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Abstract: With the increased prevalence of obesity and related co-morbidities, such as type 2
diabetes (T2D), worldwide, improvements in pharmacological treatments are necessary. The brain-
and peripheral-cannabinoid receptor 1 (CB1R) antagonist rimonabant (RIM) has been shown to
induce weight loss and improve glucose homeostasis. We have previously demonstrated that RIM
promotes adipose tissue beiging and decreased adipocyte cell size, even during maintenance on a
high-fat diet. Given the adverse side-effects of brain-penetrance with RIM, in this study we aimed
to determine the site of action for a non-brain-penetrating CB1R antagonist AM6545. By using
in vitro assays, we demonstrated the direct effects of this non-brain-penetrating CB1R antagonist on
cultured adipocytes. Specifically, we showed, for the first time, that AM6545 significantly increases
markers of adipose tissue beiging, mitochondrial biogenesis, and lipolysis in 3T3-L1 adipocytes.
In addition, the oxygen consumption rate (OCR), consisting of baseline respiratory rate, proton leak,
maximal respiratory capacity, and ATP synthase activity, was greater for cells exposed to AM6545,
demonstrating greater mitochondrial uncoupling. Using a lipolysis inhibitor during real-time OCR
measurements, we determined that the impact of CB1R antagonism on adipocytes is driven by
increased lipolysis. Thus, our data suggest the direct role of CB1R antagonism on adipocytes does
not require brain penetrance, supporting the importance of focus on peripheral CB1R antagonism
pharmacology for reducing the incidence of obesity and T2D.
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1. Introduction

The prevalence of obesity is growing worldwide and is associated with several metabolic diseases
including type 2 diabetes (T2D) and cardiovascular disease [1–3]. White adipose tissue (WAT) is
the main organ in control of energy homeostasis in mammals, which facilitates storage of excess
energy as triglycerides. Brown adipose tissue (BAT), on the other hand, is metabolically active
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and dissipates energy as heat which is used to maintain body temperature. In addition to classic
BAT, the development of brown-like, or beige, adipocytes from white adipocytes leads to improved
metabolic homeostasis within WAT via dissipation of extra energy as heat [4]. The beiging of WAT
can be induced under various treatments such as cold exposure or β-adrenergic stimulation [5,6].
Obesity is now classified as a disease due to the fact that it has been associated and correlated with
hypertrophy, stress, and inflammation, conditions which, at their core, have the dysfunction of WAT in
common [7]. Specifically, within “unhealthy” WAT there is increased release of inflammatory markers,
mitochondrial dysfunction, and increased oxidative stress due to lack of adequate vascular perfusion
of WAT in obese patients [8,9]. Recently, the ability to induce WAT beiging has been highly regarded as
a method to improve vascularization of adipose tissue through angiogenesis as well as improvements
in mitochondrial function as potential modalities to reduce obesity-related diseases and mortality.

The endocannabinoid system (ECS) plays a critical role in the control of energy homeostasis.
The ECS increases uptake and storage of energy by acting through both central and peripheral
mechanisms [10]. Chronic treatment with the CB1R antagonist rimonabant (RIM) leads to weight loss
and increased insulin sensitivity in multiple models of obesity, including rodents [11,12], canines [13,14],
and humans [15]. Weight loss was attributed to decreased fat mass as a result of a reduction in adipocyte
cell size in dogs, despite maintenance on a high-fat diet [16]. In addition, it was shown in rodents
that RIM reduced the lipid content of BAT and increased activation of thermogenesis and energy
expenditure [17]. Recently, we reported the mechanism by which CB1R antagonism promotes WAT
beiging [18]. β3-adrenergic (β3) and natriuretic peptide (NP) receptors in WAT depots were upregulated
following treatment with RIM and coincided with increased lipolysis-induced beiging [19,20]. NP and
NP receptors (NPR) have been shown to act as powerful lipolytic agents in human WAT in situ and
in isolated fat cells in vitro [20–22]. Consistent with our canine data, the reduction of WAT mass in
rodents by RIM resulted from enhanced lipolysis and increased energy expenditure due to in part to
NP activation.

Since RIM crosses the blood–brain barrier, the drug exerts both central and peripheral pathways
to facilitate its functions. Its central action has been linked to adverse effects which have limited the
drug’s clinical application [23]. However, the peripheral CB1R antagonist, AM6545, has limited brain
penetrance and has been shown to decrease food intake and reduce body weight [24]. In addition,
peripheral CB1R blockade activates BAT and diminishes dyslipidemia and obesity [25]. Given the
promise of peripheral CB1 antagonist AM6545, the aim of this study is to determine the cellular and
molecular mechanisms by which peripheral CB1R antagonism acts on beiging, lipolysis, mitochondrial
biogenesis, and oxygen consumption rate (OCR) when the central and sympathetic nervous system
effects could be avoided.

2. Results

2.1. Treatment with CB1R Antagonists Does Not Affect Cell Viability

To assess any cytotoxic effects of AM6545, RIM, and isoproterenol (ISO), mature 3T3-L1 adipocytes
were cultured with each drug at variable doses (0.1, 0.5, and 1 mM; Figure 1a). AM6545, RIM, and ISO
did not cause cytotoxicity at 4 and 48 h at any of the concentrations tested. Based on a previous study
from Watanabe et al. [26], 0.1–1 mM RIM increased adiponectin secretion and gene expression.

2.2. Treatment with CB1R Antagonists Decreased Triglyceride Content

Accumulation of triglycerides in AM6546-treated cells was similar to RIM- and ISO-treated cells
and significantly blunted compared to vehicle (Figure 1b; p < 0.001).
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Figure 1. (a) Cell viability in 3T3-L1-differentiated cells were treated with AM6545, rimonabant (RIM), 
and isoproterenol (ISO) at 4 and 48 h. (b) Cell triglyceride (TG) content after 4 and 48 h of treatment. 
Data on graphs are presented as mean ± Standard Error of Mean SEM of 4 independent rounds of the 
cells; ** p < 0.01 vs. control *** p < 0.001 vs. control. 
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[18], AM6545 significantly increased many of the genes involved in beiging of adipocytes including 
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1α) (p < 0.05 and p < 0.01), PR 
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receptor superfamily member 9 (Cd137) (p = 0.15 and p < 0.01), T-box transcription factor (Tbx1) (p < 0.05 
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Figure 1. (a) Cell viability in 3T3-L1-differentiated cells were treated with AM6545, rimonabant (RIM),
and isoproterenol (ISO) at 4 and 48 h. (b) Cell triglyceride (TG) content after 4 and 48 h of treatment.
Data on graphs are presented as mean ± Standard Error of Mean SEM of 4 independent rounds of the
cells; ** p < 0.01 vs. control *** p < 0.001 vs. control.

2.3. The Peripheral CB1R Antagonist-Induced Genes Involved in Beiging in 3T3-L1 Mature Adipocytes

To examine the possible beiging effect of treatment with the peripheral CB1R antagonist, expression
of key beiging markers was examined (Figure 2). The 3T3-L1 adipocytes were treated with 0.5 mM of
AM6545 or RIM and 10 mM ISO. Consistent with previous findings in the adipose tissue [18], AM6545
significantly increased many of the genes involved in beiging of adipocytes including Peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (Pgc1α) (p < 0.05 and p < 0.01), PR domain containing
16 (Prdm16) (p < 0.01 and p < 0.05), uncoupling protein 1 (Ucp1) (p = 0.096 and p < 0.05), cell death-inducing
DNA fragmentation factor alpha-like effector A(Cieda) (p < 0.01 and p < 0.05), elongation of very long chain
fatty acids protein 3 (Elovl3) (p < 0.016 and p < 0.05), tumor necrosis factor receptor superfamily member
9 (Cd137) (p = 0.15 and p < 0.01), T-box transcription factor (Tbx1) (p < 0.05 and p < 0.05), transmembrane
protein 26 (Tmem26) (p < 0.05 and p < 0.005), cbp/p300-interacting transactivator 1 (Cited1) (p < 0.05 and
p < 0.05), sarco/endoplasmic reticulum Ca2+-ATPase 2b (Serca2b) (p < 0.05 and p < 0.05), ryanodine receptor
2 (Ryr2) (p < 0.05 and p < 0.01) at 4 and 48 h, respectively, compared to the vehicle.

2.4. Lipolysis Increased by the Peripheral CB1R Antagonist

It has been shown that RIM increases lipolysis in primary adipocytes from canines [18] and
rats [27]. We hypothesized that the peripheral CB1R antagonist, AM6545, would enhance adipose
tissue lipolysis, similar to RIM, and, therefore, facilitate fatty acid utilization as a mechanism associated
with beiging. To test this, we determined glycerol and free fatty acid (FFA) release into the media as an
indicator of lipolysis following treatment of adipocytes. Glycerol and FFA release following AM6545
treatment was higher than release in adipocytes treated with vehicle (p < 0.05 and p < 0.05, at 4 and
48 h, respectively) and comparable to treatment with RIM and ISO (Figure 3a). Key genes involved in
lipolysis such as hormone sensitive lipase (Hsl); p < 0.05 and p = 0.061), adipose triglyceride lipase (Atgl);
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p < 0.05 and p = 0.1), and β3-adrenergic receptor (β3R; p < 0.05 and p = 0.08) increased significantly after
4 and 48 h of treatment, respectively, in 3T3-L1 cells treated with AM6545. These increases are similar
to what was seen after treatment with RIM (Figure 3b).
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adipocytes. 3T3-L1-differentiated cells were treated with AM6545, rimonabant (RIM), and isoproterenol
(ISO) for 4 and 48 h. Gene expression of beiging markers (peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (Pgc1a), PR domain containing 16 (Prdm16), uncoupling protein 1 (Ucp1),
cell death-inducing DFFA-like effector A (Cidea), elongation of very long chain fatty acids protein 3 (Elovl3),
tumor necrosis factor receptor superfamily member 9 (Cd137), T-box transcription factor (Tbx1), transmembrane
protein 26 (Tmem26), cbp/p300-interating transactivator 1 (Cited1), sarco/endoplasmic reticulum Ca2+-ATPase
2b (Serca2b), and ryanodine receptor 2 (Ryr2)) was evaluated by RT-PCR. Data on graphs are presented
as mean ± SEM of 4 independent rounds of the cells; * p < 0.05 vs. control ** p < 0.01 vs. control
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Figure 3. Peripheral cannabinoid receptor 1 (CB1R) antagonist increased lipolysis. 3T3-L1 adipocytes
were treated with AM6545, rimonabant (RIM), and isoproterenol (ISO) for 4 and 48 h. (a) AM6545
increased glycerol and free fatty acid (FFA) releases into the media. (b) AM6545 increased genes involved
in lipolysis such as hormone-sensitive lipase (Hsl), adipose triglyceride lipase (Atgl), and beta-3-adrenergic
receptor (β3R). Data on graphs are presented as mean ± SEM of 4 independent rounds of the cells;
* p < 0.05 vs. control ** p < 0.01 vs. control *** p < 0.001 vs. control.
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2.5. The Peripheral CB1 Antagonist Increased mtDNA and Mitochondrial Biogenesis Genes

mtDNA copy numbers were measured in 3T3-L1 adipocytes treated with AM6545, RIM, and ISO,
and compared to the vehicle. The mtDNA/nDNA ratio of AM6545, RIM, and ISO increased significantly
by 2.0-, 1.8-, and 2.2-fold (p < 0.01, p < 0.01, and p < 0.001, respectively) after 4 h of treatment. AM6545,
RIM, and ISO mtDNA/nDNA ratio increased by 2.5- and 3.5-fold (p < 0.01, p < 0.01, and p < 0.001,
respectively) after 48 h of treatment (Figure 4a). In addition, we measured genes involved in
mitochondrial biogenesis such as transcription factor A, mitochondrial (Tfam), and nuclear respiratory
factor 1 (Nrf1) after 4 and 48 h of treatment with AM6545, RIM, and ISO in 3T3-L1 adipocytes. After 4 h
of treatment, Tfam was increased by 5.2-fold in AM6545 (p < 0.001), by 3.4-fold in RIM (p < 0 < 0.001),
and by 3.1-fold ISO (p < 0.001). AM6545, RIM, and ISO Tfam gene expression increased by 6.9-, 8.0-,
and 6.8-fold (p < 0.01, p < 0.05, and p < 0.01, respectively) after 48 h of treatment (Figure 4b). After 4h,
AM6545, RIM, and ISO increased Nrf1 gene expression by 4.9-, 4.0-, and 3.9-fold (p < 0.01, p < 0.01,
and p < 0.01, respectively). AM6545, RIM, and ISO increased Nrf1 expression at 48 h by greater than
8-fold (p < 0.01, p < 0.001, and p < 0.01, respectively) (Figure 4c).
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Figure 4. Peripheral cannabinoid receptor 1 (CB1R) antagonist increased mitochondrial DNR (mtDNA)
and mitochondrial biogenesis genes. 3T3-L1 adipocytes were treated with AM6545, RIM, and ISO for 4
and 48 h. (a) AM6545, rimonabant (RIM), and isoproterenol (ISO) increased mtDNA. (b,c) Markers
of mitochondrial biogenesis, transcription factor A, mitochondrial (Tfam), and nuclear respiratory factor
1 (Nrf1), were also increased following treatment with AM6545, RIM, and ISO. Data on graphs are
presented as mean ± SEM of 4 independent rounds of the cells; * p < 0.05 vs. control ** p < 0.01 vs.
control *** p < 0.001 vs. control.

2.6. The Peripheral CB1R Antagonist Increased Mitochondrial Respiration and Proton Leak in 3T3-L1 Adipocytes

Given the increase in mitochondrial biogenesis following treatment with the CB1R antagonists,
we next explored the effects of CB1R antagonism on mitochondrial respiration. The OCR was measured
in mature 3T3-L1 adipocytes. The OCR curves at 4 and 48 h are presented in Figure 5A,C. Cells
treated with AM6545 at 4 and 48 h had higher oxygen consumption than the vehicle group. Similarly,
OCR increased after 4 and 48 h culture in cells treated with RIM and ISO.

As shown in Figure 5B, after 4 h of treatment with AM6545, basal respiration (p < 0.01), maximal
respiration (p < 0.05), proton leak (p < 0.05), and ATP synthesis (p < 0.05) increased about 1.7-fold
compared to the vehicle. At 48 h (Figure 5D), basal mitochondrial respiration of AM6545-treated
adipocytes increased by 1.3-fold (p = 0.06). Proton leak increased 1.3-fold (p < 0.05) and ATP production
increased by 1.4-fold (p < 0.05) compared to the control. Maximal respiration did not change significantly.
Similar results at both time points were observed with RIM. ISO showed higher OCR compared to the
vehicle and the CB1R antagonists at 4 and 48 h.
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Figure 5. Peripheral cannabinoid receptor 1 (CB1R) antagonist increased oxygen consumption rate
(OCR). 3T3-L1 adipocytes were treated with AM6545, rimonabant (RIM), and isoproterenol (ISO)
at 4 and 48 h. OCR was measured in basal conditions or in response to sequential treatment with
2 oligomycin, 0.75 FFCP (respiratory chain uncoupler), and 1 µM rotenone/antimycin A (inhibitor of
respiratory chain complex I and complex III) using the Seahorse XF-24 analyzer. (A) Mitochondrial
respiration curves at 4 h after treatment. (B) Parameters calculated from the tracing at 4 h after treatment.
(C) Mitochondrial respiration curves 48 h after treatment. (D) Parameters calculated from the OCR at
48 h after treatment. Data on graphs are presented as the mean ± standard error of mean (SEM) of
4 independent rounds of the cells; * p < 0.05 vs. control, ** p < 0.01 vs. control.

2.7. CB1R Antagonism-Induced Improvements in Mitochondrial Function Rely on Lipolysis, as Shown During
Real-Time OCR

We next evaluated the real-time OCR effects of the CB1R antagonists on 3T3-L1 adipocytes.
Unexpectedly, during the first 45 min of treatment with AM6545 and RIM, OCR decreased compared
to both ISO and the vehicle (Figure 6a). The OCR of the CB1R-treated cells then increased and was
similar to ISO treatment for the remainder of the analysis. We hypothesized that the initial drop in
OCR was due to a change in substrate utilization of the cells followed by a subsequent use of fatty
acids due to increased lipolysis. To test this, we used an ATGL inhibitor, Atglinstatin, to evaluate the
association between the temporary decrease in OCR and lipolysis. ATGL inhibition prevented AM6545-
and RIM-induced OCR drops (Figure 6b), suggesting the immediate effects of CB1R antagonists on
inducing lipolysis.

To evaluate the role of lipolysis on CB1R antagonist-induced changes to OCR, we treated 3T3-L1
adipocytes with AM6545 and RIM with and without Atglinstatin for 4 and 48 h (Figure 7). Consistent
with previous results, the OCR of AM6545 treatment without Atglinstatin increased significantly
compared to the vehicle. Treatment with Atglinstatin decreased the OCR of the cells treated with both
AM6545 and RIM after 4 and 48 h in culture. Basal respiration and ATP production were significantly
decreased at 4 h when cells were prevented from undergoing lipolysis during treatment with AM6545
(p < 0.01 and p < 0.05, respectively; Figure 7B) compared to AM6545 treatment alone. Similar results
were found at 4 and 48 h (Figure 7D) for maximal respiration (p < 0.01 and p < 0.05, respectively) and
proton leak (p < 0.05, for both time points) when cells were treated with AM6545 and Atglinstatin
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compared to AM6545 alone. Similar results were observed with RIM and Atglinstatin compared to
RIM alone at 4 h.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 16 

 

2.7. CB1R Antagonism-Induced Improvements in Mitochondrial Function Rely on Lipolysis, as Shown 
During Real-Time OCR 

We next evaluated the real-time OCR effects of the CB1R antagonists on 3T3-L1 adipocytes. 
Unexpectedly, during the first 45 min of treatment with AM6545 and RIM, OCR decreased compared 
to both ISO and the vehicle (Figure 6a). The OCR of the CB1R-treated cells then increased and was 
similar to ISO treatment for the remainder of the analysis. We hypothesized that the initial drop in 
OCR was due to a change in substrate utilization of the cells followed by a subsequent use of fatty 
acids due to increased lipolysis. To test this, we used an ATGL inhibitor, Atglinstatin, to evaluate the 
association between the temporary decrease in OCR and lipolysis. ATGL inhibition prevented 
AM6545- and RIM-induced OCR drops (Figure 6b), suggesting the immediate effects of CB1R 
antagonists on inducing lipolysis. 

 
Figure 6. Real-time oxygen consumption rate (OCR) and effect of lipolysis. (a) Time course after 
differentiated 3T3-L1 treated with AM6545, rimonabant (RIM), isoproterenol (ISO), and vehicle. (b) 
Time course of treatments including the use of Atglinstatin with AM6545 and RIM. Data on graphs 
are presented as mean ± SEM of 4 independent rounds of the cells. 

To evaluate the role of lipolysis on CB1R antagonist-induced changes to OCR, we treated 3T3-
L1 adipocytes with AM6545 and RIM with and without Atglinstatin for 4 and 48 h (Figure 7). 
Consistent with previous results, the OCR of AM6545 treatment without Atglinstatin increased 
significantly compared to the vehicle. Treatment with Atglinstatin decreased the OCR of the cells 
treated with both AM6545 and RIM after 4 and 48 h in culture. Basal respiration and ATP production 
were significantly decreased at 4 h when cells were prevented from undergoing lipolysis during 
treatment with AM6545 (p < 0.01 and p < 0.05, respectively; Figure 7b) compared to AM6545 treatment 
alone. Similar results were found at 4 and 48 h (Figure 7d) for maximal respiration (p < 0.01 and p < 
0.05, respectively) and proton leak (p < 0.05, for both time points) when cells were treated with 
AM6545 and Atglinstatin compared to AM6545 alone. Similar results were observed with RIM and 
Atglinstatin compared to RIM alone at 4 h. 

Figure 6. Real-time oxygen consumption rate (OCR) and effect of lipolysis. (a) Time course after
differentiated 3T3-L1 treated with AM6545, rimonabant (RIM), isoproterenol (ISO), and vehicle. (b) Time
course of treatments including the use of Atglinstatin with AM6545 and RIM. Data on graphs are
presented as mean ± SEM of 4 independent rounds of the cells.
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Figure 7. Peripheral cannabinoid receptor 1 (CB1R) antagonist increased oxygen consumption rate
(OCR) inhibited by lipolysis blocker. 3T3-L1 adipocytes were treated with AM6545 and rimonabant
(RIM) with and without Atglinstatin, and isoproterenol (ISO) at 4 and 48 h. OCR was measured in basal
conditions or in response to sequential treatment with 2 µM oligomycin, 0.75 µM FFCP (respiratory
chain uncoupler), and 1 µM rotenone/antimycin A (inhibitor of respiratory chain complex I and complex
III) using the Seahorse XF-24 analyzer. (A) Mitochondrial respiration tracing using Seahorse at 4 h
after treatment. (B) Parameters calculated from the tracing at 4 h after treatment. (C) Mitochondrial
respiration tracing 48 h after treatment. (D) Parameters calculated from the tracing at 48 h after
treatment. Data on graphs are presented as the mean ± standard deviation (SD) of 4 independent
rounds of the cells; * p < 0.05 vs. control, ** p < 0.01 vs. control.
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3. Discussion

Peripheral CB1R antagonists are gaining attention for their therapeutic use in obesity and related
diseases. The peripheral CB1R antagonist AM6545 has been shown to have limited brain penetrance
and, yet, is still efficacious in reducing body weight and improving dyslipidemia in insulin resistant
mice [28–30]. Our results are consistent with these findings. In addition, we provide a mechanism by
which this peripheral CB1R antagonist increased markers of beiging and OCR, via upregulation of
lipolysis. Importantly, the beneficial effects of the direct application of peripheral CB1R antagonist
on adipocytes are similar to those seen with brain-penetrating CB1R antagonists, suggesting that the
central effects of CB1R antagonist could be avoided while still delivering metabolic benefits.

Recently, we demonstrated that RIM promotes beiging of subcutaneous and visceral fat depots in
fat-fed dogs [18]. Our current findings suggest that AM6545 promotes upregulation of beiging markers
and improves mitochondrial function in 3T3-L1 adipocytes similar to what we observed following
in vivo administration of RIM. In the current study, key beiging genes such as Pgc1α, Prdm16, Cidea,
Elovl3, Cd137, Tmem26, Tbx1, and Cited1 were increased following treatment with AM6545 and RIM,
with larger increases in Ucp1 seen with AM6545 than were seen with in vivo or in vitro treatment
with RIM, suggesting that mitochondrial uncoupling may be greater following treatment with the
non-brain-penetrating antagonist.

Serca2b and Ryr2 are important genes in futile calcium cycling in the mitochondria and can
increase thermogenesis independent of Ucp1 [31]. We have previously shown that these genes are
upregulated following treatment with RIM in fat-fed dogs, with significant but minimal increases in
Ucp1 [18]. In our current study, AM6545 treatment increased expression of both Serca2b and Ryr2
at both 4 and 48 h of treatment. RIM had similar, if not greater, increases in expression at both time
points. While some UCP1-independent pathways are only active when Ucp1 is downregulated, no such
dynamic has been shown for futile calcium cycling [32]. There are, in fact, a number of examples of
alternative thermogenesis pathways that do not require the inactivation of UCP1 [33,34]. Given our
previous data, it stands to reason that both futile calcium cycling and UCP1-induced uncoupling can
both contribute to thermogenesis and beiging simultaneously, either in the same cells or in different
cells within the same population. This latter option seems more likely, given the heterogeneity of
adipose tissue [31,35].

Once beiging machinery increases, the thermogenic action of mitochondria requires increased fuel
such as FFA [36,37]. To supply the fuel, lipolysis is stimulated within the adipocytes [19]. Specifically,
AM6545 increases lipolysis, demonstrated through the release of glycerol and FFA into the culture
media after 4 and 48 h of cell culture. Similar results were observed with RIM and the positive
control, ISO. AM6545 increased expression of Hsl, Atgl, and β3R and decreased TG storage, further
demonstrating its effect on lipolysis.

Increased lipolysis can be stimulated by increases in NPR and β3R [18]. In addition, β3R has a
critical role in thermogenesis. β3R stimulation by pharmacological agonists, such as CL316,243 and
ISO, induces higher thermogenic capacity in WAT [38]. Our data suggest that β3R is upregulated
by AM6545. Taken together with the induction of beiging machinery, AM6545 appears to increase
thermogenic capacity of WAT.

β3R stimulation also increases Pgc1α expression [39] and leads to increases in UCP1 via the
activation of several nuclear and non-nuclear receptor factors [40]. PGC1α plays a number of important
roles in regulating metabolism, including the regulation of mitochondrial oxidative phosphorylation
and muscle fiber-type switching [41]. Its major role in mitochondrial biogenesis [42] and thermogenesis
has made eα a target for anti-obesity therapy. Our data suggest that AM6545, similar to RIM and
the β3 agonist ISO, increases Pgc1α expression via β3R activation, leading to increased mitochondrial
biogenesis, similar to what has been previously shown in other mouse cell lines following catecholamine
activation [43]. Consistent with these results we showed that mtDNA and genes related to mitochondrial
biogenesis, such as Tfam and Nrf1, were significantly upregulated. The increased mitochondrial
biogenesis was corroborated by increases in oxygen consumption and proton leak of adipocytes treated



Int. J. Mol. Sci. 2020, 21, 6639 9 of 15

with AM6545. Importantly, the increased mitochondria within the adipocytes may also contribute to
increased insulin sensitivity [44,45].

Treatment with the peripheral CB1R antagonist significantly increased OCR by increasing basal
and maximal respiration as well as proton leak and ATP production at 4 and 48 h. Unexpectedly,
AM6545 and RIM showed a transient decrease of real time OCR during the first 45 min after treatment
initiation. This effect was not seen in ISO-treated cells. Following this dip, the OCR increased to
match the OCR levels seen in ISO-treated cells over the course of the remainder of the 400-min study.
This transient dip in oxygen consumption was due to CB1R antagonist-induced lipolysis, as treatment
with the lipolysis blocker Atglinstatin reversed the effects of AM6545 and RIM on OCR during the
first 45 min of treatment. In the presence of Atglinstatin, OCR for cells treated with AM6545 and RIM
remained no different than vehicle control for the entire study duration. Atglinstatin also decreased
basal respiration, maximal respiration, proton leak, and ATP production, most importantly after 4 h
treatment with CB1R antagonists, further suggesting that the impact of CB1R antagonism on adipocytes
is driven by increased lipolysis.

Taken together, our results reveal that peripheral CB1R antagonist AM6545 enhances the beiging
process and mitochondrial function via lipolysis in adipocytes similarly to the brain-penetrating
CB1R antagonist RIM. Our data provide a potential mechanism by which physiologic responses and
improvement of energy expenditure, lipid profiles, and insulin sensitivity are improved following
dosing with peripheral CB1R antagonists in previous in vivo studies [28,46,47]. We acknowledge our
data solely focus on an in vitro model but provide a beginning point to understand the mechanism by
which this compound may improve adipose tissue function. We submit that further in vivo studies
in knockout and large animal models, followed by studies in humans, are required to elucidate the
potential applications of peripheral CB1R antagonism as a therapeutic agent for obesity.

The CB1R antagonist RIM demonstrated marked improvements in obesity, insulin resistance,
and other metabolic perturbations in patients. However, its serious side-effect profile made it unsafe
for patients. Here, we suggest that a peripherally-restricted CB1R antagonist, AM6545, increases
adipocyte beiging and improves mitochondrial function via increased lipolysis. We cannot discard
other metabolic pathways such as reduced inflammation or reduced endocannabinoids to be involved
in the beneficial effects of the peripheral CB1R on adipocytes. Thus, a direct role for CB1R antagonism
on adipocytes does not require brain penetrance, supporting the importance of pursuing peripheral
CB1R antagonism for the pharmacological treatment of obesity, T2D, and related metabolic diseases.
Future studies are needed to verify the effects in larger animal models and in patients.

4. Materials and Methods

4.1. Preparation and Treatment of 3T3-L1 Adipocytes

Mouse embryo 3T3-L1 preadipocytes (American Type Culture Collection (ATCC), Manassas, VA, USA)
were maintained in DMEM/F-12 (ATCC, Manassas, VA, USA) supplemented with 10% bovine calf serum
(ATCC, Manassas, VA, USA) and 1% penicillin-streptomycin (Thermo Fisher Scientific, Waltham,
MA, USA) until confluent (48–72 h). As performed in Miller et al. [48], the differentiation was
induced in DMEM/F-12 media containing 10% fetal bovine serum (Thermo Fisher Scientific), 5
uM dexamethasone (Sigma-Aldrich, St. Louis, MO, USA), 0.5 µg/mL insulin (Sigma-Aldrich), 0.5
mM isobutylmethylxanthine (Sigma-Aldrich), 1 µM rosiglitazone (Sigma-Aldrich), and 1 nM T3
(Sigma-Aldrich) for 4 days. Cells were then differentiated in DMEM/F-12 media supplemented with
10% fetal bovine serum, 0.5 µM insulin, and 1 nM T3 for 3 additional days. After 7 days, all the cells were
matured, and we treated with 0.5 mM rimonabant (Sigma-Aldrich), 0.5 mM AM6545 (kindly donated
by Dr. Makriyannis from Northeastern University Center for Drug Discovery, Boston, MA, USA), 10
mM isoproterenol (ISO) (Sigma-Aldrich); ISO was used as a positive control, as described [48], and
vehicle. The dose of RIM was chosen based on a previous study from Watanabe et al. [26], where they
showed that 0.1–1 µM RIM increased adiponectin secretion and gene expression. A similar dose was
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chosen for AM6545 to be comparable with RIM. We followed the protocol published by Miller et al. [48],
ISO increased OCR, and beiging genes, and we used the same protocol to compare CB1R antagonist
treatments; therefore, the cells were incubated for 4 h (n = 2–3 per condition/4 independent rounds)
and 48 h (n = 2–3 per condition/4 independent rounds).

4.2. Cell Viability and Triglyceride Measurements

Lactate dehydrogenase (LDH) levels in culture medium were determined to assess cell toxicity by
a commercially available ELISA kit (Roche Applied Science, Indianapolis, IN, USA). The percentage of
viable cells was calculated by defining the cell viability without treatment as 100% viability. 3T3-L1 cell
lysates in 1% Triton X-100 in PBS were collected for triglyceride (TG) measurements. A TG assay kit
(Sigma–Aldrich) was used according to the method as described previously [49]. Cellular TG content
was then normalized to the protein concentration as measured by a BCA protein assay kit (Bio-Rad,
Hercules, CA, USA). Results are represented as the amount of TG in mg to an equivalent of cellular
proteins (in mg).

4.3. Lipolysis Assays

Samples of the medium were collected and measured for glycerol and FFA release. The glycerol
assay kit (Sigma-Millipore, St. Louis, MO, USA) was used in accordance with the manufacturer’s
instructions. FFA were measured using the NEFAC colorimetric assay in accordance with the
manufacturer’s instructions (Wako Pure Chemical Industries, Richmond, VA, USA).

4.4. Mitochondrial DNA Copy Number

The ratio of mtDNA to nuclear DNA in 3T3-L1 adipocytes was reflecting the cellular
mitochondrial number, and was determined by RT-PCR as previously described [50]. DNA was
isolated by QIAamp DNA mini-kit (Qiagen, Valencia, CA, USA). The abundance of the
mitochondrial DNA (mtDNA) was evaluated by measuring nicotinamide adenine dinucleotide
dehydrogenase 1 gene (Nd1) (primer pairs: Forward: 5′-ACCATTTGCAGACGCCATAA-3′,
reverse: 5′-TGAAATTGTTTGGGCTACGG-3′), using the LightCycler FastStart DNA Master
SYBR Green I (Roche Applied Science, Indianapolis, IN, USA). mtDNA content was normalized
to 18S rRNA gene (primer pairs: Forward: 5′-TAGAGGGACAAGTGGCGTTC-3′, reverse:
5′-CGCTGAGCCAGTCAGTGT-3′. Reactions were incubated at 95 ◦C for 10 min, then 45 cycles of
95 ◦C for 10 s, 62 ◦C for 20 s, and 72 ◦C for 20 s.

4.5. Measurement of Oxygen Consumption Rate

3T3-L1 pre-adipocytes were seeded at a density of 15,000 cells/well to the to the XFe24 microplate
(e, Agilent Technologies, Santa Clara, CA, USA) coated with 0.2% gelatin, and cells were differentiated
as described above. For OCR measurements after 4 and 48 h of exposure to the various drugs to the
mature adipocytes, cells were exposed to the same doses that we used for beiging experiments (0.5 mM
rimonabant (Sigma-Aldrich), 0.5 mM AM6545 (Northeastern University Center for Drug Discovery,
Boston, MA, USA), 10 mM isoproterenol (Sigma-Aldrich), used as a positive control, as described
previously [48], and a vehicle). Cells were washed 3 times with XF Assay medium containing 4.5 g/L
glucose, 4.0 mM glutamine, and 1.0 mM sodium pyruvate (pH was adjusted to 7.35 ± 0.05 using 1 M
NaOH). The plates were placed in a 37 ◦C incubator without CO2 for one hour prior to the assay. OCR
measurements were performed using Seahorse Biosciences XF Analyzer (Agilent Technologies) during
basal conditions or in response to sequential treatment with 2 oligomycin (to block ATP synthesis),
0.75 FFCP (respiratory chain uncoupler), and 1 µM rotenone/antimycin A (inhibitor of respiratory
chain complex I and complex III).

To determine the direct effects of AM6545 and RIM on the adipocytes in real-time, cells were
treated with the same dose as described above via an injection port (6 replicates per drug). OCR was
measured every 8.5 min for 400 min. To demonstrate the effect of lipolysis we added 20 µM ATGL
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inhibitor Atglinstatin (Sigma-Aldrich) as described previously [51], with 0.5 AM6545 or 0.5 mM RIM.
The real-time measurements were performed for 400 min.

4.6. Total RNA Isolation and Real Time PCR (RT-PCR)

RNA was extracted from cell lysates using the Tri-Reagent® Kit (Molecular Research Center,
Cincinnati, OH, USA). First-strand cDNA was synthesized, per the manufacturer’s protocol, from 1 µg
of total RNA obtained using Superscript II (Invitrogen, Carlsbad, CA, USA). RT-PCR was performed
using a Light-Cycler 480 instrument (Roche Applied Science, Indianapolis, IN, USA). cDNA was
amplified using on a Roche microplate with a final volume of 10 µL reaction mix containing 2.5 µL of
100-fold diluted cDNA, 7 µL LightCycler TaqMan Master Mix buffer (Roche Probes Master kit, Roche
Applied Science, Indianapolis, IN, USA), and 0.5 µL specific TaqMan probes from Thermo Fisher
Scientific (Table 1). Reactions were incubated at 95 ◦C for 10 min, then 45 cycles of 95 ◦C for 10 s, 60 ◦C
for 30 s, then 72 ◦C for 2 s. Mouse β-actin (Actb) was used as the reference gene. Data was normalized
and relative expression was determined from the threshold cycle (Ct) following the 2−∆∆CT method.

Table 1. List of TaqMan® primers.

PGC1a Mm01,208,835_m1

Prdm16 Mm00,712,556_m1

Ucp1 Mm01,244,861_m1

Cidea Mm00,432,554_m1

Elovl3 Mm00,468,164_m1

Tbx1 Mm00,448,949_m1

Cd137 Mm00,441,899_m1

Tmem26 Mm01,173,641_m1

Cited1 Mm01,235,642_g1

Serca2b Mm01,201,431_m1

Ryr2 Mm00,465,877_m1

ATGL Mm00,503,040_m1

HSL Mm00,495,359_m1

b3R Mm02,601,819_g1

Tfam Mm00,447,485_m1

Nrf Mm01,135,607_m1

Nd1 Mm04,225,274_s1

Actb Mm02,619,580_g1

4.7. Statistical Analysis

All data were plotted as mean ± SEM using STATA (STATA 16MP, StataCorp LLC,
College Station, TX, USA). The Kruskal–Wallis equality-of-populations rank test was used to perform
the multiple comparison between the various groups. This analysis was followed by Dunnett’s test
for pairwise comparisons. A p-value as indicated was considered statistically significant: * p < 0.05;
** p < 0.01; *** p < 0.001.
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Abbreviations

CB1R Cannabinoid receptor 1
RIM Rimonabant
ISO Isoproterenol
OCR Oxygen consumption rate
T2D Type 2 diabetes
WAT White adipose tissue
BAT Brown adipose tissue
ECS Endocannabinoid system
β3 Beta-3 adrenergic
NP Natriuretic peptide
Pgc1α Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
Prdm16 PR domain containing 16
Ucp1 Uncoupling protein 1
Cidea Cell death-inducing DFFA-Like effector A
Elovl3 elongation of very long chain fatty Acids protein 3
Cd137 tumor necrosis factor receptor superfamily member 9
Tbx1 T-box Transcription factor
Tmem26 Transmembrane protein 26
Cited1 Cbp/p300-interacting transactivator 1
Serca2b Sarco/endoplasmic reticulum Ca2+-ATPase2b
RyR2 Ryanodine receptor 2
ATGL Adipose triglyceride lipase
HSL Hormone sensitive lipase
FFCP Carbonyl cyanide-4(trifluoromethoxy) phenylhydrazone
Tfam transcription factor A, mitochondria
Nrf1 nuclear respiratory factor 1
Nd1 dinucleotide dehydrogenase 1
Actb mouse β-actin
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