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Abstract: In the last few decades, heparan sulfate (HS) proteoglycans (HSPGs) have been an 
intriguing subject of study for their complex structural characteristics, their finely regulated 
biosynthetic machinery, and the wide range of functions they perform in living organisms from 
development to adulthood. From these studies, key roles of HSPGs in tumor initiation and 
progression have emerged, so that they are currently being explored as potential biomarkers and 
therapeutic targets for cancers. The multifaceted nature of HSPG structure/activity translates in their 
capacity to act either as inhibitors or promoters of tumor growth and invasion depending on the 
tumor type. Deregulation of HSPGs resulting in malignancy may be due to either their abnormal 
expression levels or changes in their structure and functions as a result of the altered activity of their 
biosynthetic or remodeling enzymes. Indeed, in the tumor microenvironment, HSPGs undergo 
structural alterations, through the shedding of proteoglycan ectodomain from the cell surface or the 
fragmentation and/or desulfation of HS chains, affecting HSPG function with significant impact on 
the molecular interactions between cancer cells and their microenvironment, and tumor cell 
behavior. Here, we overview the structural and functional features of HSPGs and their signaling in 
the tumor environment which contributes to tumorigenesis and cancer progression. 

Keywords: tumor microenvironment; extracellular matrix; heparan sulfate proteoglycans; 
remodeling; signaling 

 

1. Introduction 

The tumor microenvironment consists of a heterogeneous population of cells such as 
proliferating tumor cells and infiltrating inflammatory cells, the tumor stroma, blood vessels, 
secreted factors, and extracellular matrix (ECM) components, all together contributing to cancer 
development and progression. Complex and dynamic interactions between tumor cells and their 
microenvironment, involving cell-cell and cell-ECM contacts and the activity of soluble factors that 
enable these contacts, are essential to promote tumor growth, invasion, and metastasis [1–3]. Hence, 
due to the compelling role of tumor microenvironment in carcinogenesis, therapeutic strategies 
targeting tumor microenvironment components that interfere with the complex crosstalk between 
tumor cells, host cells, and their surrounding ECM are being explored [4–6]. 

The ECM constituents form a highly dynamic network that plays both structural and functional 
roles of key importance for development and tissue homeostasis. The composition of ECM may differ 
among tissues and continuously undergo remodeling both in physiological and pathological 
conditions [7–9]. The main ECM components include fibrillar proteins such as collagen, elastin, 
fibronectin, and laminins, glycosaminoglycans (GAGs), proteoglycans (PGs), and other 
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glycoproteins. The interaction between ECM components and cell surface receptors and/or matrix 
effectors activates signal transduction cascades underlying cell differentiation, proliferation, survival, 
adhesion, migration, and other biological processes relevant to cancer biology [8]. 

Among ECM components, heparan sulfate (HS) proteoglycans (HSPGs) emerged as critical 
determinants in ECM assembly and functions both in health and disease [10,11]. The ubiquitously 
expressed HSPGs comprise diverse families of HS chains bearing protein cores that include 
syndecans, glypicans, perlecan, agrin, and collagen type XVIII. While perlecan, agrin, and collagen 
type XVIII are directly secreted in the ECM once synthesized, the transmembrane syndecans and 
glycosylphosphatidylinositol-anchored (GPI)-anchored glypicans are cell surface-bound HSGPs, but 
they can be cleaved by proteinases or heparanases, and their truncated forms can be distributed in 
the ECM. The sulfated moieties enable HSPGs to interact with other ECM components and a variety 
of ligands such as morphogens, growth factors, enzymes, cytokines, chemokines, etc. [12–15]. 
However, not only the sulfated pattern of HS chains dictates the binding specificity of HSPGs, but 
their protein core can also bind ligands, and the ECM secreted HSPG types contain functionally 
independent ligand-binding domains [11–13,16]. The HSPG binding ability is essential for regulating 
the distribution, availability, and signaling activity of the ligands. 

The main activity attributed to HSPGs is to serve as co-receptors for morphogens/growth factors, 
thus enhancing signaling activation of their respective receptor, however, HSPGs can act as receptors 
themselves and can transactivate receptors in adjacent cells [10–13,15,17]. In addition, HSPGs are 
involved in endocytosis and vesicular trafficking [18]. By acting as intermediaries between ECM and 
intracellular signaling pathways, HSPGs regulate a variety of physiological and pathological 
processes including tissue development, morphogenesis, cell proliferation, apoptosis, adhesion, 
motility, wound healing, inflammation, and tumorigenesis [10,11,17,19–28]. 

Altered expression and structural variability of HSPGs have been associated with an extensive 
remodeling of tumor microenvironment where HSPGs not only contribute to the formation of a 
structural framework for tumor growth but are also involved in the regulation of cell-matrix and cell-
cell interactions, and cell signaling [29–35]. They are able to modulate cancer cell phenotype, the 
development of drug resistance, and tumor stroma angiogenesis [36–41]. Differential expression and 
structure/activity modifications of HSPGs have been found in several cancers and may correlate with 
either inhibitory or tumor-promoting activity. This review focuses on the structural and functional 
alterations of HSPGs in tumor microenvironment that have a significant impact on tumor growth 
and progression. We also discuss the advancements in the development of cancer therapies targeting 
HSPGs. 

2. Structural Features, Biosynthesis, and Enzymatic Modification of HSPGs Regulating Cancer 
Promotion and Progression 

The HSPGs are glycosylated proteins characterized by a core protein carrying covalently 
attached HS chains (Table 1). Thirteen genes encode HSPG core proteins. They include the genes 
encoding for cell surface-tethered 4 syndecan (SDC1-4) and 6 glypican (GPC1-6) isoforms, and 3 
encoding for the basement membrane- and -ECM localized perlecan, agrin, and collagen type VIII 
[11]. Syndecan isoforms are transmembrane glycoproteins with the extracellular domain harboring 
HS chains and chondroitin sulfate chains, and highly conserved transmembrane and cytoplasmic 
domains which mediate multimerization and interactions with intracellular proteins, respectively. 
Glypicans are proteins anchored to the cell membrane by GPI, and with HS chains attached near the 
juxtamembrane region. Perlecan, agrin, and collagen type XVIII are localized in the ECM, including 
the basement membrane zone [11,16,42]. 
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Table 1. Heparan sulfate proteoglycan (HSPG) nomenclature, human genes, schematic structure, 
cellular localization. 

HSPG Encoding 
Gene 

Schematic Structure Cellular 
Localization 

Syndecan-
1 

SDC1 

 

Cell surface 

Syndecan-
2 

SDC2 

Syndecan-
3 

SDC3 

Syndecan-
4 

SDC4 

Glypican-
1 

GPC1 

 

Glypican-
2 

GPC2 

Glypican-
3 

GPC3 

Glypican-
4 

GPC4 

Glypican-
5 GPC5 

Glypican-
6 GPC6 

Perlecan PRCAN 

 

ECM, 
Basement 
membrane 

Agrin AGRN 

 

Collagen 
type VIII 

COL8A1 

 

In HSPGs, the HS chains are constituted by a long unbranched backbone of disaccharide units 
of D-glucosamine and uronic acid (D-glucuronic and L-uronic acids) carrying negatively charged 
carboxylated or N- and O-sulfated groups generated through tightly regulated post-translational 
reactions in the Golgi apparatus upon the arrival of the core protein from the endoplasmic reticulum 
[17]. The HSPG biosynthetic process starts with the attachment of a specific serine residue of the core 
protein to a tetrasaccharide linker (glucuronic acid-galactose-galactose-xylose) bearing HS chains; 
this reaction is catalyzed by xylosyltransferase (XTLY). Exostosin (EXT) enzymes catalyze the 
elongation of HS chains through the alternate addition of glucuronic acid and N-acetylglucosamine. 
Then, the HS backbone undergoes modifications involving N-deacetylation and N-sulfation of 
glucosamine, C-5 epimerization of glucuronic acid to iduronic acid, 2-O-sulfation and 3-O-sulfation 
of uronic acid and glucosamine, respectively, and 6-O-sulfation of N-acetylated or N-sulfated 
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glucosamine residues. Additional modifications occur at the cell surface or ECM through the action 
of 6-O-endo-sulfatases and/or the endoglycosidase heparanase. The controlled biosynthesis and post-
synthetic modifications of HS chains provide an enormous potential of heterogeneity and structural 
variability of HS chains which accounts for a wide variety of HSPG interactions with regulatory 
proteins and, in turn, for their biological activities [12–15,43]. Several studies have demonstrated that 
there are cell and tissue-specific changes in the HS chain synthetic pathway in cancer cells and tissues 
in vitro and in vivo, thus suggesting a close involvement of HS chain biosynthetic machinery in 
carcinogenesis [30,44,45]. These changes may concern either the expression and/or activity of HS 
synthetic and modifying enzymes, or changes in the HSPGs protein core. 

The genetic loss of NDST4, a member of the N-deacetylase/N-sulfotransferase (NDST) family, 
correlates with an advanced pathological stage and poor survival in colorectal carcinomas [46]. 
Interestingly, depending on the metastatic nature of the tumor and its localization, differential 
expression in the transcription of genes involved in the epimerization and sulfation of uronic acid, 
and glucosamine sulfation were detected in left- and right-sided colorectal cancers [31]. Defective 
HS-3-O-sulfation due to methylation-associated repression of HS glucosamine 3-O-sulfotransferase 
gene (3-OST) results in being associated with chondrosarcoma progression [47], whereas 
hypermethylation of the 3-OST gene is associated with poor survival in non-small cell lung cancer 
[48]. In addition, HS-2-O-sulfotransferase (2-OST) results in being essential for the proliferation and 
invasion of prostate cancer cells [49]. Overexpression of HS glucosamine 6-O-sulfotransferase-2 (6-
OST) has been reported in colorectal cancer and gastric cancer, while it results in being 
downregulated in glioma [50–52]. 

Mutations in EXT1 or EXT2, members of the EXT family of glycosyltransferases are responsible 
for hereditary multiple osteochondromas that may degenerate into chondro- or osteo-sarcomas [53]. 
Furthermore, mutations in EXT2 have been detected in breast tumor patients, and thyroid cancer [54–
56]. Epigenetic inactivation of EXT1 by promoter hyper-methylation preventing HS chain synthesis 
is observed in leukemia and non-melanoma skin cancer [57,58]. An antiproliferative effect of D-
glucuronyl C5-epimerase (GLCE) has been ascertained in breast and small lung cancer cells [59–61], 
whereas increased GLCE expression has been associated with advanced stages of prostate tumors 
[62,63]. Although many other examples of the dysregulation of HS biosynthetic and post-synthetic 
modifying enzymes in carcinogenesis have been reported (Table 2), the complex changes of their 
expression in different cancers remains still to be explored. 

Table 2. HS biosynthetic and modifying enzymes involved in cancer development and progression. 

Enzyme Gene Type(s) of Cancer Reference(s) 
Xylosyltransferase1/2 

(XYLT1/2) 
XYLT1-2 

Breast cancer/bone metastasis 
Salivary gland tumors 

[64] 
[65] 

β-1,4-Galactosyltransferase 
(b4Gal-T1-7) 

B4GALT1-7 

Breast cancer 
Colon cancer 
Liver cancer 

Leukemia 
Lung cancer 

Neuroblastoma 
Renal carcinoma 

[66] 
[67] 
[68] 
[69] 
[70] 
[71] 
[72] 

β-1,3-Glucuronyltransferase3  
(GlcAT-I) 

B3GAT3 Liver cancer [73] 

Exostosin like glycosyltransferase  
(EXTL1-3) 

EXTL1-3 
Breast cancer 

Hepatocarcinoma 
[55] 
[74] 

Exostosin1/2  
(EXT1/2) 

EXT1-2 

Breast cancer 
Chondrosarcoma 
Osteochondroma  
Hepatocarcinoma 

Glioma 
Leukemia 

Thyroid tumor 

[54,55] 
[75,76] 

[53,75,76] 
[77] 
[52] 

[57,58] 
[56] 
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N-deacetylase/N-sulfotransferase (1-4) 
(NDST1-4) 

NDST1-4 
Colorectal cancer 

Melanoma 
[31,46] 

[78] 

Glucuronyl C5-epimerase  
(GLCE) 

GLCE 
Breast cancer 
Lung cancer 

Prostate cancer 

[59,60] 
[61] 

[62,63] 

Hexuronyl 2-O-sulfotransferase 
(2-OST) 

HS2ST  
Breast cancer 

Multiple myeloma 
Prostate cancer 

[79] 
[30] 
[49] 

Glucosaminyl 6-O-sulfotransferase 
(6-OST) 

HS6ST  

Colorectal cancer 
Gastric cancer 

Glioma 
Ovarian cancer 

Pancreatic cancer 

[50] 
[51] 
[52] 

[80,81] 
[82] 

Glucosaminyl 3-O-sulfotransferase 
(3-OST) 

HS3ST 

Breast cancer 
Chondrosarcoma 
Colorectal cancer 

Leukemia 
Lung cancer 

Pancreatic cancer 

[83] 
[47,83] 

[84] 
[85] 
[48] 
[86] 

Endo-6-O-sulfatase1/2 
(SULF1/2) 

SULF1-2 

Breast cancer 
Cervical cancer 
Liver tumors 

Ovarian cancer 
Other cancers 

[87] 
[88] 
[89] 
[87] 

[90,91] 

Heparanase 
(HPSE1/2) 

HPSE1-2 

Bladder cancer 
Brain tumors 
Breast cancer 
Gastric cancer 

Head and neck cancers 
Hepatocarcinoma 

Mesothelioma 
Myeloma 

Ovarian cancer 
Pancreatic cancer 

Sarcoma 

[92] 
[93] 

[94,95] 
[96] 
[97] 
[98] 
[99] 

[100,101] 
[102] 
[103] 
[104] 

In addition to the differential expression and/or activity of the enzymes involved in the 
biosynthesis or post-synthetic modification of HS chains, HSPG core proteins may also affect cancer 
development and progression, either by preventing or promoting these processes [10,11,36,39,40]. 
The alterations in the expression levels of HSPGs depend on their location and may represent a 
hallmark of the metastatic or non-metastatic nature of the tumor. For example, while SDC1 results in 
being overexpressed in left-sided colorectal tumors independently from the presence of metastasis, 
it results in being upregulated only in metastatic right-sided colorectal cancers [31,105]. However, a 
significant reduction of cell surface tethered SDC1 and an increase of shed SDC1 in the ECM has been 
observed as a function of tumor progression and aggressiveness, suggesting the involvement of post-
transcriptional mechanisms in SDC1 expression in this type of tumor. Differential regulation of SDC1 
expression as well as of the other SDC isoforms, GPCs, and the other HSPGs has been found in several 
tumors (Table 3) [105–153]. 

Table 3. Differential expression of individual HSPGs in cancer. 

HSPG 
Changes in 
Expression 

Levels 
Type(s) of Cancer Reference(s) 

SDC1 Increased 
Bladder cancer, breast cancer, colorectal cancer, 
multiple myeloma, ovarian cancer, pancreatic 

ductal adenocarcinoma, squamous cell carcinoma 
[29,31,35,105,108,109] 
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Reduced 

Cancer stem cell, colorectal cancer, endometrial 
cancer, hepatocellular carcinoma, mesothelioma, 

non-small-cell lung cancer, prostate cancer, 
sarcoma 

[35,108,110,111] 

SDC2 
Increased 

Bladder cancer, breast cancer, colorectal cancer, 
glioma, lung cancer, melanoma, prostate cancer 

[112,113] 

Reduced Osteosarcoma [114] 

SDC3 
Increased 

Bladder cancer, ovarian cancer, renal cell 
carcinoma 

[115–117] 

Reduced Neuroblastoma [35] 

SDC4 
Increased Ovarian cancer, papillary thyroid carcinoma [115,118] 
Reduced Neuroblastoma [35] 

GPC1 
Increased 

Breast cancer, esophageal squamous cell 
carcinoma, glioma, pancreatic cancer 

[119–123] 

Reduced Colorectal cancer, neuroblastoma [35,105] 
GPC2 Increased Neuroblastoma, medulloblastoma, retinoblastoma [124,125] 

GPC3 

Increased 
Liver cancer, lung squamous cell carcinoma, 

neuroblastoma, ovarian cancer, testicular germ cell 
tumor, thyroid cancer, yolk sac tumor 

[125–129] 

Reduced 
Breast cancer, colorectal cancer, mesothelioma, 

non-small-cell lung cancer, neuroblastoma, renal 
cell carcinoma 

[35,105,125,130] 

GPC4 
Increased Colorectal cancer, pancreatic cancer [31,131] 
Reduced Breast cancer, ovarian carcinoma [125,132,133] 

GPC5 
Increased Rhabdomyosarcoma [35,134,135] 

Reduced 
Breast cancer, glioma, hepatocellular carcinoma, 
lung cancer, pancreatic cancer, prostate cancer 

[136–138] 

GPC6 
Increased Gastric cancer, melanoma [139,140] 
Reduced Colorectal cancer, ovarian cancer, retinoblastoma [105,141,142] 

Perlecan 
Increased 

Hepatocellular carcinoma, melanoma, pancreatic 
cancer, prostate cancer 

[35,38,143–146] 

Reduced 
Breast cancer, colorectal cancer, lung cancer, 

ovarian cancer, fibrosarcoma 
[35,38,105,143,144,147] 

Agrin Increased 
Cholangiocarcinoma, glioma, hepatocellular 
carcinoma, lung cancer, oral squamous cell 

carcinoma, rectal cancer 
[38,148–152] 

Collagen 
type VIII 

Increased 
Breast cancer, lung cancer, melanoma, ovary, 

pancreatic cancer, prostate cancer 
[35,38,153] 

Reduced Colorectal cancer [105] 

High levels of SDC1 have been detected in squamous cell carcinomas such as those from cervix 
uteri and esophagus, in invasive urothelial cancer, and lung cancer [108]. Overexpression of SDC1 
correlates with tumor aggressiveness and poor survival in triple-negative breast carcinoma [109]. 
Both SDC1 and SDC4 are overexpressed in papillary thyroid carcinoma [118]. Conversely, reduced 
expression of SDC1 has been found in mesothelioma, non-small-cell lung cancer, prostate cancer, and 
sarcoma [35,108,110,111]. SDC2 expression is upregulated in breast, colon, and pancreatic cancers, 
and melanomas, whereas high levels of SDC2 in neuroendocrine tumors correlate with a better 
survival of patients [112,113]. On the contrary, a tumor-suppressor function for SDC2 correlated to 
apoptosis dysregulation in osteosarcoma has been suggested [114]. Elevated expression levels of 
SDC3 have been reported in bladder and ovarian cancer, and renal cell carcinoma [115–117], whereas 
low levels of SDC3, SDC4, GPC1, and GPC3 are expressed in neuroblastoma [35]. 

Overexpression of GPC1 is a hallmark of breast cancer, esophageal squamous cell carcinoma, 
and gliomas [119–121]. The upregulation of GPC1 and GPC4 is found in pancreatic cancer [122,123]. 
High expression of GPC2 has been detected in neuroblastoma and other pediatric cancers such as 
medulloblastoma and retinoblastoma [124,125]. While CPG3 results in being overexpressed in liver 
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cancer, lung squamous cell carcinoma, neuroblastoma, ovarian cancer, testicular germ cell tumor, 
thyroid cancer, yolk sac tumor and other cancers, reduced levels of GPC3 have been found in breast 
cancer, colorectal cancer, mesothelioma, non-small-cell lung cancer, neuroblastoma, and renal cell 
carcinoma [35,105,125–130]. Overexpression of GPC4 mRNA has been detected in metastatic 
colorectal cancer, where GPC1, GPC3 and GPC6, perlecan, and collagen type VIII result in being 
downregulated [31,35,105]. While GPC5 expression is downregulated in breast cancer, glioma, 
hepatocellular carcinoma, lung cancer, pancreatic cancer, prostate cancer, it results in being 
upregulated in rhabdomyosarcoma [35,134–138]. Overexpression of GPC6 is associated with gastric 
adenocarcinoma and metastatic progression of cutaneous melanoma [140]. Increased expression 
levels of perlecan have been found in hepatocellular carcinoma, melanoma, pancreatic and prostate 
cancer, whereas the upregulation of the expression of agrin has been demonstrated in oral squamous 
cell carcinoma, hepatocellular carcinoma, cholangiocarcinoma, lung carcinoma, oral squamous cell 
carcinoma, and rectal cancer [35,38,144–146,148–152]. Reduced levels of perlecan correlate with the 
progression of breast cancer, colorectal cancer, lung cancer, ovarian cancer, and fibrosarcoma 
[35,38,105,143,144,147]. Finally, type VIII collagen results in being elevated in melanoma, lung, breast, 
ovary, prostate, and pancreatic cancers [35,38,153]. 

Noticeably, in some cases, the HS chain and the protein core of an HSPG may have a distinct 
impact on the same tumor. For example, in Lewis lung carcinoma, clones with a low metastatic 
potential contain high levels of SDC2, whereas, in highly metastatic clones, SDC2 overexpression 
reduces the invasive potential of cells due to the binding of HS chains to the fibronectin [112]. The 
expression patterns of HSPGs in tumor cells and microenvironment in some cases correlate with 
those of ligands that require HSPGs to elicit their cellular responses. [33–36,38–41,106,107]. The 
aberrant expression of specific HSPGs in the various types of cancers significantly affects HSPG-
ligand binding and subsequent signaling, thus determining the malignancy of the tumor phenotype. 
Therefore, HSPGs can serve as cancer-type-specific biomarkers, prognostic factors, and therapeutic 
targets. 

It has been well established that cell surface and ECM secreted HSPGs may undergo a cleavage 
process known as “shedding” which regulates the amount of HSPGs tethered to the cell surface and 
that present in the pericellular microenvironment [10–14]. The enzymes involved in the HSPG 
shedding depend on the type of HSPG and include the endoglycosidase heparanase and 
endosulfatases that modify the structure of HS chains; matrix metalloproteinases (MMPs) and 
ADAMs, composed of a disintegrin and MMP proteases, for SDCs shedding; the extracellular lipase 
Notum that cleaves the GPI anchor of GPCs; and other proteases that cleave the core proteins of ECM 
secreted HSPGs [33,34,37,39,42,154,155]. The cleaved HSPG products released in the tumor 
microenvironment may have a significant impact on cancer cell behavior [91]. The proteolysis of the 
SDC juxtamembrane region releases their whole ectodomains in the ECM [29]. Soluble SDC1 
promotes the growth of myeloma tumors in vivo, while shed SDC2 enhances colon, lung, and breast 
cancer progression [11,91,100,101,156,157]. SDC-1 shedding is associated with increased mitogenic 
activity and invasive potential of pancreatic cancer cells, whereas shedding of SDC4 in human 
endothelial cells promotes wound healing, angiogenesis, and inflammation [156,157]. Furthermore, 
SDC1 shedding has been shown to trigger a switch from a proliferative to an invasive phenotype of 
breast cancer cells [158]. The cleavage of GPC1 by ADAM17 plays a role in the adhesion, proliferation 
and migration of oral squamous cell carcinoma cells [159]. At the basement membrane of the cells, 
perlecan can undergo shedding through heparanase, MMPs, and other proteases [145]. The C-
terminal fragment of perlecan, known as endorepellin, resulting from the proteolytic cleavage of 
perlecan, may undergo further proteolysis that leads to the release of the C-terminal endorepellin 
fragment LG3 whose levels are reduced in breast cancer [160]. LG3 and other endorepellin fragments 
have been found in the secretome of colon and pancreatic cancers [161,162]. On the other hand, the 
proteases cathepsin L and elastase cleave the N-terminal hinge domain of collagen type VIII, 
releasing the 22-kDa fragment endostatin which is known to inhibit the progression of several types 
of malignant tumors, including melanomas, fibrosarcomas, and hemangioendothelioma [163,164]. 
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Both MMPs and the serine protease cleave the HSPG agrin giving rise to 100-, 90-, and 22-kDa 
fragments which are involved in cancer growth [38]. 

The above reported are only few examples of the broad impact of HSPG structural features in 
cancer development and progression. Interestingly, the complexity of structural properties of HSPGs 
translates in a variety of biological activities that may either positively or negatively regulate tumor 
initiation and progression. 

 
 
 

3. Functional Properties of HSPGs in Tumor Microenvironment 

The sulfated HS side chains bearing multiple negative charges, but also protein cores, allow 
HSPGs to bind and interact with a broad variety of signaling effectors in the tumor microenvironment 
[165]. These HSPG-ligand interactions serve multiple functions including the modulation of ligand 
distribution and function, the restriction of ligand range of action on target cells, the prevention of 
ligand degradation, the generation of morphogen gradients, the proper presentation of growth 
factors to their cognate receptors, the transactivation of receptors in adjacent cells, the promotion of 
endocytosis and vesicular trafficking, etc. [7,8,10–15,17,18]. In addition to a well-established role in 
development [20,23,26,104,165–167], HSPG-ligand interactions play major roles in tumor stroma and 
tumor microenvironment by regulating cellular proliferation, differentiation, adhesion, migration, 
apoptosis, angiogenesis, inflammation, invasion, and metastasis [3,22,24,25,28,33–40,107,143,165,168] 
(Figure 1). 

 
Figure 1. Schematic representation of the main HSPG functions relevant to cancer cell biology. (A,D) 
HSPGs serve as a signaling co-receptor for growth factor activity, allowing a proper presentation of 
them to their cognate receptors, on the same or adjacent cells. In panel D, transcellular transport of a 
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ligand (i.e., chemokine) bound to HS chains and its presentation at the cell surface is also shown. (B,D) 
HGPGs bind integrins modulating their downstream signaling that regulates cytoskeleton 
organization as well as cell adhesion, spreading and sensing mechanical stress. (C) HSPGs act as 
endocytic receptors and undergo constitutive as well as ligand-induced endocytosis: exosomes, cell-
penetrating peptides, polycation–nucleic acid complexes, lipoproteins, growth factors, and 
morphogens enter cells through this mechanism. Internalized cargo can be sorted for lysosomal 
degradation, escape into the cytosol, or recycle back to the plasma membrane. (E) HSPGs are critical 
determinants of extracellular matrix (ECM) assembly and remodeling. If the HSPGs perlecan, agrin, 
and collagen type XVIII are directly secreted in the ECM, cell surface-tethered HSPGs (syndecans and 
glypicans) undergo proteolytic cleavage of their ectodomains or to cleavage of HS chains by 
heparanases and their truncated forms can be distributed in the ECM. Here, HSPGs act as a reservoir 
of growth factors and supply them to target cells when needed. Otherwise, they may act as a barrier 
for growth factors, by preventing their passive diffusion over longer distances, instead of confining 
them to the vicinity of producing cells. Overall, HSPGs control fundamental cellular processes (i.e., 
cell adhesion, migration, etc.) whose dysregulation underlies tumor development and progression. 

3.1. HSPG-Regulated Mechanisms in Cell-Matrix and Cell-Cell Interactions 

One of the most studied molecular mechanisms of ligand-receptor complex formation and 
signaling activation mediated by HSPGs is related to the action of fibroblast growth factor (FGF) 
family members and their tyrosine kinase receptors (FGFR) [10–15,169]. The HS chain of HSPGs binds 
the FGF ligand and receptor forming a ternary complex that promotes FGFR dimerization, and in 
turn activates signaling. Depending on the tumor type, HSPG-regulated FGF binding and receptor 
dimerization triggers the activation of four main signaling pathways, including mitogen-activated 
protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase 
(PI3K)/protein kinase B (AKT), Janus kinase (JAK)/signal transducer and activator of transcription 
(STAT), and protein kinase C (PKC) pathways [15,35,125,170]. However, other HSPG-mediated 
FGF/FGFR downstream signaling, such as Jun N-terminal kinase (JNK), ribosomal protein S6 kinase 
2 (RSK2), and Rho GTPase pathways, have been described to play a role in some cancers [35,125,171–
173]. 

Commonly, the MAPK/ERK signaling cascade activated by FGFs is implicated in cell growth 
and differentiation, the PI3K/AKT signaling cascade in cell survival and cell fate determination, and 
PKC in cell polarity [174]. For example, these pathways are involved in SDC1 activation of FGF2-
FGFR1 complex formation and downstream signaling leading to malignant transformation in 
lymphomas, breast, and prostate cancer [16,106,107,175,176]. However, in breast cancer, while 
membrane-bound SDC1 promotes cell proliferation and inhibits invasion through FGF2 mediated 
MAPK signaling, soluble SDC1 deriving from proteolytic cleavage of membrane-bound SDC1 may 
trigger a switch from a proliferative to an invasive phenotype through Rho GTPase pathways [159]. 
The shedding of SDC1 serves an important role in the regulation of FGF2 signaling activation of the 
PI3K/Akt pathway that promotes epithelial-mesenchymal transition, invasion, and metastasis of 
pancreatic cancer cells [177]. In gliomas, GPC1 contributes to enhance mitogenic signaling via 
forming a ternary complex with FGF2 and the FGFR and activating both MAPK/ERK and PI3K/AKT 
pathways [178,179]. In rhabdomyosarcomas, GPC5 enhances FGF2 signaling that leads to 
mesodermal cell proliferation without inducing myogenic differentiation [134]. Furthermore, GPC5 
regulates lung cancer development through a complex pathway network, including FGF-mediated 
activation of MAPK, PI3K, and STAT pathways [180]. The HS chains of perlecan are known to bind 
FGF2 promoting receptor activation, and mitogenic and pro-angiogenic signaling in different tumors, 
whereas the protein core of perlecan is implicated in FGF7 binding and activation of its receptor and 
downstream MAPK signaling leading to human colon carcinoma cell growth [38,146,181]. 

In addition to FGF, HSPGs bind several other growth factors such as hepatocyte growth factor 
(HGF), epidermal growth factor (EGF), heparin-binding epidermal growth factor-like growth factor 
(HB-EGF), transforming growth factor (TGF) beta, vascular endothelial growth factor (VEGF), and 
insulin-like growth factor-1 receptor (IGF1R), and modulate their signaling in a context-dependent 
fashion [13,15] (Figure 2). 
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Figure 2. Schematic representation of the interaction between HSPGs, growth factors, and receptors, 
and main downstream signaling pathways that lead to tumor development and progression. 

The HSPG-mediated signaling activation of HGF released in the tumor microenvironment and 
of its receptor c-MET promotes ECM remodeling, inflammation, migration, angiogenesis, and 
invasion [182–184]. For example, in myeloma, shed SDC1 promotes HGF paracrine signaling that 
involves MAPK and PI3K cascade activation resulting in enhanced cell proliferation and survival 
[176,185,186]. In pancreatic cancer, HSPG-mediated activation of HGF/c-MET signaling induces 
proliferation and migration of tumor cells through the activation of ERK1/2 but not the AKT pathway 
[187]. Dysregulation of HSPG-regulated HGF/c-MET signaling in tumor microenvironment plays a 
key role in hepatocarcinoma [188]. Strong evidence demonstrates a role for loss of HB-EGF in the 
tumor microenvironment in neuroblastoma pathogenesis [189]. Indeed, HSPG-mediated binding of 
soluble HB-EGF with EGF receptor activates ERK1/2 and STAT3 signaling pathways, resulting in 
neuroblast differentiation and decreased proliferation [189]. Both SDC4 and GPC1 play a role in the 
EGF receptor signaling activation involving PI3K/AKT, MAPK/ERK, and JAK/STAT pathways that 
affect the proliferative, invasive, and migratory abilities of colon cancer cells [190]. Furthermore, 
SDC1 affects AKT and STAT3 signaling pathways activated by the EGF receptor in breast cancer stem 
cells from triple-negative breast cancer [191]. On the other hand, the HS chains of shed SCD1 bind 
HB-EGF, and thereby activate MAPK/ERK downstream signaling in colorectal cancer [177]. 

The shedding of HS chains from SDC1 in hepatocarcinoma cells facilitates lymphatic endothelial 
cell proliferation through VEGF-C induced ERK signaling pathway [98]. In myeloma, SDC1-
mediated activation of the VEGF receptor on adjacent endothelial cells promotes AKT and ERK 
signaling and stimulates tumor angiogenesis [192]. Similar VEGF activation by SDC1 occurs in 
melanoma and ovarian carcinoma [193]. In pathologic lymphangiogenesis, association between 
SDC4, VEGF-C, and VEGF receptor-3 triggers activation of ERK and AKT pathways leading to 
mitogenic and survival responses [194]. The binding of shed perlecan to VEGF promotes activation 
of VEGF2 receptor signaling thus sustaining cell survival via the AKT pathway and tumor 
angiogenesis in hepatoblastoma [195]. 

In pancreatic cancer cells, GPC1 interaction with TGF-β1 promotes SMAD pathway activation 
resulting in cell growth inhibition [196,197]. However, TGF-β signaling may play a dual role in both 
pro-tumorigenic and tumor-suppressive of pancreatic cancer, depending on tumor stage and 
microenvironment [198]. Indeed, besides SMAD activation, TGF-β signaling can also be transduced 
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through the non-canonical pathways that include PI3K/AKT, JNK, MAPK, and Rho GTPase 
pathways [199]. In glioblastoma, the stem-like population glioma-initiating cells rely on TGF-β for 
self-renewal, through activation of the JAK-STAT pathway [199]. In hepatocellular carcinoma, GPC3 
regulates TGF-β2 signaling that involves both SMAD and MAPK/ERK pathways [200]. In 
fibrosarcoma, SDC2 mediates TGFβ2 transcriptional regulation via Smad signaling that affects cell 
adhesion [112,201]. In the same type of cancer, SDC2 also mediates IGF-I-induced activation of the 
ERK pathway facilitating cell migration [202]. A significant role of SDC4 on IGF-I receptor activation, 
together with the involvement of integrins and estrogen receptors, leading to MAPK, PI3K/AKT, 
and/or PKC signaling pathways, in the breast cancer cell aggressiveness has been established [203]. 
Furthermore, HSPG-mediated association of IGF-I with β1 integrin modulates adhesion and 
migration of human multiples of myeloma cells via phosphorylation of FAK and paxillin, and 
activation of ERK and PI3K/AKT signaling [204]. 

In addition to acting as co-receptors for growth factors, HSGPs provide a unique functional 
activity to the processes of cell-matrix and cell-cell adhesion relevant to cancer initiation and 
progression [40]. Indeed, HSPGs are able to bind matrix proteins such as fibronectin, laminin, 
thrombospondin, and collagens, and to modulate integrin activation either by direct binding or 
exposing the binding sites of matrix proteins for integrin engagement, thus affecting focal adhesion 
assembly/disassembly and intracellular signaling that regulates cell adhesion, spreading, and sensing 
mechanical stress [7,8,10–13,165,205–207]. The ectodomain and HS chains of SDC1, through αvβ3 
integrin, induce ECM fiber alignment that promotes the directional migration and invasion of breast 
carcinoma cells [208]. A ternary complex formed by SDC1 ectodomain, IGF1 receptor, and αvβ3 
integrin transduces angiogenic signals [209]. The interaction of the extracellular domain of SDC1 with 
αvβ3 and αvβ5 integrins regulates angiogenesis and tumorigenesis in human mammary carcinoma 
cells, and myeloma [192,210]. On the other hand, the interaction of the SDC1 cytoplasmic domain 
with the laminin receptor α6β4 integrin regulates ErbB2 tyrosine kinase activation leading to human 
squamous carcinoma cell spreading [211]. The protein core of SDC1 supports α2β1 integrin-mediated 
cell adhesion to collagen, thus negatively regulating carcinoma cell migration and invasion [111,212]. 

In addition to SDC1, also SDC2 acts as a co-receptor of α2β1 integrin, thus playing an important 
role in regulating actin cytoskeleton organization and focal adhesion kinase signaling [16,213]. Such 
cooperation between SDC2 and α2β1 integrin represents a possible mechanism underlying the 
tumorigenic activity of colon cancer cells [214]. This property correlates with the induction of 
differentiation toward a migratory mesenchymal phenotype of colorectal cancer-derived HT-29 M6 
epithelial cells [214]. In malignant breast cancer cells, SDC2 interaction with β1 integrin promotes the 
invasive capacity of the cells by regulating the Rho GTPase activity [215]. SDC2 also cooperates with 
α5β1 integrin for regulation of actin-cytoskeletal organization in cell adhesion to fibronectin in Lewis 
lung carcinoma-derived metastatic cells, thus affecting their invasive capacity [216]. The integrin-
dependent focal adhesion kinase (FAK) regulates SDC2 induced tumorigenic activity of HT1080 
fibrosarcoma and melanoma cells [217,218]. Furthermore, SDC2 enhances FAK phosphorylation and 
the downstream extracellular signal-regulated kinase (ERK) activity in colon cancer cells [219]. The 
involvement of SDC4 interaction with β1 integrin in the development and metastasis of renal 
carcinomas has been demonstrated [186]. While SDC4 interaction with α6β4 integrin mediates 
mammary carcinoma cell migration [175], downregulation of SDC4 by FGF2-dependent 
dephosphorylation of FAK promotes the migration of melanoma cells [220,221]. Activation of FAK 
by SDC4 in epithelial tumor cells resulting in the transmission of mechano-transduction signals is 
important for cell spreading, actin cytoskeleton assembly, and cell contractility [222]. A ternary 
complex formed by SDC4, α5β1 integrin, and endothelial surface glycoprotein Thy-1 supporting cell-
cell adhesion modulates mechano-signaling in melanoma cells [223]. Finally, it has been shown that 
α-dystroglycan and β1 integrin act as receptors for perlecan in oral precancerous lesions prior to the 
invasion, and the perlecan-induced signals to these receptors trigger cell differentiation and 
proliferation of oral carcinoma cells [224]. On the other hand, endorepellin, the C-terminal domain of 
perlecan, by simultaneously engaging α2β1 integrin and VEGF receptor 2 inhibits tumor 
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angiogenesis [225]. The basal lamina and ECM localized HSPG agrin interact with αvβ1 integrin 
activating mechanotransduction signaling which promotes human liver cancer [149]. 

3.2. HSPG-Regulated Mechanisms in Tumor Microenvironment Remodeling 

Multiple evidence demonstrates that HSPGs require proteolytic enzymes for ECM remodeling 
and for modulating cell signaling in tumor microenvironment. Such an interplay between proteolytic 
enzymes and HSPGs greatly contributes to the cancer pathogenesis [8,33,37,42,226]. In particular, the 
metalloproteinases MMPs, ADAMSs, ADAMS with thrombospondin motifs (ADAMTSs), and 
cathepsins are among the proteinases that cooperate with HSPGs in all the stages of cancer 
development and progression, although in a cell- and tissue-specific manner. In addition to the role 
of metalloproteinases in shedding which releases the ectodomain of cell surface-tethered HSPGs into 
the extracellular milieu with the already described impact on tumor cells, HSPGs contain docking 
sites for these proteases which allow the formation of complexes and their allosteric activation. 
Indeed, SDC2 acts as a docking receptor for pro-MMP-7 in colon cancer cells, promoting pro-MMP-
7 processing into the active MMP-7, and subsequent cleavage of MMP-7 substrate E-cadherin, which, 
in turn, results in enhanced cell migration [219,227]. Similarly, GPCs associate with secreted MMP-9 
to mediate motility of colon adenocarcinoma cells [228]. The binding of SDC4 to ADAMTSs promotes 
their activation, and subsequent tumorigenic signaling [229]. Furthermore, HS chains of HSPGs can 
simultaneously interact with an active MMP and a substrate, forming a trimeric complex [230]. For 
example, the binding of SDC1 to ADAMTS-4 and MMP-17 triggers the activation of ADAMTS-4 
[231]. HSPGs also interact with the cathepsin family of proteases that play key roles in several human 
diseases, including inflammation and cancer [232–237]. In tumor microenvironment, the interaction 
between HS side chains of HSPGs and secreted cathepsins regulates the stability and activity of these 
proteases, by protecting them from alkaline pH-induced de-activation, facilitating their autocatalytic 
activation, and promoting conformational changes in their structure that enhance their affinity for 
substrates [234,236,237]. The HSPGs perlecan and collagen XVIII serve as substrates for specific 
cathepsins resulting in the generation of endorepellin and endostatin, respectively, whose activity in 
tumor microenvironment remodeling and cancer progression has been well established [163,164]. 

Finally, in tumor microenvironment, HSPGs are involved in compartment exchanges between 
cells through extracellular vesicles (EVs), thus regulating communication between malignant and 
stromal cells in tumor development [168]. It has been proposed that EV-associated HSPGs may 
function as a dynamic reservoir of signaling molecules with potential implications in the exchange of 
ligands between EVs and tumor target cells [238]. The release of EV within the tumor 
microenvironment represents a mechanism by which cell-to-cell transfer of bioactive molecules 
occurs with a broad impact on tumor growth, angiogenesis, and invasion [239]. 

In conclusion, HSPGs may regulate tumor microenvironment and cancer cell behavior through 
either binding growth factors or their interaction with other effectors, resulting in different types of 
downstream intracellular signaling that contribute to tumor promotion and progression. 

4. Heparan Sulfate Proteoglycans as Therapeutic Targets for Cancer 

Since already few years, HSPGs have been explored as potential targets for the treatment of 
cancers. However, due to the polyhedric nature of these molecules in terms of both structure and 
functions, different strategies have been developed to target HSPGs for cancer therapy. Specific 
domains of proteoglycan core and/or HS chains as well as HSPG synthetizing and remodeling 
enzymes represent potential therapeutic targets [205]. Among the explored approaches, there is the 
use of high-affinity antibodies recognizing functional epitopes of HSPGs, HS mimetic compounds, 
cationic proteins which interact with the highly anionic sulfate and carboxylate moieties of HS chains, 
natural and synthetic peptides, small organic molecules that may affect either HSPG-protein 
interactions and subsequent signaling or the HSPG biosynthetic machinery [4–
6,29,32,37,155,156,165,239–243]. Some examples of HSPG targeting-based therapeutics for cancer 
treatment are reported in Table 4. 
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Table 4. Selected examples of HSPG targeting-based therapeutics for cancers. 

Type of Drug Target Type(s) of Cancer Reference(s) 
Anti-GPC1 monoclonal 

antibody 
Glypican-1 

Esophageal squamous cell 
carcinoma [244] 

Monoclonal antibody HS20 Glypican-3 
HS chain 

Hepatocellular carcinoma [245,246] 

Human single-domain 
antibody specific for GPC2 Glypican-2 Neuroblastoma [247] 

Human recombinant 
antibody OC-46F2 

Syndecan-1 
ectodomain 

Melanoma 
Ovarian carcinoma 

[193] 
[248] 

Antibody-
pyrrolobenzodiazepine 

conjugate 
Glypican-2 Neuroblastoma [249] 

Antibody-auristatin F 
conjugate 

Glypican-1 
Uterine cervical squamous 

cell carcinoma 
[250] 

HS mimetics G2.2 
HSPG induced MAPK 

activation 
Colon cancer stem cells [251,252] 

HS mimetics OTR4120 and 
OTR4131 

HSPGs-mediated 
RANTES signaling 

Hepatocellular carcinoma [253] 

Peptidic HS mimetics 
Synstatin 

Syndecan-
1/integrin/IGF1 

complex formation 

Mammary tumors 
Hepatocellular carcinoma 

[210,226] 
[254] 

Xylosides HSPG biosynthesis 
Glioma 

Lung cancer 
[165,255,256] 

[257] 
HS mimetics RK-682 Heparanase Bladder cancer [92,258,259] 

HS mimetics PG545 
(Pixatimod) 

Heparanase  
Mesothelioma 

Lymphoma 
Breast cancer 

[260] 
[261] 
[262] 

HS mimetics SST0001 
(Roneparstat) 

Heparanase  
Sarcoma 
Myeloma 

[263,264] 
[101] 

HS mimetics M402 
(Necuparanib) Heparanase  Pancreatic cancer [251,263,265] 

HS mimetics PI-88 
(Mupafostat) 

Heparanase and 
Endoglucosamine 6-

sulfatase 
Hepatocellular carcinoma [251,263] 

Monoclonal antibodies 9E8 
and H1023 

Heparanase Lymphoma 
Myeloma 

[266] 
[266] 

Triazolo-thiadiazoles Heparanase 
Hepatocellular carcinoma 

Lung cancer 
[267] 
[267] 

Phenyl sulfonyl compound 
OKN-007 

Sulfatase 2 
Hepatocellular carcinoma 

Glioblastoma 
[268] 
[269] 

Proteasome inhibitor 
(Bortezomib) 

Sulfatase 2 Breast cancer [270] 

Several antibodies targeting distinct HSPG domains have been developed to date. An anti-GPC1 
monoclonal antibody has shown potent antitumor activity in esophageal squamous cell carcinoma 
[244], whereas a human monoclonal antibody against GPC3, HS20, destroying Wnt3a and GPC3 
interaction and subsequent signaling, exhibits elevated antitumor activity in liver cancer [245,246]. 
Two forms of antibody therapeutics targeting GPC2 have been successfully developed for 
neuroblastoma treatment [247]. The human antibody OC-46F2, specific for the ectodomain domain 
of SDC1, has proved to inhibit tumor growth in experimental human models of melanoma and 
ovarian carcinoma by blocking angiogenesis [193,248]. In some cases, antibody-drug-conjugates 
(ADC) consisting of a highly cytotoxic small-molecule covalently linked to a monoclonal antibody 
that recognizes a cell surface antigen have been developed. Indeed, a GPC2-targeted ADC obtained 
by conjugating a GPC2 directed antibody with pyrrolobenzodiazepine dimers resulted in being 
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effective in neuroblastoma [249]. Furthermore, an ADC composed of an anti-GPC1 antibody 
conjugated with auristatin F, an anti-tubulin compound that inhibits cell division, has shown to be 
effective in uterine cervical squamous cell carcinoma [250]. 

Both saccharidic and non-saccharidic HS mimetics have shown to affect tumor cells and 
components of tumor microenvironment through different mechanisms, including the inhibition of 
cell surface-tethered HSPG signaling and HSPG-mediated cell adhesion, spreading, and angiogenesis 
[165,251]. Small HS mimetics molecules result in being effective in various types of cancers either 
administered alone or in combination regimens and are characterized by good safety and tolerability 
profiles [242]. A sulfated non-saccharide mimetics of heparin hexasaccharide, G2.2, inhibits colon 
cancer stem cells [252]. The HS mimetics OTR4120 and OTR4131 exhibit anti-tumoral effects in 
human hepatocellular carcinoma by interfering with HSPGs-mediated RANTES signaling [253]. 
Synstatin, a short peptide mimicking the SDC1 ectodomain responsible for αvβ3 or αvβ5 
integrin/IGF1 complex formation and receptor activation, has been proved to be effective in 
mammary tumors and hepatocellular carcinoma [210,226,254]. Another approach in cancer therapy 
uses HS mimetics in conjunction with inhibitors of the exosites of proteases (i.e., cathepsins), thus 
interfering with HS/proteinase binding and proteinase catalytic activities [254]. 

In addition, targeting HSPG biosynthetic and post-translational modifying enzymes such as 
endosulfatases and heparanase represents an effective therapeutic intervention for cancer treatment 
[266–270]. An approach is represented by the manipulation of HSPG synthesis using xylosides that, 
competing with core proteins for HS binding, promote the secretion of xyloside-primed HS chains 
and core proteins with reduced, or completely lacking, HS chains [165]. The reduced glycosylation of 
cell surface proteoglycans affects HSPG-dependent growth factor and chemokine signaling, thus 
inhibiting angiogenesis, tumor growth, and invasion. Treatment with xylosides also attenuates EV-
mediated intercellular transfer of signaling molecules regulated by HSPGs, resulting in a reduction 
of cancer cell migration and invasion [238,239]. On the other hand, different modalities for targeting 
EV-mediated intercellular communications have been proved to represent a useful strategy to 
prevent tumor progression and metastasis [271]. In addition, HS mimetics as well as antibodies, and 
other modulators have been developed to target heparanase and sulfatases involved in the regulation 
of HSPGs in tumor microenvironment [92,101,165,251,260–270]. Indeed, the HS mimetics PI-88, 
PG545, and M402 have been shown to exert anti-angiogenic and antimetastatic effects by inhibiting 
heparanase in several types of cancers [89,224–230]. Furthermore, heparanase neutralizing 
monoclonal antibodies attenuate myeloma and lymphoma tumor growth and dissemination 
[155,251,261,262,265,266]. Recently, a novel class of triazole-thiadiazole small molecules with 
heparanase inhibitory activity has shown the ability to reduce the metastatic potential of 
hepatocellular carcinoma [267]. In addition to heparanase, sulfatases that remove the O-sulfate group 
from HS chains have been explored as targets for cancer therapy [91]. The human sulfatase 2 (SULF2) 
inhibitor 2,4-disulfophenyl-N-tert-butylnitrone (OKN-007) exhibits antitumoral activity in 
hepatocellular carcinoma and glioblastoma by affecting TGFbeta1/SMAD signaling, and cell 
proliferation and angiogenesis, respectively [268,269]. On the other hand, proteasomal inhibitors 
such as MG132, Lactacystin, and Bortezomib treatment abolish SULF2 expression in multiple breast 
cancer cell lines [270]. Inhibition of human sulfatase 1 (SULF1) inhibits the malignant phenotype of 
gallbladder carcinoma cells by hindering the cell response to growth factors [272]. Thus, the 
modulation of tumor microenvironment by affecting the structure and/or activity of HSPGs 
represents an effective therapeutic strategy for preventing tumor growth and progression. 

5. Concluding Remarks 

A huge amount of data demonstrates that HSPGs are key players in tumor growth, invasion, 
and metastasis, due to their capability to influence tumor microenvironment and, in turn, tumor cell 
fate. Indeed, these multifunctional molecules by interacting with matrix effectors, cell surface 
receptors, and enzymes are involved in the complex network of cell-cell and cell-matrix interactions 
that dictate tumor cell behavior. The extensive remodeling of tumor microenvironment during cancer 
development and progression is associated with changes in the expression levels of HSPGs as well 
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as in structural and functional alterations of HSPGs that affect cancer cell phenotype. Advances in 
understanding the molecular mechanisms underlying HSPG structural and functional variability in 
malignancy has provided promising HSPG-based therapeutic approaches for cancer treatment. 
HSPG targeting-based tumor treatment may involve the use of: i) antibodies targeting selected HSPG 
epitopes or synthetic molecules that interfere with the functional binding of HSPGs with ligands such 
as growth factors or integrins and other receptors, thus affecting the downstream signaling and the 
related cellular processes such as adhesion, proliferation, migration, and invasion; iii) small 
molecules that interfere with EV-mediated intercellular transfer of signaling molecules regulated by 
HSPGs; iv) specific inhibitors or proteinase inhibitors that prevent HSPG shedding; v) drugs that 
regulate the expression levels of HSPGs in tumor microenvironment. However, as the knowledge on 
the multifaceted roles of HSPGs in tumor microenvironment progresses, innovative HSPG 
structure/function targeting strategies are explored to fight cancer. 
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Abbreviations 

ADAM a disintegrin and MMP protease 
ADAMTS ADAMS with thrombospondin motifs 
ADC antibody-drug-conjugates 
AKT protein kinase B 
ECM extracellular matrix 
EGF epidermal growth factor 
ERK extracellular signal-regulated kinase 
EXT Exostosin 
EXTL N-acetylglucosaminyltransferase 
EV extracellular vesicle 
FAK focal adhesion kinase 
FGF fibroblast growth factor 
FGFR fibroblast growth factor receptor 
GAG glycosaminoglycan 
GalT galactosyltransferase 
GlcAT glucuronyltransferase 
GLCE D-glucuronyl C5-epimerase 
GPC glypican 
GPI glycosylphosphatidylinositol 
HB-EGF heparin-binding epidermal growth factor-like 
HGF hepatocyte growth factor 
HPSE heparanase 
HS heparan sulfate 
HSPG heparan sulfate proteoglycan 
HS3ST2 heparan sulfate glucosamine 3-O-sulfotransferase-2 
HS6ST2 heparan sulfate glucosamine 6-O-sulfotransferase-2 
IGF1 insulin-like growth factor-1  
JAK Janus kinase 
MAPK mitogen-activated protein kinase 
MMP matrix metalloproteinase 
NDST N-deacetylase/N-sulfotransferase 
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OST heparan sulfate-O-sulfotransferase 
PI3K phosphatidylinositol 3-kinase 
PKC protein kinase C 
PDGF platelet-derived growth factor 
PG proteoglycans 
SDC syndecan 
STAT signal transducer and activator of transcription protein  
SULF endo-6-O-sulfatase 
TGF transforming growth factor 
XYLT xylosyltransferase 
VEGF vascular endothelial growth factor 
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