Discovery of Novel Hsp90 C-Terminal Inhibitors Using 3D-Pharmacophores Derived from Molecular Dynamics Simulations

Tihomir Tomašič^{1,*}, Martina Durcik¹, Bradley M. Keegan², Darja Gramec Skledar¹, Živa Zajec¹, Brian S. J. Blagg² and Sharon D. Bryant³

- ¹ University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7,1000 Ljubljana, Slovenia; martina.durcik@ffa.uni-lj.si (M.D.); darja.gramec-skledar@ffa.uni-lj.si (D.G.S.); ziva.zajec@ffa.uni-lj.si (Ž.Z.)
- ² Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN 46556, USA; bkeegan@nd.edu (B.M.K.); bblagg@nd.edu (B.S.J.B.)
- ³ Inte:Ligand Softwareentwicklungs- und Consulting GmbH, Mariahilferstrasse 74B, 1070 Vienna, Austria; bryant@inteligand.com
- * Correspondence: tihomir.tomasic@ffa.uni-lj.si; Tel.: +386-1-4769-556

Table S1. Structures and antiproliferative activities in SKBr3 cell line of Hsp90 CTD inhibitors **2** and **S1–S12** used as a training set for ligand-based (LB) pharmacophore model creation. Each ligand is shown aligned to the resulting LB model (exclusion volumes are not displayed).

S6

CC1=C2C(C=C(NC(C3=CC(C4=CC=CC(CI) =C4)=C(OC)C=C3)=O)C(O2)=O)=CC=C1OC 5CCN(C)CC5

0.13 [1]

Table S2. Cell viability of Hep G2 and MCF-7 cells in MTS assay after treatment with compounds **5–12**. Data are means ± SD of three independent experiments performed in triplicates.

Compound	Hep G2 % Viability	MCF-7 % Viability
5	86.8 ± 7.6	93.5 ± 4.3
6	67.0 ± 3.7	71.0 ± 9.5
7	100.2 ± 6.0	99.5 ± 5.8
8	67.2 ± 3.0	65.2 ± 20.8
9	86.2 ± 12.8	-0.53 ± 1.5
10	97.7 ± 7.5	116.5 ± 41.4
11	1.38 ± 0.1	31.4 ± 11.9
12	92.6 ± 4.3	93.8 ± 1.4

Figure S1. Dose-response curve for compound **11** in MTS assay in Hep G2 cell line, shown for an independent measurement in triplicate. The IC₅₀ value (mean \pm SD) is a result of three independent measurements.

Figure S2. Dose-response curve for compound **11** in MTS assay in MCF-7 cell line, shown for an independent measurement in triplicate. The IC₅₀ value (mean \pm SD) is a result of three independent measurements.

Figure S3. Dose-response curve for compound **9** in MTS assay in MCF-7 cell line, shown for an independent measurement in triplicate. The IC₅₀ value (mean \pm SD) is a result of three independent measurements.

Figure S4. Luciferase refolding activity of Hsp90 in PC3 MM2 cells after treatment with compounds **5–12**, C-terminal inhibitor* and geldanamycin (GDA) at 50 μM concentration. Data are means ± SD of three independent experiments performed in triplicates.

Figure S5. Dose-response curve for compound 11 in luciferase refolding assay on PC3 MM2 cell line, shown for an independent measurement in triplicate. The IC₅₀ value (mean \pm SD) is a result of three independent measurements.

References

- Moroni, E.; Zhao, H.; Blagg, B.S.J.; Colombo, G. Exploiting Conformational Dynamics in Drug Discovery: Design of C-Terminal Inhibitors of Hsp90 with Improved Activities. J. Chem. Inf. Mode. 2014, 54, 195–208, doi:10.1021/ci4005767.
- Garg, G.; Zhao, H.; Blagg, B.S.J. Design, Synthesis and Biological Evaluation of Alkylamino Biphenylamides as Hsp90 C-Terminal Inhibitors. *Bioorg. Med. Chem.* 2017, 25, 451–457, doi:10.1016/j.bmc.2016.11.030.
- 3. Davis, R.E.; Zhang, Z.; Blagg, B.S.J. A Scaffold Merging Approach to Hsp90 C-Terminal Inhibition: Synthesis and Evaluation of a Chimeric Library. *Med. Chem. Commun.* **2017**, *8*, 593–598, doi:10.1039/C6MD00377J.