

Figure S1. Purification of human FADD protein and TAT-FADD conjugates. (**A**) The SDS-PAGE gel of total lysate from vector (lane 2), IPTG induced pET-FADD (lane 3) transformed cells, cells from lane 3 subjected to sonication, loading of supernatant (sup.; lane 4) and pellet (lane 5), and purified FADD fraction (puri. FD, lane 5), molecular weight marker (lane 1). (**B**) Mass spectrometry analysis of purified FADD, the observed m/z of purified FADD protein at 2955.609 Da, enlarged in the inset box of representative spectrum. (**C**) The SDS-PAGE gel of IPTG induced lysate from pET-FADD transformed cells (lane 2), purified FADD (lane 3) and purified TAT-FADD (lane 4), molecular weight marker (lane 1).

Figure S2. TAT-FADD significantly reduces the viability of cancer and transformed cells. (**A**–**B**) HCT 116 cells were treated with TAT-FADD (TT-FD) as mentioned concentrations for given time points and, (**A**) Cells were stained with Annexin-PI staining kit, and analyzed by fluorescent microscoe, representative of 150 cells from 3 different fields; scale bar 5 μ m and (**B**) % apoptotic death by Tali[™] image based cytometer, control represents non-treated (NT) cells at 0 h. (**C**) MCF-7,

HEK293, RAW 264.7, HeLa and HePG2 cells were treated with 5 μ M of TAT-FADD for 3–12 h and analysis of cell viability. Control (black bar) represents non- treated (NT) cells. (D-E) HCT 116 cells were treated with 0.37 mg/mL iodoacetamide, 60 µg/mL SMCC, 200 µg/mL TAT peptide, 5 µM purified FADD protein and 5 µM TAT-FADD for 3–12 h followed by analysis of (D) bright field images of cells, post treatments, representative of 150 cells from 3 independent fields, scale bar 2 µm and (E) % LDH release in culture medium, post treatment. The 0h represents untreated cells taken as controls. (F-H) MCF-7 cells were transfected with GFP-Caveolin1 for 24 h followed by preincubation with M β CD (+M β CD; right panel) for 4 h, further cells were left untreated (0 h) or treated with 5 µM of TAT-FADD for 3-12 h, (F) the internalized TAT-FADD was immunostained with anti-His antibody (His tagged FADD) followed by counterstaining with DAPI and analyzed by confocal microscopy, representative of 25 cells from 3 different fields; scale bar 10 µm and (G) the % localization of TAT-FADD with GFP-Caveolin1 from 'C' was calculated with Image J software, (H) analysis of cell viability in the absence (-) and presence (+) of M β CD. In **B**, **C** & **E** significance compared between non-treated (NT and 0 h) and treated cells. In G & H significance compared between unprimed (-MBCD; white bars) and primed (+MBCD; black bars) cells treated with TAT-FADD, h, hours; ns, non-significant. Mean \pm SD; * $p \le 0.05$, ** $p \le 0.01$ and *** $p \le 0.001$.

Figure S3. TAT-FADD induced apoptosis signaling. (A) HEK 293 cells were treated with 5 μ M of TAT-FADD for 3–12 h, the TAT-FADD was immunoprecipated (IP) using anti-His antibody followed by analysis of DISC assembly proteins procespase-8 and cFLIPL, molecular weight marker

left to each blot. (B) Representative flow quadrants of Figure 3B. Treatment of 5 μ M of TAT-FADD for 3–12 h and expression of cFLIPL in (C) MCF-7 and (D) HeLa cells. (E-G) HCT 116 cells were left untreated and pre-treated with zVAD (+zVAD), followed by treatment of 5 μ M TAT-FADD for 3-12 h, (E) Cells were stained with Annexin-PI staining kit, and analyzed by fluorescent microscoe, representative of 150 cells from 3 different fields; scale bar 5 µm and (F) % cell viability and, (G) apoptotic death by Tali™ image based cytometer, control represents non-treated (NT) cells at 0h. (H-L) HCT 116 cells were transfected with pcDNA3-cFLIP_L for 48h (lane 2 & 5), primed with TNF α (10 ng/mL) for 12 h (lane 3 & 6) followed by treatment with 5 µM of TAT-FADD for 6 h (lane 4, 5 & 6), (H) Cells were stained with Annexin-PI staining kit, and analyzed by fluorescent microscoe, representative of 150 cells from 3 different fields; scale bar 5 µm and (I) % cell viability, (J) % change in MMP, (K) measurement of caspase-8 activity and (L) measurement of caspase-3 activity. Control represents a vector transfected and non $TNF\alpha$ primed cells. In F, G significance compared between non-treated (for zVAD and TAT-FADD, white bars) and TAT-FADD treated cells. In I-L significance compared between non-treated (white bars) and TAT-FADD treated cells (black bars), control in white bar represents a vector transfected and non TNF α primed cells non-treated (white bars) and TAT-FADD treated cells (black bars), control in white bar represents a vector transfected and non TNF α primed cells. h, hours; PI, propidium iodide; MMP, mitochondrial membrane potential. Mean \pm SD; ** $p \leq 0.01$ and *** $p \leq 0.001$.

Figure S4. TAT-FADD comparision with conventional apoptosis inducers. (**A**–**B**) HCT 116 cells were treated with CD 95L (200 ng/mL), TNF- α (50 ng/mL), etoposide (50 μ M), HA14-1 (5 μ M), protein translational inhibitor cycloheximide (CHX, 5 μ g/mL) and TAT-FADD (5 μ M) alone for the mentioned time points, (**A**) % cell viability and (**B**) Cells were stained with Annexin-PI staining kit, and analyzed by fluorescent microscoe, representative of 150 cells from 3 different fields; scale bar 5 μ m. In **A** significance compared between non-treated (white bars) and TAT-FADD treated cells (black bars). h, hours. Mean \pm SD; * $p \le 0.05$; ** $p \le 0.01$ and *** $p \le 0.001$.

Figure S5. TAT-FADD synergestically enhances death ligands apoptotic competency. (**A**–**B**) HCT116 cells were treated alone with TAT-FADD (5 μ M), CD 95L (200 ng/mL) and in combination for 3–12 h, (**A**) Cells were stained with Annexin-PI staining kit, and analyzed by fluorescent microscoe, representative of 150 cells from 3 different fields; scale bar 5 μ m and (**B**) % apoptotic death by TaliTM image based cytometer. (**C**–**D**) HCT116 cells were treated alone with TAT-FADD (5 μ M), TNF- α (50 ng/mL) and in combination for 3–12 h, (**C**) Cells were stained with Annexin-PI staining kit, and analyzed by fluorescent microscoe, representative of 150 cells from 3–12 h, (**C**) Cells were stained with Annexin-PI staining kit, and analyzed by fluorescent microscoe, representative of 150 cells from 3 different fields; scale bar 5 μ m and (**D**) % apoptotic death by TaliTM image based cytometer. Control represents untreated cells (0 h). In **B**, **D** significance compared between non-treated at 0 h and treated cells. Mean \pm SD; ** $p \le 0.01$ and *** $p \le 0.001$.

Figure S6. TAT-FADD suppresses NF- κ B signaling downstream genes in cancer cells. Cells were treated with 5 μ M of TAT-FADD for 3–12 h and mRNA expression of *Bcl2* and *RIP1* (**A**) in HCT 116 cells and (**B**) in MCF-7 cells. The 0 h represents untreated cells taken as controls. (**C**) HCT 116 cells were transfected with pcDNA3-cFLIP_L for 48 h (lane 2 & 3), primed with TNF α (10 ng/mL; lane 5 & 6) for 12 h, followed by treatment with 5 μ M of TAT-FADD for 6 h (lane 2, 4 & 6) and measurement of NF- κ B luciferase activity. In **A** & **B** significance compared between non-treated (represents as 0 h) and TAT-FADD treated cells. In **C** significance compared between non-treated (white bars) and TAT-FADD treated cells (black bars), control in white bar represents a vector transfected and non TNF α primed cells. h, hours. Mean \pm SD; * $p \leq 0.05$, ** $p \leq 0.01$ and *** $p \leq 0.001$.

Figure S7. TAT-FADD suppresses NLRP3 inflammasome primed activation. HCT116 cells were primed with LPS (100 ng/mL, 12 h) and ATP (5 mM, 2 h) followed by treatment with 5 μ M of TAT-FADD for 3–12 h and mRNA expression of *NLRP3* and *procaspase-1*. The white bar represents unprimed and non-treated cells for 12 h and taken as controls. Representative of 3 independent

experiments in triplicates. Significance is compared between non-treated (white bars) and LPS with ATP primed cells (gray bars); and between LPS with ATP primed cells and TAT-FADD treated cells (black & dark gray bars respectively). h, hours. Mean \pm SD; ** $p \le 0.01$ and *** $p \le 0.001$.

ANTIBODIES	COMPANY	CATLOUGE
Rabbit TRAF2 (C192)	Cell Signaling Technology	4724
Rabbit NF-кВ p65 (D14E12)	Cell Signaling Technology	8242
Rabbit phospho-NF-κB p65 (Ser536) (93H1)	Cell Signaling Technology	3033
Mouse IκBa (L35A5)	Cell Signaling Technology	4814
Rabbit Phospho-IkBa (Ser32) (14D4)	Cell Signaling Technology	2859
Rabbit IKKβ (D30C6)	Cell Signaling Technology	8943
Mouse p53 (1C12)	Cell Signaling Technology	2524
Rabbit caspase-9	Cell Signaling Technology	9502
Rabbit caspase-7	Cell Signaling Technology	9492
Rabbit cytochrome c	Cell Signaling Technology	4272
Rabbit PARP	Cell Signaling Technology	9542
Rabbit RIP (D94C12)	Cell Signaling Technology	3493
Rabbit caspase-1	Cell Signaling Technology	2225
Rabbit IL-1β (D3U3E)	Cell Signaling Technology	12703
Rabbit NLRP3 (D2P5E)	Cell Signaling Technology	13158
Rabbit β-Actin	Cell Signaling Technology	4967
Anti-rabbit IgG, HRP-linked	Cell Signaling Technology	7074
Rabbit FLIP	Novus Biologicals	NBP1-45479
Mouse Bcl-2 (Bcl-2-100)	Thermofisher Scientific	13-8800
Mouse Anti-Human Caspase-8	BD Pharmigen	551242
Mouse Anti-Human c-IAP-2	BD Pharmigen	552782
Ubiquitin monoclonal antibody (P4D1)	Enzo Life Sciences, Inc.	BML-PW093

Supplementary Table S1. List of antibodies used in the study.

Supplementary Table S2. List of real time PCR primers used in the study.

GENE	PRIMER SEQUENCE
$cFLIP_L$	Fwd: 5' TGGCCTCCCTCAAGTTCCT 3'
	Rev: 5' TGGAATAACATCAAGGCATCCTT 3'
cIAP2	Fwd: 5' TCCAAGGTGTGAGTACTTGATAAGAATT 3'
	Rev: 5' CTGATGTGGATAGCAGCTGTTCA 3'
Bcl-2	Fwd: 5' TGCGGCCTCTGTTTGATTTC 3'
	Rev: 5' GGGCCAAACTGAGCAGAGTCT 3'
RIP1	Fwd: 5' AATGGCGGCACCCTCTACTA 3'
	Rev: 5' TCCGACTTCTCTGTGGGGCTTT 3'
NLRP3	Fwd: 5' TGCCCCGACCCAAACC 3'
	Rev: 5' GAAGCCGTCCATGAGGAAGA 3'
Procaspase-1	Fwd: 5' ATACCAAGAACTGCCCAAGTTTG 3'
	Rev: 5' GGCAGGCCTGGATGATGA 3'
Pro IL-1β	Fwd: 5' GACAACGAGGCGTACGTTCA 3'
	Rev: 5' CGATTTCTGTTGACTATCCCGTAA 3'
18S rRNA	Fwd: 5' AGAAACGGCTACCACATCCAA 3'
	Rev: 5' TGTCACTACCTCCCCGTGTCA 3'