6. X-axis, −log10(P) where 
P is the enrichment P-value calculated in DAVID software. (F) DEGs involved in inflammatory 
responses. 

2.5. Inhibitory Effects of Sappanone A on Myocardial Infarction-Related Processes 

To examine the collective actions of signaling pathways, a network model describing 
interactions among the DEGs was reconstructed. The network model showed that sappanone A 
treatment down-regulated pro-inflammatory pathways activated by MI (Tlr, Tgfb, TNF, and Ifng 
signaling pathways) as well as the complement cascade, which increases inflammation and apoptosis 
pathway (Figure 5A).  

Finally, we confirmed downregulation of the representative genes involved in inflammatory 
responses (Tgfb1, Tgfb2, Cd4, Cd8a, Il18, Pik3cd, and Tnfrsf1a) and apoptosis (Casp3) in the MI + 
Sappanone A group, compared with in the MI groups (Figures 5B and Supplementary Figure S1). 
Taken together, these results suggest that sappanone A attenuate MI-related processes including 
inflammation in the rat myocardial I/R injury model. 

Figure 4. Cellular processes affected by sappanone A. (A) Scatter plots of three comparisons (MI versus
normal, MI + Curcumin versus MI, and MI + Sappanone A versus MI). (B) Relationships among
differentially expressed genes (DEGs). (C) Clusters (C1-6) of the genes affected by curcumin or
sappanone A. Red and green denote up- and down-regulation, respectively. The number of DEGs in
each cluster is denoted. (D,E) Cellular processes represented by DEGs in C1-6. X-axis,−log10(P) where P
is the enrichment p-value calculated in DAVID software. (F) DEGs involved in inflammatory responses.

The cellular processes represented by the genes in the individual clusters were identified by
performing enrichment analyses of GOBPs using DAVID software [17]. Among the six clusters, C1/3
and C4/6 showed up- and down-regulation in their abundances by MI, respectively, but sappanone
A treatment inhibited these alterations. The GOBP enrichment analysis revealed that the genes in
C1/C3 were mainly involved in immune and inflammatory responses, cytokine production, neutrophil
migration, NF-kB signaling, and apoptosis (Figure 4D), while C4/6 were involved in glucose and
fatty acid metabolism, mitochondrial organization, cellular oxidant detoxification, reactive oxygen
species metabolism, and cardiac muscle contraction (Figure 4E). Particularly, the genes involved in
inflammatory responses were strongly restored in terms of their expression by sappanone A (p < 10−4)
(Figure 4F). The results showed that sappanone A affects a broad range of cellular processes.

2.5. Inhibitory Effects of Sappanone A on Myocardial Infarction-Related Processes

To examine the collective actions of signaling pathways, a network model describing interactions
among the DEGs was reconstructed. The network model showed that sappanone A treatment
down-regulated pro-inflammatory pathways activated by MI (Tlr, Tgfb, TNF, and Ifng signaling
pathways) as well as the complement cascade, which increases inflammation and apoptosis pathway
(Figure 5A).



Int. J. Mol. Sci. 2020, 21, 6935 9 of 17
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 17 

 

 

Figure 5. Inhibitory effects of Sappanone A administration on the MI-related processes. (A) Network 
model describing interactions among signaling pathways. Arrows, activation in signaling. “+p”, 
phosphorylation. (B) Confirmation of the predominant downregulation of the eight representative 
genes involved in the inflammatory responses and apoptosis by RT-PCR. The expression levels were 
normalized with respect to those in the control group. The normalized data are expressed as the mean 
± SEM (n = 4 per group). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 by two-way ANOVA tests 
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3. Discussion 

In this in vivo model, the positive effect of sappanone A on the early stage of MI was confirmed 
by assessing the infarct size and serum cardiac marker (CK-MB, LDH, and AST) on day 1 after MI 
surgery and the LV systolic and diastolic function using echocardiography on day 1 and 4. In 
addition, histopathological changes (H&E and Masson Trichrome) and mRNA sequencing were 
analyzed to study potential changes in cellular pathways on day 4 after MI surgery. These data 
demonstrate that sappanone A successfully attenuated LV dysfunction induced by LAD ligation in a 
rat myocardial I/R injury model. 

Acute MI remains one of the leading causes of increased cardiovascular morbidity and mortality 
worldwide [1,18], and LV diastolic dysfunction during acute MI is among the important indicators 

Figure 5. Inhibitory effects of Sappanone A administration on the MI-related processes. (A) Network
model describing interactions among signaling pathways. Arrows, activation in signaling. “+p”,
phosphorylation. (B) Confirmation of the predominant downregulation of the eight representative
genes involved in the inflammatory responses and apoptosis by RT-PCR. The expression levels were
normalized with respect to those in the control group. The normalized data are expressed as the
mean ± SEM (n = 4 per group). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 by two-way ANOVA
tests with Tukey’s post hoc correction.

Finally, we confirmed downregulation of the representative genes involved in inflammatory
responses (Tgfb1, Tgfb2, Cd4, Cd8a, Il18, Pik3cd, and Tnfrsf1a) and apoptosis (Casp3) in the MI + Sappanone
A group, compared with in the MI groups (Figure 5B and Supplementary Figure S1). Taken together,
these results suggest that sappanone A attenuate MI-related processes including inflammation in the
rat myocardial I/R injury model.
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3. Discussion

In this in vivo model, the positive effect of sappanone A on the early stage of MI was confirmed
by assessing the infarct size and serum cardiac marker (CK-MB, LDH, and AST) on day 1 after MI
surgery and the LV systolic and diastolic function using echocardiography on day 1 and 4. In addition,
histopathological changes (H&E and Masson Trichrome) and mRNA sequencing were analyzed to
study potential changes in cellular pathways on day 4 after MI surgery. These data demonstrate that
sappanone A successfully attenuated LV dysfunction induced by LAD ligation in a rat myocardial I/R
injury model.

Acute MI remains one of the leading causes of increased cardiovascular morbidity and mortality
worldwide [1,18], and LV diastolic dysfunction during acute MI is among the important indicators of
poor surgical outcomes and recurrences [4]. Echocardiography is useful for detecting LV dysfunction
and is the best prognostic indicator for human MI patients [3,19].

Rat myocardial I/R injury models are useful, and we especially focused on LV diastolic function
and systolic function using echocardiography. In the present study, the rat myocardial I/R injury
model was successfully induced by LAD ligation and reperfusion using a snaring technique and
area at risk was normalized by TTC/EB double staining. Curcumin and sappanone A were daily
administered before ischemia from on the day of surgery to four days after surgery for five days,
which was a relatively short exposure period compared with previous studies [8,11,12], to investigate
their early effects on MI. We continuously emphasized the importance of the LV diastolic and systolic
dysfunction to better simulate the clinical cardiac function assessment of MI patients. We found that
the rats with MI exhibited decreased ejection fraction and fractional shortening values, reflecting
LV systolic dysfunction; they also had reduced E′ values and increased E/E′ values, reflecting LV
diastolic dysfunction, and this tends to be the same in human MI patients. Patients with acute coronary
syndrome usually have increased end-diastolic filling pressure of the left ventricle, leading to early
aortic valve closure. If stroke volume is decreased sequentially, the incoming blood flow in late systole
decreases [20], which causes disturbances of LV diastolic function, leading to large infarctions [21].
Since elevation of LV filling pressure is the key indicator of poor outcomes in humans [22,23], the E/E′

ratio can be used to evaluate LV diastolic dysfunction, given its tendency for independence from LV
systolic function, heart rhythm abnormalities, and LV hypertrophy [24]. Therefore, the evaluation of LV
diastolic function is important for MI patients, and our echocardiographic method is a good indicator
in terms of prognostic prediction and efficacy evaluation in the context of new drug development or
heart disease.

Curcumin is the natural yellow pigment extracted from the rhizomes of the plant Curcuma longa,
and its cardioprotective effect in a rat chronic MI model induced via the TGFß/Smad-mediated
signaling pathway has been studied [8]. An acute myocardial I/R injury rat model has also been used
to study the protective effect of curcumin in association with enhanced STAT3 phosphorylation [25].
Recently, the effects of curcumin nanoparticles in isoproterenol-induced MI have been demonstrated [26];
however, the age and the bodyweight of rats, the ischemic period of LAD ligation, and the dosage and
total treatment period were different from our rat myocardial I/R injury model protocol. Using curcumin
as a positive control group, our new study intended to identify the effects of sappanone A on acute MI.

In a previous experiment, we found no differences in the serum chemistry values for cardiac
markers in normal and surgically-induced MI model rats on the seventh day after surgery, so the
sampling was performed on the first day after transient LAD ligation surgery, which was earlier
than previous experiments; this was done to consider the time-bound effect of the enzymes in serum,
and then statistically significant changes were detected when MI occurred. After MI was induced,
myocardial cells were damaged and ruptured, cardiac enzymes were released into the blood, and a
significant decline in mean serum AST was observed in the sappanone A-treated rats, relative to
the MI+Veh rats. In addition, the mean myocardial infarct size of the sappanone A-treated rats was
significantly smaller in the distal medial and apex regions compared with that of the MI+Veh group.
Additionally, the histopathological findings of myocardial tissue from rats in the MI group were clearly
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different from those of rats in the normal group. The pathogenic consequences of MI are usually seen
in the main coronary arteries and myocardium [27]. In this study, based on the histopathological
examination of left ventricles on day 4 after MI surgery, we could determine that it is a condition that
progresses from acute or subacute to sub-chronic stage. Advanced lesions were rarely observed and
the inflammatory cells of the lymphocyte and mononuclear cell lineages, which are mainly seen in the
sub- chronic inflammatory status, are distributed more significantly than neutrophil or eosinophil,
which is mainly seen in the acute stage. In addition, the microvascular obstruction and neutrophils in
H&E staining were rarely seen on the day 4 after MI surgery. To evaluate the effect of Sapponone A on
microvascular obstruction and neutrophil infiltration, it could be better to conduct histopathologic
examination in earlier time such as day 1 after MI surgery. In H&E-stained slide sections of each
transverse cardiac region, inflammatory cells infiltration including lymphocytes and mononuclear cells,
and purulent lesions were examined by grading, and sappanone A significantly reduced inflammatory
cells infiltration in all epicardial regions and the medial myocardial region with the consistency of
peer-review. In addition, it seems sappanone A influence more on the lymphocyte based on our
histopathologic results in heart samples, but without the results of histopathological examination of
other organs such as spleen, bone marrow, etc., there are still limits to confirming the greater effect of
sappanone A on lymphocyte based on heart results alone. Thus, the effects of sappanone A on each cell
type of inflammation and its direct/indirect relationship to MI will be discussed in the further studies.
Fibrosis area percentages in Masson’s trichrome–stained slide sections were only statistically different
among the groups in PM area.

The echocardiographic results confirmed the successful generation of our acute rat myocardial
I/R injury model. The echocardiographic data showed that LV cardiac dysfunction did not recover
during the early phase of ischemic-reperfusion injury in this rat model throughout the experimental
period. However, sappanone A had cardioprotective effects on acute myocardial ischemia according
to the significantly improved LV systolic and diastolic function and reduction in ischemic lesions.
Also, there are some limitations to using E′ and E/E′, which reflect only the global LV function.
However, further studies using quantitative evaluation with strain speckle tracking echocardiography
are planned for evaluating regional LV function and filling dynamics [28].

The alteration of molecular signatures by sappanone A had not previously been systematically
explored using a rat myocardial I/R injury model. In this study, gene expression profiling was
used to identify molecular signatures affected by sappanone A in a rat myocardial I/R injury model.
Sappanone A treatment altered the mRNA expression level of 2020 genes involved in various cellular
processes, including 66 genes involved in inflammatory responses (Figure 4F and Supplementary
Table S1). These genes are likely to be involved in myocardial infarction-related pathological features.
For example, Tgfb1 and Tgfb2 mRNA abundances were decreased by sappanone A. The Tgfb family
critically regulates the inflammatory response, angiogenesis, and fibrosis under myocardial infarcts [29].
Furthermore, the network model suggested Tlr, Nfkb, Tnf, Ifng signaling pathways associated with
disease pathogenesis [30]. Although the sappanone A showed potent effects in decreasing the
expression of pro-inflammatory factors, the exact mechanisms behind the anti-inflammatory effects of
sappanone A and improved heart function are not clearly understood. The reduced pro-inflammatory
factors predominantly by sappanone A may act as a potential link of the inflammation to the alleviation
of the LV diastolic and systolic dysfunction [31–35]. In this study, we focused on the effects of
sappanone A on myocardial infarction and the restoration of the MI-perturbed gene expression profiles
(e.g., inflammation-related pathways). It can be considered valuable as an initial comparative study,
and further mechanistic studies are warranted to elucidate the functional link of the attenuated
inflammation to the improved myocardial infarction phenotypes.

To the best of our knowledge, ours was the first study to demonstrate the promising positive effects
of sappanone A on LV dysfunction in a rat myocardial I/R injury model using echocardiography. The rat
myocardial I/R injury model is a good representation of human acute MI, allowing the cardioprotective
effects of sappanone A to be evaluated. These data contribute to the understanding of the effects of
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sappanone A on the development of AMI and provide a clear rationale for the use of sappanone A in
high-risk patients.

4. Materials and Methods

4.1. Chemicals and Reagents

Sappanone A was obtained from Eun Sook Ma, Daegu Catholic University, Gyeongsan, Korea
(Figure 1A), and extracted using methods previously described [13,14].

4.2. Animals, Husbandry, and Experimental Design

Sprague Dawley rats (8-week-old adult males, mean weight: 285.33 ± 5.09 g) were purchased from
Koatech (Kyungki, Korea). The study design was approved by the Institutional Animal Care and Use
Committee of Daegu-Gyeongbuk Medical Innovation Foundation (3 January 2019, DGMIF-18041705-01).
The rats were housed in environmental conditions with a temperature of 22 ± 1 ◦C, a relative humidity
of 50% ± 10%, 12 h light/dark cycles, illumination at 150–300 Lux, and ventilation 10–20 times/h.
The rats were monitored every hour for 24 h and maintained within an acceptable environment
throughout the study. There were three rats per cage at the beginning of the study, and they were fed
an autoclaved pellet diet (SAFE + 40RMM; SAFE Diets, Augy, France) ad libitum.

The experimental design is shown in Figure 1B. The rats were divided into four groups
(eight rats/group) as follows: (A) Normal group, (B) MI group, (C) MI + Curcumin 25 mg/kg group,
(D) MI + Sappanone A 50 mg/kg group. The rats in groups A and B received vehicle (10% dimethyl
sulfoxide, DMSO, cat.co. 472301, Sigma-Aldrich, St. Louis, MO, USA and 90% polyethylene glycol,
PEG400, cat.co. 91893, Sigma, St. Louis, MO, USA), and the rats in groups C and D were treated with
25 mg/kg curcumin, and 50 mg/kg sappanone A dissolved in vehicle by oral injection daily for 5 days
(before ischemia from the day of surgery to 4 days after surgery).

4.3. Induction of Myocardial I/R Injury

Animals were anesthetized with alfaxalone (50 mg/kg, IP) and xylazine (5 mg/kg, IP).
After anesthetization, the rats were intubated and ventilated using a respirator (Harvard Apparatus
VentElite, Holliston, MA, USA) and maintained on a tidal volume of 3.0 mL/kg and a respiratory rate of
60 breaths/min. Intraoperatively, the rats were placed on a heated plate and monitored by ECG, and the
rat myocardial I/R injury model involved ligation of the left anterior descending (LAD) coronary artery
for 30 min, as described previously [11,12]. MI was confirmed by the paleness of the apical region of
the left ventricle and S–T segment elevation on the ECG [11,12].

4.4. Echocardiographic Analysis

Echocardiography was performed on days 1 and 4 after the induction of MI, using Vevo2100
(FUJIFILM VisualSonics, Inc., Toronto, ON, Canada). The rats were anesthetized with alfaxalone
(50 mg/kg, IP) and xylazine (5 mg/kg, IP) and were monitored by ECG while in a supine position and
maintained at a body temperature of 37 ◦C.

Echocardiographic parameters were in accordance with the American Society of Echocardiography
guidelines [1]. The images of the LV parasternal short-axis (SAX) view at the papillary muscle level and
the apical four-chamber view were obtained to evaluate LV systolic and (especially) diastolic function
using B-mode, M-mode, Doppler color flow, pulsed wave Doppler, and tissue Doppler, as described
previously [11,12].

4.5. Myocardial Infarct Size

On day 1 after MI surgery, the rats (5 rats per group) were euthanized with isoflurane, and their
hearts were excised. After reperfusion with 0.9% normal saline, the hearts were perfused with 2 mL of
2 % Evans blue (Sigma, St. Louis, MO, USA) from the aorta. Then, the hearts were sectioned into 2 mm
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transverse slices and immersed in a 1% solution of 2,3,5-triphenyltetrazolium chloride (TTC, Sigma,
St. Louis, MO, USA) at 37◦C for 15 min in the dark. The infarct area, area at risk, and left ventricle
area were analyzed using ImageJ software (National Institutes of Health, Bethesda, MA, USA) and
expressed as a ratio of the area of the ischemic zone over the LV area (IA/LV).

4.6. Serum Chemistry of CK-MB, LDH, and AST

On day 1 after MI surgery, the rats were anesthetized, and the abdominal cavity was opened.
The blood was collected in serum separate tubes (SST tube, cat.367989, BD Inc., Franklin Lakes, NJ, USA),
centrifuged at 3000 rpm for 10 min, and the serum was separated for use in cardiac marker assays.
The serum creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and aspartate aminotransferase
(AST) were measured with a TBA-120FR automated chemistry analyzer (Toshiba, Tokyo, Japan).

4.7. Histopathological Analysis

On day 4 after MI surgery, rat hearts were harvested after removal of blood for histological
assessment (n = 3) and fixed in 10% neutral buffered formalin (BBC Biochemicals, Mount Vernon,
WA, USA). The formalin-fixed heart tissues prepared for analysis using a tissue processor (Thermo
Fisher Scientific, Inc., Runcorn, UK). The paraffin-embedded tissue blocks were cut at a 4 µm thickness,
mounted onto glass slides, and stained in hematoxylin (YD-Diagnostics, Kyungki, Korea) and eosin
(BBC Biochemicals, Mount Vernon, WA, USA) using an autostainer (Dako CoverStainer; Agilent,
Santa Clara, CA, USA). To evaluate fibrosis, tissue sections were stained using a Masson’s trichrome
staining kit according to the manufacturer’s instructions (ScyTek Laboratories, West Logan, UT, USA).
After staining, the parasternal short-axis area with papillary muscle (PM), and the medial and apex
areas of the left ventricle were scanned with a slide scanner (Pannoramic SCAN II; 3DHISTECH,
Budapest, Hungary) and captured using a slide viewer (Case Viewer; 3DHISTECH). In light microscope,
especially H&E slides, the distinction between mature lymphocytes and other three types of cells
(immature lymphocyte, mature/immature monocyte) was possible to score, and shown in Figure 3 and
Supplementary Table S2 by three independent pathologists. However, distinction among these three
types of cells (immature lymphocyte, mature/immature monocyte) are almost impossible under the
microscope with a H&E slide. Therefore, we collectively called these three type of cells as mononuclear
cells. Based on the previous explanation, the term “mixed cells” means the mixed state of lymphocytes
and monocytes as shown in Supplementary Table S2. ImageJ program (provided by the NIH) was used
to perform the morphometric analysis of fibrosis. In Masson’s trichrome-stained sections, the blue area
(collagen fiber) was measured in comparison with the total red area (left ventricle) and the results were
shown in Figure 3C.

4.8. mRNA Sequencing and Data Analysis

For gene expression profiling, total RNAs were obtained from the LV tissues including inter
ventricular septum of rat hearts from the four groups (normal group, MI group, MI + Curcumin
group, and MI + Sappanone A group) using Trizol reagent (Invitrogen Life Technologies, Grand Island,
NY, USA) on day 4 after MI surgery. The integrity of the total RNA was analyzed using an Agilent
Bioanalyzer. The RNA integrity values for all of the samples were larger than 7. Poly (A) mRNA isolation
from total RNA and fragmentation was performed using the Illumina TruSeq Stranded mRNA Sample
Prep Kit, according to the manufacturer’s instructions. The adaptor-ligated libraries were sequenced
using an Illumina NovaSeq 6000 (Bioneer, Daejeon, Korea). In each condition, the mRNA-sequencing
analysis was performed for two biological replicates obtained from independent rats (Supplementary
Table S3).

Adapter sequences (TruSeq universal and indexed adapters) were removed using Cutadapt
software (version 2.7; https://cutadapt.readthedocs.io/en/stable/), and the remaining read sequences
for each sample were aligned to the Rattus_norvegicus reference genome (Rnor_6.0) using TopHat2
software (version 2.1.1) with default parameters [36]. After the alignment, the numbers of reads
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mapped to the gene features (GTF file of Rnor_6.0.90) were counted using HTseq [37]. The read counts
for the samples in each condition were then normalized using the TMM (trimmed mean of M-values)
normalization function of the edgeR package [38].

4.9. Identification of Differentially Expressed Genes (DEGs)

The numbers of reads for the gene features were converted to log2-values after adding one (pseudo
count) to the read counts. To identify DEGs between four conditions, the previously reported statistical
hypothesis test was performed [39]. Briefly, for each gene, a T-statistic value was calculated using
Student’s t-test in each of the three comparisons (MI group versus normal group, MI + Curcumin group
versus MI group, or MI + Sappanone A group versus MI group). For each comparison, the empirical
distributions of the T-statistic value for the null hypothesis (i.e., the genes are not differentially
expressed) were estimated by performing all possible combinations of random permutations of
samples. Using the estimated empirical distributions, adjusted p values for Student’s t-test for each
gene were calculated. Finally, the DEGs were identified as those that had adjusted p values ≤ 0.05
and absolute log2-fold-changes ≥0.58 (1.5-fold). To identify cellular processes represented by the
DEGs, the enrichment analysis of Gene Ontology Biological Processes (GOBPs) was performed using
DAVID software (https://david.ncifcrf.gov/summary.jsp) [17], and the GOBPs with p values < 0.05 were
selected as the processes enriched by the DEGs. The network model was reconstructed for the selected
DEGs using Cytoscape software (version 3.3.0) [40]. The nodes in the network model were arranged
based on the locations and relationships of the corresponding genes in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway database [41].

4.10. RT-PCR

Total RNA was prepared from the LV tissues of rats with same experimental condition, after which
cDNAs were synthesized using a SuperScript™ IV First-Strand Synthesis System for RT-PCR according
to the manufacturer’s instructions (Invitrogen Life Technologies, Grand Island, NY, USA). The PCR
was conducted by subjecting the samples to the following conditions: initial denaturation at 95 ◦C for
5 min, followed by 22~27 cycles of amplification by denaturation at 95 ◦C for 30 s, annealing at 57~59 ◦C
for 30 s, extension at 72 ◦C for 30 s, and final extension at 72 ◦C for 5 min. The amplified PCR products
were then separated on 1.5% agarose gels and visualized by SYBR Safe staining (Invitrogen Life
Technologies, Grand Island, NY, USA). The primer information used was included in Supplementary
Table S4 and the representative bands are shown in Supplementary Figure S1. Hypoxanthine-guanine
phosphoribosyltransferase 1 (HPRT1) was used as a control gene for normalization, and the data were
derived from four independent experiments. The densitometric analysis was performed on RNA
expression patterns using ImageJ software and the relative value were displayed in Figure 5B.

4.11. Statistical Analysis

Statistical significance was determined using GraphPad Prism 8 (GraphPad Software Inc., San Diego,
CA, USA). All data are presented as mean ± standard error of the mean (SEM). For comparisons among
multiple groups of one variable (for example, with and without treatments), one-way analysis of variance
(ANOVA) with Tukey’s post hoc correction was used (Table 1, Figures 1D and 3). Also, for comparisons
among multiple groups of two variables (for example, MI and treatments), two-way ANOVA with
Tukey’s post hoc correction was used (Table 2, Figure 1E, Figure 2A–D, and Figure 5B). A p value <0.05
was considered statistically significant.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/18/6935/s1.
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Abbreviations

LAD left anterior descending
LV left ventricular
MI myocardial infarction
EF ejection fraction
FS fractional shortening
PWD pulse wave doppler
TDI tissue doppler imaging.
SV stroke volume
CO cardiac output
LVIDd left ventricular internal diameter at diastole
LVIDs left ventricular internal diameter at systole
IVSd interventricular septal thickness at diastole
IVSs interventricular septal thickness at systole
LVPWd left ventricular posterior wall thickness at diastole
LVPWs left ventricular posterior wall thickness at systole
DEG differentially expressed gene
GOBP gene ontology biological process
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