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Abstract: Diabetes mellitus is one of the most common metabolic diseases in the developed world,
and is associated either with the impaired secretion of insulin or with the resistance of cells to the
actions of this hormone (type I and type II diabetes, respectively). In both cases, a common pathological
change is an increase in blood glucose—hyperglycemia, which eventually can lead to serious damage
to the organs and tissues of the organism. Mitochondria are one of the main targets of diabetes at
the intracellular level. This review is dedicated to the analysis of recent data regarding the role of
mitochondrial dysfunction in the development of diabetes mellitus. Specific areas of focus include
the involvement of mitochondrial calcium transport systems and a pathophysiological phenomenon
called the permeability transition pore in the pathogenesis of diabetes mellitus. The important
contribution of these systems and their potential relevance as therapeutic targets in the pathology
are discussed.

Keywords: diabetes mellitus; mitochondria; MPT pore; mitochondrial biogenesis; mitophagy;
mitochondrial dynamics; Ca uniporter

1. Introduction

Diabetes mellitus is the most common endocrine pathology in many countries around the world
today. According to the data of the International Diabetes Federation for 2019, the number of people
with diabetes worldwide is approximately 463 million [1]. The relevant mortality rate from diabetes in
economically developed countries reaches 4% each year. The forecast of the World Health Organization
by 2030 indicates that diabetes will be the seventh disease in the ranking of the causes of mortality in
the world [2]. To date, diabetes is recognized as one of the concomitant diseases that causes severe
complications in patients with COVID-19 [3].

Diabetes mellitus is a chronic disease that is characterized by an absolute or relative deficiency of
insulin, the hormone that stimulates the transport of glucose across cell membranes, which leads to an
increase in blood glucose—hyperglycemia. Respectively, two main types of diabetes are distinguished.
Type I diabetes mellitus (about 10% of cases of diabetes) is an autoimmune disorder that results from
the progressive destruction of the insulin-producing beta cells of the pancreas by T cells and activated
macrophages and eventually leads to insulin deficiency in the organism. It is well known that type I
diabetes most frequently develops in childhood and causes severe long-term complications, including
retinopathy, neuropathy, and nephropathy [4–6]. Type II diabetes or adult- onset diabetes (about
90% of cases) is characterized by an impairment of homeostasis of glucose and insulin, in particular,
the development of insulin resistance of target tissues associated with compensatory hyperinsulinemia,
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followed by beta-cell dysfunction. Type II diabetes mellitus is accompanied by glucose toxicity,
lipotoxicity, and chronic oxidative stress, which finally can result in damage to vital organs and
development of life-threatening secondary complications [4,7].

At the cellular level, diabetes mellitus, like many other metabolic abnormalities, is closely
associated with alterations in the structure and function of mitochondria [8,9]. As is known, glucose is
one of the primary molecules that serve as energy source in most cells and tissues of the organism.
In this regard, the disorder of glucose uptake will disrupt cellular energy metabolism and, consequently,
the functioning of mitochondria as a key player in the metabolism. The development of mitochondrial
dysfunction in the course of diabetes mellitus was described for the first time 45 years ago [10].
Meanwhile, current data on the molecular mechanisms underlying damage to mitochondria in diabetes
are rather controversial. This applies especially to a pathophysiological phenomenon called the opening
of the mitochondrial permeability transition (MPT) pore, which can trigger the release of proapoptotic
proteins from mitochondria and eventually result in cell death. This review focuses on the complex
changes that occur in mitochondria in type I and II diabetes, as well as specific mechanisms connecting
mitochondrial dysfunction and the progression of the pathology. Particular attention will be paid to
the role of the Ca2+ handling and the MPT pore in the development of mitochondrial dysfunction in
diabetes mellitus.

2. Mechanisms of the Diabetes-Induced Mitochondrial Dysfunction

Mitochondrial dysfunction refers to alterations in the ultrastructure and functioning of
mitochondria, which can occur due to a disturbance of synthetic processes in the cell or the direct action
of the damaging agents on the organelles. The crucial characteristics of mitochondrial dysfunction
are decreased numbers of mitochondria in tissues, profound ultrastructural abnormalities of the
organelles, impaired mitochondrial biogenesis, reduced activity of mitochondrial multienzyme
complexes, and suppressed ATP synthesis. Along with other features, mitochondrial dysfunction is
also characterized by the disturbance of calcium homeostasis, excessive ROS production, and the MPT
pore opening, which can trigger irreversible damage to cell structures and cause apoptotic cell death.
Importantly, all these processes take place in the course of type 1 and 2 diabetes mellitus, indicating
mitochondrial dysfunction being implicated in the pathogenesis of the disease. The diabetes-related
mitochondrial alterations in different tissues and organs of animals and humans are summarized
in Table 1.

Table 1. The mechanisms of diabetes-induced mitochondrial dysfunction in vital organs and tissues of
human and animals.

Pancreatic
Islets Heart Skeletal

Muscles Brain Kidney Adipose Liver

Biogenesis ↓ [11]
↑ [12] ↓↑ [13] ↓ [14] ↓ [15] ↓ [16] ↓ [17] ↓ [18]

↑ [19]

Mitophagy ↓ [20]
↑ [21] ↓ [22] ↓ [23] ↓ [24] ↓ [25]

↑ [26] ↑ [27] ↓ [28]

Fission/Fusion ↑/↓ [29] ↑/↓ [30] ↑ [31]
↓ [32] ↑/↓ [33] ↑/↓ [34] ↑ [35]

↓? ↑/↓ [36]

OXPHOS ↑ or ↓ or not changed, see review [37]

ROS production ↑ [20] ↑ [38] ↑ [39] ↑ [40] ↑ [34] ↑ [17] ↑ [41]

As one can see from Table 1, the rate of mitochondrial ROS production increases in most vital
organs and tissues of diabetic animals and patients, while changes in mitochondrial biogenesis,
dynamics, mitophagy, and oxidative phosphorylation in diabetes can be tissue-specific. Depending on
the animal model used, diabetes-induced changes in some mitochondrial processes in the same tissues
can be oppositely directed. Indeed, numerous animal models of diabetes are available, including
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genetic or spontaneously induced and experimentally induced models. Models of spontaneous
type I diabetes target single or multiple genes and include a number of stains and sub-stains of
rodents with genetic susceptibility for the pathology, including nonobese diabetic (NOD) mice, diabetic
Bio-Breeding (BB) rats, Akita mice, Komeda Diabetes Prone (KDP) rats, LETL/KDP rats and substrains,
LEW.1AR1/Ztm-iddm rats, etc. The chemical agents streptozotocin and alloxan are also commonly used
to induce type I diabetes in rodents, but the regimes for their administration to animals differ significantly.
Type 2 diabetes, typically accompanied by obesity, is induced by feeding a high-fat diet to animals, while
diabetogenic drugs (streptozotocin, etc.) are often additionally used (for more details see [42–44]). Type 2
diabetes can also be produced in rodents by utilizing monogenic mutations (Lep ob/ob (ob/ob) mice,
Lepr db/db (db/db) mice, Zucker diabetic fatty (ZDF-Lepr fa/fa or fa/fa) rats), or polygenic mutations
(Kuo Kondo (KK) mice, Otsuka Long-Evans Tokushima Fat (OLEFT) rats, etc.). Models of spontaneous
type II diabetes are wildly used both in a combination with obesity (Lep ob/ob (ob/ob) mice, etc.) and
in the absence of obesity (Goto-Kakizaki (GK) rats, etc.). On the one hand, the pathophysiological
and genetic features of animal models can affect the above processes in mitochondria. On the other
hand, it is equally important to pay attention to the stage of development of diabetes mellitus (or the
duration of its induction). For example, in humans, mitophagy in pancreatic β-cells is activated at
the pre-diabetic stage, but significantly suppressed during diabetes [20]. In animal models, responses
to exposure to diabetogenic drugs and high-energy diet might be the result of both adaptive and
maladaptive processes, which, unfortunately, are often difficult to separate.

2.1. Imbalance of Mitochondrial Biogenesis and Mitophagy upon Diabetes Mellitus

The maintenance of the content and structure of mitochondria in the cell (mitochondrial homeostasis)
is ensured by the coordination of two opposite processes—mitochondrial biogenesis and mitophagy.

Mitochondrial biogenesis is a complex and highly regulated process that requires the coordinated
cooperation of transcription and replication of both the nuclear and the mitochondrial genomes.
The master regulator that provides the transcriptional control of mitochondrial biogenesis is the
peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) [45]. The expression of
PGC-1α can be regulated by many extra and intracellular signals mediated by CREB, AMP-activated
protein kinase (AMPK), Ca2+/calmodulin-dependent protein kinase (CAMK), calcineurin, and nitric
oxide (NO) [45–50]. PGC-1α coactivates a number of transcription factors, including nuclear respiratory
factor 1 (NRF1), estrogen-related receptors (ERRs), and PPARs. In turn, these factors activate the
expression of the nuclear genes encoding almost all mitochondrial proteins. In addition, PGC-1α was
also shown to promotes the expression of two isoforms of a mitochondrial transcription specificity
factor, termed TFA1M and TFB2M, and the mitochondrial DNA polymerase, which induces the
transcription and replication of mitochondrial DNA (mtDNA). The role of PGC-1α in regulating
cellular metabolism was described in detail in recent reviews [45,51,52].

The evidence supports that the diabetes-related suppression of energy metabolism is often
associated with a decrease in the content of mitochondria and the impairment of mitochondrial
biogenesis in damaged cells [53–55]. Indeed, the expression levels of PGC-1α, mitochondrial proteins
and mRNA, as well the ratio between the number of copies of mtDNA and nuclear DNA (nDNA) are
reduced in many tissues and vital organs (in particular, the cardiac and skeletal muscles, the kidneys,
and the brain) of both humans and laboratory animals with diabetes (Table 1). The administration of
insulin to animals with type I diabetes leads to an increase in the expression level of mitochondrial
proteins and an improvement of energy metabolism (an increase in the rate of ATP synthesis) [56,57].
The use of antidiabetic drugs (metformin, thiazolidinediones, empagliflozin, and some others) or regular
exercise recovers the expression of PGC-1α, the mtDNA/nDNA ratio and improves mitochondrial
energy metabolism in diabetic animals [58–62]. At the same time, an increase in the expression of
PGC-1α results in the restoration of both energy functions and insulin sensitivity of cells [62,63].

Interestingly, the expression level of PGC-1α in hepatocytes can increase in diabetic conditions,
leading to an elevation of the production of glucose in the liver and the aggravation of hyperglycemia [19].
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The knockdown of PGC-1α in the liver tissue improves glucose tolerance and hepatic insulin sensitivity
in db/db mice [64].

Meanwhile, some studies have shown that the number of mitochondria in some cells does not
change or even increases in the course of diabetes. It was found that in patients with type I and type II
diabetes, there is no decrease in the number of mitochondria in the pancreas [65]. In cardiomyocytes,
the mtDNA/nDNA ratio, the size and number of mitochondria upon diabetes type I and II are
elevated [13]. In parallel, an increase in the production of reactive oxygen species and a suppression
of the function of the mitochondrial respiratory chain are observed [66,67]. One can suggest that in
these studies, adaptative changes occurred. In this case, increased mitochondrial biogenesis could
be a response to mitochondrial damage due to oxidative stress. Together with the suppression of
mitophagy, this may lead to an increase in the number of mitochondria (including the damaged ones)
in cells of some tissues upon diabetes.

Mitophagy is the process of selective destruction of mitochondria by autophagy. The mechanism is
essential for a living cell to maintain mitochondrial quality and homeostasis by removing the needless
or dysfunctional mitochondria. Mitophagy also protects against apoptosis and alleviates cell damage
from toxic substances [68]. The stimulation of mitophagy can occur due to the activation of sirtuin-1
(SIRT1), NAD+-dependent histone/protein deacetylase, and AMPK, which, in turn, initiates two
signaling pathways containing PTEN-induced putative kinase 1 (PINK1), the E3 ubiquitin ligase Parkin
(PINK1/Parkin), and NIP3-like protein X (NIX)/BNIP3. These signaling mechanisms are triggered in
the cell in response to the occurrence of damaged mitochondria (for example, mitochondria with low
membrane potential), which leads to the formation of autophagosomes that subsequently deliver them
to lysosomes for complete destruction [69]. It is the balance between mitochondrial biogenesis and
mitophagy that maintains a constant number of functionally active mitochondria in the cell. Therefore,
these processes can be triggered when specific signaling pathways are activated.

The expression of PINK1, Parkin, NIX, and other autophagy-related proteins was found to increase
in tissues of patients with a pre-diabetic state [20]. In rodent models of type 2 diabetes induced by
a high-fat diet and low doses of streptozotocin treatment, autophagy was shown to be activated in
pancreatic β-cells [21,70]. With the progression of diabetes mellitus in humans and laboratory animals,
the mitochondrial-specific autophagy is suppressed in many tissues and organs (pancreas, heart,
skeletal muscle, eyes) [20,22–25,28,71], which may be associated with a decrease in the activation of
AMPK and SIRT1 [72–74]. Some studies revealed that the chronically elevated level of glucose upon
type I diabetes induces the accumulation of p53 protein in the cytoplasm of β-cells of the pancreas.
This protein binds to Parkin, blocks its translocation to damaged mitochondria and thereby inhibits
mitophagy [75]. There is evidence that anti-diabetic drugs can enhance the autophagic clearance
of damaged mitochondria, which leads to the improvement of mitochondrial energetics. It was
observed that metformin operates as an agonist of AMPK (and SIRT1) and increases the expression of
Parkin [25,76], whereas the inhibitors of sodium-glucose linked transporter 2 (SGLT2) activate the SIRT
signaling pathway and AMPK, thereby promoting mitophagy [77,78].

Thus, one can conclude that the development and progression of diabetes and its complications
in humans and animals mainly leads to the suppression of both mitochondrial biogenesis and
mitophagy. As a result, the number of healthy mitochondria in the cell decreases and the proportion
of the depolarized organelles increases. These changes, obviously, underlie overall mitochondrial
dysfunction and abnormality throughout diabetes, which will be discussed below. At the same
time, a number of studies showed the stimulation of the processes of mitochondrial biogenesis and
mitophagy (Figure 1). These observations suggest the occurrence of adaptive changes in various
tissues, which may prevent or delay the onset of diabetes-related complications. In this regard, further
research is required to elucidate the mechanisms of changes in mitochondria at different stages in the
disease progression.
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Figure 1. Schematic illustration of changes in the ultrastructure and content and of mitochondria
in the cell in diabetes mellitus. Depending on the model of diabetes used or tissue, mitochondrial
biogenesis and mitophagy can be enhanced or suppressed. The arrows show changes in the content of
mitochondrial DNA, the main proteins responsible for mitochondrial dynamics, and the rate of ROS
production by mitochondria in the pathology.

2.2. Impairment of Mitochondrial Dynamics in Diabetes Mellitus

Mitochondrial homeostasis in the cell is supported not only by the processes of mitophagy and
biogenesis but also by many other mechanisms of mitochondrial quality control. Changes in the
architecture of the mitochondrial network due to repeated fusion and fission of the organelles is another
mechanism that regulates the maintenance of proper mitochondrial functions. Mitochondria are
remarkably dynamic organelles; their shape, position in the cell, arrangement of the cristae, and other
morphological signs can vary significantly depending on physiological or pathological conditions.
It has been suggested that conditions that require increased energy expenditure (fasting, acute
stress, and others) promote mitochondrial fusion and the formation of an interconnected/elongated
mitochondrial network. Conversely, conditions of excess energy sources and relatively low demand
for ATP stimulate mitochondrial division and fragmentation of the mitochondrial network, which
results in an increase in the proportion of single mitochondria in the cell. In addition, mitochondrial
fragmentation has been thought to be essential for mitophagy induction [79,80].

The dynamic balance between fission and fusion is regulated by large GTPase family proteins
belonging to the Dynamin superfamily. Mitochondrial fission is mainly ensured by dynamin-related
protein 1 (DRP1) and fission protein 1 (FIS1) [79,81]. DRP1 mediates mitochondrial construction
by assembling into an oligomeric ring in the constriction sites, which divides the mitochondrion in
a GTP-dependent process. Drp1 is primarily localized in the cytoplasm, but it can be recruited to
mitochondria via receptors anchored into the outer membrane of the organelles. FIS1, a small adaptor
protein located in the outer mitochondrial membrane, participates in the recruitment of DRP1 through
its cytosolic domain. Along with FIS1 and DRP1, three more proteins have been identified to be
involved in mitochondrial fission: mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and
MiD51, respectively) and mitochondrial fission factor (MFF) [82].

The fusion of the outer mitochondrial membranes is mediated by mitofusins 1 and 2 (MFN1 and
MFN2) [79,81]. Mfn2 is also one of the linker proteins that is involved in the formation of contact
sites between mitochondria and the endoplasmic reticulum (ER), termed mitochondria-associated ER
membranes (MAMs). MAMs play a fundamental role in the regulation of cellular metabolism and,
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in particular, glucose and Ca2+ homeostasis [83,84]. The fusion of the inner mitochondrial membranes
is carried out by optic atrophy 1 (OPA1) (see reviews [79,81,85]). OPA1 has a dual role: it is also
involved in maintaining the structure of mitochondrial cristae and thereby can modulate mitochondrial
function through cristae remodeling [86].

There is increasing evidence that altered insulin signaling in cells may contribute to changes in the
level of proteins responsible for mitochondrial fusion and in the structure of the mitochondrial network.
It has been shown that the expression of MFN2and OPA1 is significantly decreased in many tissues
of diabetic animals [29,30,32,33,36,87–89]. Treatment with the mitochondrial fusion promoter-M1
increases the expression of OPA1, promotes mitochondrial fusion, enhances mitochondrial respiratory
capacity, and reduces the rate of ROS production by mitochondria [90]. At the same time, the function of
the mitochondrial fission machinery in diabetes is enhanced. In particular, increased expression of DRP1
and FIS1 is observed [28,30–34,87,89]. In cultured skeletal muscle cells and cortical neurons, genetic
and pharmacological inhibition of Drp1 was shown to attenuate palmitate-induced mitochondrial
fragmentation and insulin resistance [91,92]. These events were accompanied by a decline in ROS
generation by mitochondria and an increase in the mitochondrial respiratory capacity.

As mentioned above, mitochondrial fragmentation can play an important role in the induction of
mitophagy in the cell. At the same time, there is evidence that DRP1 is not essential for mitophagy,
but rather restricts PINK1–Parkin activity to specific mitochondrial subdomains. In this regard, one
can assume that an increase in DRP1 in diabetes can lead to suppression of mitophagy [93].

Along with the enhanced fission and fragmentation of mitochondria in diabetes mellitus,
pronounced alterations in the ultrastructure of the organelles are observed. Transmission electron
microscopy analysis reveals the occurrence of swollen “hypertrophic” mitochondria with a decreased
matrix density and disorganized inner-membrane cristae in cells from various tissues and organs [29,88].

It was found that antidiabetic drugs can restore mitochondrial fusion and fission within the cells.
Notably, the SGLT2 inhibitors empagliflozin and dapagliflozin modulate the activity of mitochondrial
dynamics via the regulation of fission (FIS1 and DRP1) and fusion (MFN1 and MFN2) proteins [34,94,95].
Metformin reduces the expression of DRP1 [96]. It was also demonstrated that exercise promotes
a decrease in DRP1 expression and an increase in MFN1 and MFN2 expression. The dipeptidyl
peptidase-4 inhibitor vildagliptin suppresses the expression of FIS1 and DRP1 and prevents the
translocation of DRP1 into mitochondria [97].

Thus, one can conclude that during diabetes mellitus, the system of mitochondrial fission and
fusion is thrown out of balance, which leads to the remodeling of the mitochondrial network in the
cell. Ultimately, this is accompanied by a change in the structure of mitochondria and their functional
activity (Figure 1).

2.3. Diabetes-Induced Changes in the Functional Activity of Mitochondria

In the course of both type 1 and 2 diabetes mellitus, abnormal glucose utilization leads to a
“switch” of energy metabolism: the cells begin to replenish their energy needs mainly via fatty acid
β-oxidation. Although the mechanisms by which this occurs are different for the two types of diabetes,
there is eventually an increased uptake and utilization of fatty acids in both cases. An increase in
the plasma level of free fatty acids and their uptake by cells in type II diabetes further reduces the
insulin-dependent absorption of glucose. In parallel, high rate of gluconeogenesis is observed [98,99].
Ultimately, this results in the fact that the synthesis of ATP in cells occurs mainly due to the oxidation
of fatty acids, and not the metabolism of carbohydrates [54].

In parallel, there is a PPARα-mediated increase in the expression of mitochondrial enzymes
responsible for the metabolism of fatty acids, notably carnitine palmitoyl transferase 1 (CPT1) [100].
Inhibition of CPT1 is considered as a possible mechanism to modulate altered energy metabolism and
improve insulin sensitivity of cells upon type II diabetes [101].

As is known, type II diabetes leads to serious disorders of protein metabolism. In mitochondria,
the inhibition of pyruvate dehydrogenase, branched-chain a-ketoacid dehydrogenase, and tyrosine
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aminotransferase occurs. These events would selectively increase tissue and blood concentrations of
some essential amino acids, particularly methionine [102]. In this regard, methionine restriction can
improve insulin resistance and glucose homeostasis in diabetes [103].

As would be expected, changes in the cellular energy metabolism and structure of mitochondria in
type I and II diabetes, should lead to impaired mitochondrial respiration and oxidative phosphorylation.
Meanwhile, the literature data are rather contradictory.

On the one hand, some studies demonstrated that respiratory function and ATP synthesis in
diabetic mitochondria are suppressed. It was found that the ADP/O ratio and the rate of ADP-stimulated
respiration of isolated mitochondria harvested from diabetic patients and different animal models
for diabetes significantly decrease [104–106]. These events are accompanied by an increase in the
NADH/NAD ratio due to a pronounced dysfunction of complex I of the mitochondrial respiratory
chain, as well as a decrease in the activity of complexes II, IV, and V (ATP synthase) [13,107]. The content
of the ATP synthase complex in mitochondria of the liver and the heart of animals with type 1 diabetes
is also reduced, which can be associated with the accumulation of calpain 1 in the organelles [41,108].
The alterations in activities and protein expression of the respiratory chain complexes both inhibit
ATP synthesis and accelerate the generation of ROS in mitochondria, resulting in the development of
oxidative stress. Inhibition of calpain 1 was shown to restore the levels of ATP synthase-α (ATP5A1) and
autophagy, as well as prevent mitochondrial fragmentation and excessive ROS production [108,109].

It is known that the individual complexes of the mitochondrial respiratory chain are capable of
organizing into multienzyme assemblies, so-called supercomplexes, which increases the efficiency of
ATP synthesis. Destabilization of the structure of the mitochondrial supercomplexes might contribute
to the disruption of mitochondrial respiration and oxidative phosphorylation. In tissues of patients with
type 2 diabetes, the extent of assembly of the respiratory supercomplex I-III-IV was found to decrease
compared with that in the control [110]. Similar changes were demonstrated in diabetic mice that were
fed with a high cholesterol diet. In these animals, the rate of mitochondrial state 3 respiration, the value
of the mitochondrial membrane potential, and the assembly of the respiratory supercomplexes in
mitochondria of the liver were reduced [111]. Some studies also revealed that a diabetes-induced
decline in the activity of complexes of the respiratory chain can be associated with a decreased
content or altered composition (peroxidation) of cardiolipin, a main anionic phospholipid in the inner
mitochondrial membrane (see review [54]).

On the other hand, several studies showed that diabetes is not accompanied by a significant
decrease in the ability of the mitochondria to synthesize ATP. The studies were performed on
mitochondria isolated from various tissues of patients with both type 1 and type 2 diabetes and some
diet-induced and transgenic diabetic animal models (see review [37]). Mitochondria respiration in
these experiments was supported by oxidation of substrates of complexes I and II of the respiratory
chain [112,113]. In some cases, a diabetes-induced stimulation of respiration of mitochondria was even
observed. For example, mitochondrial respiration was found to increase in the diabetic liver, where
the level of cardiolipin in the mitochondrial membranes was also elevated [113]. Therefore, an increase
in the phospholipid level in diabetes is likely to be required for adaptive responses, whereas a loss of
its content in mitochondria can contribute to the dysfunction of the organelles [114].

It should be noted that some antidiabetic drugs can suppress oxidative phosphorylation of isolated
mitochondria [115]. Metformin and pioglitazone inhibit the activity of complex I of the mitochondrial
respiratory chain [115–117]. Pioglitazone at high concentrations induces mitochondrial swelling,
increases ROS production, and decreases the membrane potential of mitochondria [118].

As mentioned above, the development of diabetes is accompanied by the accumulation of free
fatty acids inside cells and intracellular membranes. In mitochondria, this can lead to uncoupling of
respiration and oxidative phosphorylation as well as decreased ATP production [66]. The uncoupling
action of free fatty acids on oxidative phosphorylation is carried out by the protonophore mechanism
and mediated by anion carriers of the inner mitochondrial membrane: uncoupling proteins (UCP1-3),
adenine nucleotide translocator (ANT), aspartate/glutamate carrier, etc. Despite the seemingly negative
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events, uncoupling of oxidative phosphorylation in mitochondria is of great physiological significance.
Especially, mitochondrial uncoupling triggers nonshivering thermogenesis in brown adipose tissue
and reduces the excessive generation of ROS by mitochondria [66,119,120].

Some studies reported that the expression of uncoupling proteins (UCPs) 2 and 3, which mediate
proton leak across the inner mitochondrial membrane when activated by fatty acids, is increased in
many tissues of animals with experimental diabetes [66,121–123]. Further investigations in this field
revealed that UCPs may be involved in the development of mitochondrial dysfunction in diabetes,
and their impact on mitochondrial metabolism is dependent on the used model of diabetes mellitus.
It was found that after a long-term high-fat diet in animals, UCP3 induces mitochondrial uncoupling
and reduces cardiac efficiency. Meanwhile, UCP3 does not mediate mitochondrial uncoupling in
leptin-deficient states of animals (ob/ob mice). It should be noted that in the latter case, an increase
in UCP expression may be an adaptive mechanism in response to an excessive ROS generation by
mitochondria [124]. Studies suggested that it is the prevention of ROS overproduction and ROS-
induced cell death that is the main result of an increase in the content of this protein in the mitochondrial
membrane. So, overexpression of UCP2 was found to inhibit ROS generation and high glucose-induced
apoptosis of human umbilical vein endothelial cells [122].

2.4. Oxidative Stress and Diabetes Mellitus

Oxidative stress is a key component in the pathogenesis of diabetes mellitus and the only pathogenic
factor that almost all available studies point to [13,54,125]. Only a small number of studies indicate that
mitochondrial dysfunction in diabetes is not necessarily linked with an overproduction of ROS [126,127].
Except for a few papers, most studies demonstrate that the generation of ROS by mitochondria
is increased dramatically in many tissues and metabolically active organs in obesity and insulin
resistance [17,20,34,38–41]. Moreover, mitochondrial ROS modulates various pathophysiological
processes in cells upon diabetes, ranging from an adaptive metabolic response to ROS production and
ending with ROS-induced cell death [54,125].

The main resource of ROS in mitochondria is the electron transport chain, namely, complexes
I (NADH-ubiquinone oxidoreductase) and III (ubiquinol-cytochrome c oxidoreductase). In these
complexes, molecular oxygen is reduced to superoxide anion radical (O2

−). Superoxide can also be
formed during reverse electron transfer from ubiquinol to complex I in an over-reduced electron
transport chain, which leads to the reduction of NAD to NADH. Being short-lived, superoxide can
spontaneously or enzymatically convert to H2O2. In turn, H2O2 and O2

− can be further converted to
the extremely active hydroxyl radical (OH) in the Fenton reaction. Maintaining a low level of harmful
reactive radicals in cells is provided by the antioxidant defense system, which includes the enzymatic
proteins manganese superoxide dismutase (MnSOD), catalase, glutathione peroxidase, thioredoxins,
peroxiredoxins, as well as non-enzymatic scavengers such as glutathione, tocopherol, and others
(see reviews [128,129]).

The association of an overproduction of ROS by mitochondria with the occurrence of cell resistance
to insulin has been proven convincingly. This perspective was detailed in the review by Yaribeiga and
others who considered five main molecular mechanisms through which oxidative stress induces insulin
resistance: β-cell dysfunction, decreased expression of the glucose transporter GLUT4, suppression of
insulin signaling pathways, increased inflammatory responses, and mitochondrial dysfunction [125].

It is commonly accepted that elevated ROS levels can suppress ATP synthesis in mitochondria.
First, ROS can react with the unsaturated fatty acids of lipids of mitochondrial membranes and induce
lipid peroxidation. The oxidative degradation of membrane phospholipids may promote non-specific
permeabilization of the inner mitochondrial membrane, increase proton leakage, and inhibit the
activity of respiratory chain complexes. As mentioned above, the peroxidation of cardiolipin results in
the dysfunction of complex I and destabilization of supercomplex assemblies in the mitochondrial
membranes during diabetes [54]. Second, suppression of oxidative phosphorylation by ROS may
be associated with oxidative damage or decreased level of mitochondrial sirtuin 3 (SIRT3), a major
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NAD-dependent protein deacetylase [107,130]. In healthy cells, SIRT3 plays a key role in deacetylating
and modifying the enzymatic activities of several mitochondrial proteins including the respiratory
chain complexes I, II, and III [130]. It was shown that SIRT3 protein level is significantly reduced in
the tissues of mice with type 1 and 2 diabetes [131]. In Sirt3 knock-out mice, the hyperacetylation
of the mitochondrial respiratory chain complexes I and III is associated with the development of
oxidative stress in cells [22,107,130]. Furthermore, these events are accompanied by the suppression of
mitochondrial respiration and inactivation of the primary antioxidant enzyme MnSOD [130,132]. Third,
elevated ROS formation is one mechanism of upregulation of UCPs, which eventually may lead to a
decrease in mitochondria-generated ATP levels in cells [54]. Fourth, ROS- induced oxidative damage
to mitochondrial proteins can disturb their functions and trigger the opening of the Ca2+-dependent
mitochondrial permeability transition (MPT) pore. The pathological phenomenon of the MPT pore
opening is characterized by a sudden loss of permeability of the inner mitochondrial membrane,
which can lead to the collapse of the membrane potential, release of proapoptotic proteins from
mitochondria, and ultimately cell death [133]. Finally, excessive ROS production can induce oxidative
damage to mtDNA followed by deficiencies of the respiratory chain complexes and total mitochondrial
dysfunction [134].

Interestingly, ROS can be an activator of autophagy/mitophagy [135]. It can be suggested that,
like upregulation of mitochondrial uncoupling proteins, this mechanism works in pre-diabetic or early
stages of diabetes mellitus. However, in the late stages of diabetes, when mitophagy is suppressed,
this compensatory mechanism is apparently suppressed [20].

Recent studies suggest that treatment with metformin, thiazolidinediones, SGLT2 and DPP4
inhibitors prevents both the development of oxidative stress and mitochondrial dysfunction in
diabetes [34,96,97,136–138]. A growing body of evidence suggests that hypoglycemic drugs eliminate
most of the signs of mitochondrial dysfunction in cells of various tissues and organs of diabetic animals.

The use of regulators of oxidative stress in the comprehensive treatment of diabetes was found
to maintain the structural and functional integrity of mitochondria. It has been shown that the
mitochondrial-targeted antioxidants MitoTEMPO, MitoQ, BAM15, C12TPP, and CoQ10 partially
prevent the ROS-induced disorders in oxidative phosphorylation and ultrastructure of mitochondria in
animal models of obesity and insulin resistance [38,139–142]. Currently, the positive effects of CoQ10
and resveratrol as antidiabetic drugs have been demonstrated in most clinical trials [143]. At the same
time, the administration of antioxidants has been reported to usually attenuate diabetes-associated
pathological changes in cells, but not always affect glucose levels and insulin sensitivity of the organism
(see review [143]).

The development and progression of oxidative stress in animal models of diabetes can also be
regulated by modulating the expression and activity of major enzymes responsible for antioxidant
protection. It has been shown that overexpression of catalase in muscle mitochondria of obese mice
leads to the improvement of insulin sensitivity of the animals fed with a high-fat diet [144]. Increased
expression of peroxiredoxin 3 or MnSOD was found to preserve cardiomyocytes and prevent the
development of diabetic cardiomyopathy [145,146].

The free radical overload is one of the most common features of damaged mitochondria in diabetes
mellitus. In addition to the above effects, elevated ROS levels in mitochondria dysregulates Ca2+

homeostasis through the induction of Ca2+ overload and the Ca2+-dependent formation of the MPT
pore. Even though ROS are traditionally considered as one of the main activators of the mitochondrial
pore, the data on the involvement of the MPT pore opening in the pathology of diabetes mellitus are
currently highly controversial. In the next section, we attempt to summarize the recent data on the role
of the MPT pore in the development of diabetes-related mitochondrial dysfunction and to establish the
association between this pathological phenomenon in mitochondria and diabetes mellitus.
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3. Ca2+ Handling, MPT Pore and Diabetes Mellitus

3.1. Mitochondrial Ca2+ Transport in Diabetes

Ca2+ is a universal regulator of many intracellular processes. The appearance of Ca2+ in the
cytosol of pancreatic β-cells is one of the important steps in the mechanism of insulin secretion and
regulation of glucose metabolism in humans and animals [147]. On the other hand, higher intracellular
Ca2+ level has been found in primary adipocytes, hepatocytes, and cardiomyocytes isolated from
obese human subjects with insulin resistance as well as diabetic animals [148–150]. In this regard,
maintaining a low Ca2+ concentration inside cells is an important function of a number of structures,
including mitochondria. Activation of mitochondrial Ca2+ uptake occurs at a sufficiently high ion
concentration in the cytosol. Mitochondria have the ability to rapidly transport and store high
concentrations of Ca2+ in the matrix, which is extremely important for the regulation of calcium
homeostasis under stressful conditions. Mitochondrial matrix Ca2+ regulates a fairly wide range of
proteins of the tricarboxylic acid cycle (in particular, pyruvate dehydrogenase, citrate dehydrogenase,
and α-ketoglutarate dehydrogenase), respiratory chain complexes, contributing to the maintenance
of cell energy metabolism, and ATP generation. It should also be noted that excessive accumulation
of Ca2+ in mitochondria leads to the opening of the MPT pore in the inner membrane and cell death
initiation [84,151].

Ca2+ enters the mitochondria through the voltage-dependent anion channel (VDAC) located on the
outer mitochondrial membrane. VDAC is one of the components of the MAM (mitochondria-associated
membrane) contacts, which allows Ca2+ released from the endoplasmic reticulum to be immediately
redirected via IP3 receptors into mitochondria. The main component responsible for mitochondrial Ca2+

handling is the Ca2+ uniporter of the inner mitochondrial membrane. The uniporter has a remarkably
high affinity for Ca2+, since other divalent cations are transported inside the mitochondria much more
slowly and, moreover, inhibit Ca2+ uptake. It is inhibited by the polycationic dye ruthenium red and its
analogues. Nowadays it is recognized that the mitochondrial calcium uniporter is a multicomponent
system—the pore channel is formed by MCU integral membrane proteins (there is also an inactive MCU
paralogue—MCUb), Ca2+ uptake is regulated by MICU (MICU1–3) gate proteins, as well as regulatory
proteins EMRE and MCUR1. It is important to note that the level of these proteins varies in different
tissues, and the ratio of regulatory and channel subunits determines the ability of the mitochondria of
a particular tissue to absorb calcium ions. Along with the mitochondrial uniporter, other structures are
considered as possible Ca2+ uptake mechanisms: the rapid mode of uptake or RaM, the mitochondrial
ryanodine receptor, and the Ca2+/H+ exchanger Letm1. However, their contribution to mitochondrial
Ca2+ uptake is not as significant compared to the Ca2+ uniporter. The structures responsible for the
release of Ca2+ from mitochondria include Na+/Ca2+ and H+/Ca2+ exchanges. These systems are
supposed to function in different tissues: Na+/Ca2+ exchange takes place in excitable tissues, while
H+/Ca2+ exchange occurs in non-excitable tissues. It has been shown that these are systems of slow
release of Ca2+ from mitochondria, the rate of ion transport through them is much lower than the rate
of Ca2+ entry through the Ca2+ uniporter. The carrier responsible for the Na+/Ca2+ exchange is an
antiporter of the inner mitochondrial membrane, capable of releasing Ca2+ in exchange for Na+ or
Li+ (NCLX— Na+/Li+/Ca2+ exchanger). It is assumed that Letm1 functions as a Ca2+/2H+ exchanger.
In addition to these systems of slow release of Ca2+ from mitochondria, a sharp rapid discharge of
mitochondria from Ca2+ occurs by the opening of non-specific Ca2+-dependent mitochondrial pores.
The balance between mitochondrial calcium entry and release is responsible for the maintenance
of intracellular Ca2+ homeostasis under normal and pathological conditions. More details about
mitochondrial Ca2+ transport systems are described in reviews [84,133,151,152].

Intramitochondrial Ca2+ is shown to be involved in the regulation of insulin secretion in pancreatic
β-cells under normal conditions [147]. The intake of glucose in β-cells leads to the accumulation of
Ca2+ in the mitochondria, an increase in the concentration of ATP in the cells, and insulin secretion.
Indeed, MCU knockout mice show inhibition of the first phase of insulin secretion [153]. It should also
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be noted that glucolipotoxicity is associated with suppression of Ca2+ transport in the mitochondria of
β-cells and an increase in the level of ATP in the cytosol. However, the expression of MCU and NCLX
did not change. The authors suggested that the dysregulation of Ca2+ transport in the mitochondria
of β-cells under glucolipotoxicity is due to a change in the ultrastructure of organelles [154]. At the
same time, palmitic acid upregulated MCU protein expression in mouse clonal β-cell MIN6 under
normal glucose, but not high glucose medium. The authors suggested that high glucose attenuates
the compensatory mechanism involving MCU in palmitate-induced cytotoxicity and causes further
serious consequences related to Ca2+ overload in β-cell lipotoxicity [155].

One of the diabetes-related pathological changes in β-cells is the development of ER stress [156].
Along with the suppression of Ca2+ transport in mitochondria, this causes an increase in free Ca2+ in
the cytoplasm, which, in turn, can lead to an imbalance of diverse Ca2+-dependent signaling pathways.
In addition, the induction of mitochondrial dysfunction and ER stress in the pancreas may eventually
result in the death of β-cells and an increase in diabetic complication rates.

Data on the functioning of the calcium uniporter in diabetic tissues are quite contradictory (Figure 2).
A decrease in the rate of Ca2+ transport was observed in heart mitochondria in streptozotocin- induced
T1DM rats and in T2DM ob/ob mice, as well as in pancreatic cells [154,157–159]. Heart mitochondria
also showed a decrease in MCU expression in a murine model of streptozotocin-induced T1DM, which
was accompanied by a suppression of mitochondrial Ca2+ uptake [160]. An elevated level of the
dominant negative MCUb subunit of the uniporter is also expected to contribute to this picture. Indeed,
normalization of the MCU level in hearts restored mitochondrial Ca2+ handling, increased pyruvate
dehydrogenase activity, and reprogrammed a metabolism toward normal glucose oxidation [160,161].
In addition, the heart of db/db mice showed reduced expression of the peripheral membrane MiCU1
protein acting as a gatekeeper. The reconstitution of MiCU1 in diabetic hearts significantly inhibited the
development of diabetic cardiomyopathy by increasing mitochondrial Ca2+ uptake and subsequently
activating the antioxidant system [162].
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On the other hand, there is evidence that the development of diabetes is accompanied by activation
of the calcium uniporter. Indeed, as far back as the 70s, it was shown that the induction of alloxan
diabetes stimulates the entry of Ca2+ into liver mitochondria [163]. Recently, we also demonstrated that
two weeks after streptozotocin administration to Sprague-Dawley rats, the rate of Ca2+ uptake by liver
mitochondria significantly increased. The analysis showed that an increase in the Ca2+ transport rate
was due to a decrease in the expression of the dominant-negative MCUb subunit of the uniporter [41].
Adipose tissue mitochondria also show an increase in Ca2+ handling. It was shown that mitochondrial
Ca2+ uptake increased and MCU components (MCU and MICU1) were upregulated in insulin-resistant
adipocytes. Similar results were observed in mouse (db/db and ob/ob) and human visceral adipose tissue
during the progression of obesity and diabetes [164].

The development of diabetes mellitus changes not only the activity and expression of Ca2+

uniporter, but also NCLX. Indeed, the endothelia of streptozotocin-induced T1DM rats demonstrated
an increase in NCLX expression. In this case, silencing of NCLX expression increased ROS generation
and NLRP3 inflammasome activation [165].

Insulin resistance and T2DM cause a disruption in the structure of MAM contacts [157,166–168].
The antidiabetic drugs metformin and rosiglitazone restore the structure of MAM contacts in diabetic
animals [168]. It should be noted that diabetes mellitus is associated with overexpression of VDAC1
in certain tissues (pancreatic β-cells, vascular endothelial cells) [169–171]. In parallel, an increased
amount of Ca2+ accumulates in mitochondria, which ultimately leads to the activation of apoptosis.
Inhibition of VDAC1 overexpression leads to the suppression of apoptosis in endothelial cells and
improves insulin secretion in islets [170,171].

The contradictions observed in studies of mitochondrial Ca2+ transport in diabetes mellitus are
difficult to explain. It is possible that the development of diabetes shows tissue specificity. As mentioned
above, liver cells react differently to diabetes. In particular, this organ shows PGC1-1α overexpression
and stimulation of biogenesis. It is worth noting that similar adaptive changes may possibly occur in
other tissues in the early stages of diabetes. Several studies on the induction of diabetes have shown
an increase in the concentration of Ca2+ in the cytosol and mitochondria. In this regard, it can be
speculated that under these conditions, the observed activation of Ca2+ uptake and release systems
from mitochondria will lead to Ca2+ recyclization through the mitochondrial membrane (futile cycle)
and ∆Ψ decrease. Like UCP expression, this adaptive reaction will suppress oxidative stress, at least in
the initial stages of the development of the disease. Such a futile cycle, causing a slight depolarization,
is expected to stimulate mitophagy. Along with increased biogenesis, this will trigger the renewal of
the mitochondrial population in the cell. Meanwhile, excessive accumulation of Ca2+ in mitochondria
will undoubtedly cause the opening of the MPT pore and cell death initiation.

3.2. Mitochondrial Permeability Transition Pore

Excessive accumulation of Ca2+ in the mitochondrial matrix is known to lead to an abrupt increase
in nonspecific permeability of the inner mitochondrial membrane (referred to as the mitochondrial
permeability transition (MPT) pore) for various ions and hydrophilic compounds with a molecular
weight of up to 1.5 kDa. This leads to swelling of the mitochondria, equilibration of ionic gradients across
the inner membrane, a decrease in the mitochondrial membrane potential, and impaired ATP synthesis.
The final consequence of the opening of the MPT pore is cell death. Ca2+-dependent permeabilization
of the inner mitochondrial membrane is one of the key elements in the process of cell death during
hypoxia and subsequent reoxygenation. Moreover, convincing evidence has accumulated over the
years supporting an essential role of the MPT pore opening in the development of cardiovascular
diseases, neurodegenerative processes, viral diseases, muscular dystrophies, etc. [84,172–175].

By the mid-90s of the last century, most of the modulators of the MPT pore had been elucidated.
This is described in detail in a review by Zoratti and Szabo. Ca2+ is perhaps the main pore activator.
In addition to Ca2+, inorganic phosphate (and polyphosphates), SH-oxidizing agents, oxidative stress,
uncouplers, a decrease of the mitochondrial adenine nucleotide content, and other factors stimulate
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MPT pore opening. Inhibitors of the mitochondrial pore are the cyclosporins (cyclosporin A is most
effective), adenine nucleotides, SH-reducing agents, reduced pyridine nucleotides, etc. [175].

Despite significant progress in the study of MPT pore induction and regulation, its molecular
structure and protein composition are still under discussion (Figure 3). An analysis of the literature data
suggests that the MPT pore is a nonselective, high-conductance megachannel consisting of proteins of
the inner and outer mitochondrial membranes. However, to date, cyclophilin D is the only, precisely
established component of this structure; it is the pharmacological target of cyclosporin A and its
analogues, which can specifically block pore opening [176,177]. Cyclophilin D is considered as a
regulatory protein, which in the presence of Ca2+ stimulates rearrangement in the proteins responsible
for the formation of the MPT pore channel. Knockout of cyclophilin D or its binding to an inhibitor
leads to a significant increase in the threshold concentration of Ca2+ necessary for the pore opening.
In 2015, using RNAi-based screening, it was suggested that, along with cyclophilin D, spastic paraplegia
7 (SPG7) is an important regulatory component of MPT [176]. However, it has recently been shown
that SPG7 does not constitute a core component of MPT, but instead regulates activity by lowering the
basal mitochondrial Ca2+ levels via regulation of MCUR1 and Ca2+ uniporter assembly [178].
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Several MPT models have been proposed over the past 40 years. Indeed, only cyclophilin D is
an integral component of the pore. In this case, proteins of the outer membrane and intermembrane
space (VDAC, TSPO, HK, and CrK) are auxiliary in the assembly of the pore complex in intact
mitochondria [179]. However, the question of which protein is the main pore component in the inner
mitochondrial membrane has not yet been resolved. Until the mid-2000s the prevailing hypothesis
was that such a channel-forming pore protein of the inner mitochondrial is adenine nucleotide
translocator. This assumption was because the adenine nucleotide translocator inhibitors, atractyloside
and carboxyatractyloside, stimulated pore opening, and bongkrekic acid showed an inhibitory effect.
Adenine nucleotides carried by the translocator under normal conditions also suppressed the pore
opening [175]. In addition, it was shown that ANT is able to bind to VDAC and hexokinase, as well as
to cyclophilin D, forming channels in liposomes whose properties resemble MPT [180–182]. However,
the discovery that the opening of the MPT pore also occurred in the mitochondria from ANT1 and
ANT2 null mice led to the abandonment of this model [183]. After this, the idea of a phosphate carrier
as a channel component of the MPT pore was considered [184].
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According to the data of the last decade, mitochondrial ATP synthase is considered the main
candidate for the role of the channel-forming component of the MPT pore, whose subunits and,
in particular, OSCP, are able to combine with cyclophilin D, which, as expected, leads to pore
opening [84,172–174]. In addition, it was shown that the OSCP subunit of ATP synthase contains a
unique pH-sensitive histidine (H112), which has a significant modulating effect on the opening of the
MPT pore [185]. Several suggestions have been made as to how ATP synthase can form an MPT pore
channel. Two main hypotheses can be distinguished: (1) «dimer» and (2) «c-ring» [174]. According to
the first one, ATP synthase dimers, but not monomers, conduct currents when inserted into planar
lipid bilayers which are activated by Ca2+ and oxidizing agents and closed by ADP/Mg2+ (established
MPT pore desensitizers) [186]. Further, it was shown that currents were strongly attenuated in yeast
mutants that lacked ATP synthase subunits e and g necessary for the formation of dimers [187]. Indeed,
channel formation by ATP synthase dimers was shown on mitochondria of evolutionarily distant
species (S. cerevisiae, and D. Melanogaster), which makes this hypothesis quite convincing [187–189].
At the same time, it was found that the ATP synthase monomer is sufficient, and dimer formation is not
required, for MPT pore activity [190]. According to an alternative «c-ring» hypothesis, the c-subunit of
ATP synthase localized in the inner membrane of organelles may act as a channel component of the
MPT pore [191,192]. In this case, it is assumed that Ca2+ and (or) ROS- induced dissociation of the F1
sector of ATP synthase leads to conformational changes in the c- ring of the Fo sector, which allows
the formation of an MPT pore channel. However, this hypothesis runs into a series of contradictions.
Indeed, in this case, the process of dissociation must be fast and reversible. First, there must be a quick
detachment of the F1 sector, and second, the c-ring channel must be emptied and hydrated, which
makes this hypothesis unlikely [174,193]. Moreover, the data of model experiments suggest that the
hypothetical MPT pore based on the c-ring will have a significantly lower conductivity than that shown
for MPT [194]. These data are supported by the results of patch-clamp measurements. Finally, it has
recently been shown that mitochondria of mutant cells with disrupted c-subunits of ATP synthase
still display a cyclosporin A-sensitive Ca2+- induced MPT pore opening and, moreover, in some cases
demonstrate increased sensitivity to the induction of this process [195].

Recent data again bring us back to the question of ANT as a structural element of the MPT pore.
Indeed, it has recently been shown that the MPT pore in c-subunit-deficient mitochondria is sensitive
to cyclosporin A, ADP, and bongkrekic acid [195]. Finally, knockout of the genes of three ANT isoforms
(not two, as in 2005) significantly increased mitochondrial resistance to MPT induction and the calcium
capacity of organelles, nevertheless, did not prevent it [196]. These contradictions led to the emergence
of a model for the joint participation of ANT and ATP-synthase in the MPT pore opening. It is assumed
that, depending on the threshold concentration of Ca2+, these proteins will form channels of various
currents that provide different modes of MPT functioning [197] and contribute to both the rapid release
of Ca2+ and metabolites and the maintenance of the functioning of the futile cycles mentioned above.

It should also be mentioned that the search for MPT modulators made it possible to establish
conditions when the mitochondrial Ca2+-dependent swelling was insensitive to cyclosporin A. This type
of permeabilization includes the lipid pore induced by saturated fatty acids and Ca2+. In our previous
papers, we described this type of permeabilization of the mitochondrial membrane in sufficient
detail [84,198,199]. We found that the opening of this pore occurs by the mechanism of a chemotropic
phase transition in a lipid bilayer. Indeed, palmitic acid in the presence of Ca2+ was able to permeabilize both
natural and artificial membranes. The physiological significance of this pore has also been described [200].
The features of the formation and physiological significance of cyclosporin A-insensitive lipid pore are
presented in more detail in our previous review [84].

3.3. The Sensitivity of Mitochondria of Various Tissues to the MPT Pore in Diabetes

The development of oxidative stress is known to accompany both diabetes and MPT pore induction.
Based on this, one could suggest the direct involvement of MPT pore in the pathology of diabetes
mellitus. However, a large number of studies on this issue do not give a clear answer. This seems
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to be due to the use of many diabetic models which renders a comparison of the results of different
observers rather difficult. In addition, the sensitivity to the opening of the MPT pore in different organs
and tissues during the development of diabetes mellitus varies greatly. Data on such differences are
presented in Table 2 and in the subsequent part of this review.

3.3.1. Pancreatic β-Cells

Cyclosporin A, an MPT pore inhibitor, has been shown to protect β-cells from glucotoxicity and
prevent cell death [201]. In addition, substrate deprivation in INS-1 cells caused oxidative stress,
followed by MPT pore opening and β-cell death [202]. Ablation of Ppif, the gene encoding cyclophilin
D, normalized fasting glucose and glucose and insulin responses to an acute glucose challenge in adult
mice maintained on a high-fat diet [203].

Table 2. Tissue-specific susceptibility of mitochondria to MPT pore opening in diabetes mellitus models.

Pancreatic
β-Cells Heart Skeletal

Muscles Brain Kidney Liver

MPT resistance ↓ [201] ↓ [159] ↓ [204]
↑ [205]

↓ [206]
↑ [207] ↓ [208] ↑ [114]

MPT proteins
cyclophilin D n.e. ↑ [209] n.e. ↑ [210] − [211] − [41]
ANT n.e. ↓ [212] − [213] ↑ [214] n.e. ↓ [41]

F0F1-ATPase n.e. ↓ [212]
↑ [215] n.e n.e. ↓ [211]

↑ [216] ↓ [41]

MPT pore inhibitors + [201] + [217] + [218] + [219] no effect [211] − [220]

An increase or decrease in susceptibility to MPT, the level of mitochondrial proteins is indicated by arrows (↑ or ↓).
The positive and negative effects of MPT pore inhibition on the functional state of the tissue are indicated as + and
−, respectively. n.e.—no evidence (in literature).

At the same time, the opening of the MPT pore may be an important process involved in the
mechanism of insulin secretion in healthy pancreatic β-cells [221,222]. Cyclosporin A was shown to
suppress glucose-induced insulin secretion in β-cells (lines MIN6 and INS-1) [221–223]. In this case,
the authors noted the opening of the nonclassical MPT pore in β-cell mitochondria. The opening of
such a pore leads to the conversion of electrical transmembrane potential into pH, thus mitochondrial
respiration remains in a controlled state. At the same time, the pore opening was accompanied by
a suppression of ROS production. On the other hand, it has been shown that the MPT pore may be
responsible for non-glucose stimulated insulin secretion (NGSIS) in pancreatic islets. Non-esterified
free fatty acids have been found to cause insulin secretion in pancreatic beta cells due to an increase
in mitochondrial proton leak. Ablation of cyclophilin D or suppression of its activity by NIM811
significantly reduced both proton leak and NGSIS induced by NEFA [224]. However, other studies
should be noted, where cyclosporin A did not inhibit insulin secretion in beta cells [225,226]. Thus,
the MPT pore performs opposite functions in pancreatic cells, depending on physiological and
pathological conditions.

3.3.2. Heart

Numerous studies have shown that the heart mitochondria of diabetic rats are more sensitive
to the induction of MPT pore than the mitochondria of control animals [159,227,228]. This increased
mitochondrial sensitivity to pore opening and the development of oxidative stress is thought to
underlie cardiomyopathy in diabetes mellitus. In the case of streptozotocin-induced type I diabetes the
sensitivity to MPT does not change in the entire pool of heart mitochondria, but only in interfibrillar
ones. This population of heart mitochondria in diabetic animals shows an increase in the amount of
cyclophilin D, lower cytochrome c and Bcl-2 levels, and increased Bax levels. In this case endurance
training reverted the hyperglycemia-induced CypD elevation and decreased mitochondrial Ca2+
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release [209]. The sub-sarcolemmal population of heart mitochondria in db/db mice has been shown to
undergo more severe pathological changes than the interfibrillar mitochondrial population [212].

It is noteworthy that in the heart of diabetic animals the level of protein molecules related to
the MPT pore changed bi-directionally. This seems to be due to the different models of diabetes.
Particularly, heart mitochondria show a significant increase in the level of ATP synthase and creatine
kinase subunits in the model of streptozotocin-induced diabetes, which may reduce the resistance of
organelles to MPT pore opening [215]. On the other hand, the level of ATP synthase was reduced in
the hearts of db/db mice [212,229]. The hearts of rats (Zucker Fa/fa or streptozotocin-treated) show no
change in the level of ANT1 [215,217,227], but demonstrate an increase in the number of open thiol
groups in this protein, which, presumably, promotes ROS-induced pore induction associated with this
protein [217,227]. In other studies, in the case of the streptozotocin model of diabetic rats and db/db
mice, the heart showed a decrease in the level of ANT, which contradicts the decrease in mitochondrial
resistance to MPT opening [212,230,231]. Analysis of the VDAC level in the cells of the cardiovascular
system in diabetes mellitus also did not reveal significant patterns. It increased, decreased, or did not
change [215,230,231]. In a few studies, it was also noted that diabetes mellitus increases the interaction
of cyclophilin D with the hypothetical channel-forming components of the pore. In particular, the hearts
of Goto-Kakizaki rats show an increase in the interaction of cyclophilin D with mitochondrial inorganic
phosphate carrier, which sensitizes the MPT pore. In this case, a chemical chaperone, 4-phenylbutyric
acid, attenuated the changes in CypD-PiC interaction and restored responses of calcium retention
capacity and infarct size to erythropoietin in GK [228].

As noted above, the MPT pore and oxidative stress are thought to underlie diabetic cardiomyopathy.
Therefore, the correction of this pathology with MPT pore inhibitors looks attractive. Indeed, it has
been shown that administration of cyclosporin A, NIM811, MTP-131, or the mitochondrial calcium
uniporter blocker minocycline at the onset of reperfusion, reduced infarct sizes in both control and
diabetic hearts [222,232]. These findings suggest that augmented susceptibility to injury in the diabetic
heart is mediated by redox-dependent shifts in the MPT pore opening. On the other hand, it was
demonstrated that inhibition of the MPT pore with cyclosporin A failed to restore cardioprotection in
the prediabetic but normoglycaemic heart of Zucker obese rats in vivo [233].

3.3.3. Skeletal Muscles

Skeletal muscle mitochondria, like heart mitochondria, become more sensitive to the induction
of the MPT pore during the development of diabetes mellitus (calcium retention capacity decreases,
oxidative stress develops) [204,218]. Mice lacking CypD were protected from high fat diet-induced
glucose intolerance due to increased glucose uptake in skeletal muscle. The mitochondria in CypD
knockout muscle were resistant to diet-induced swelling and had improved calcium retention capacity
compared to controls; however, no changes were observed in muscle oxidative damage, insulin
signaling, lipotoxic lipid accumulation or mitochondrial bioenergetics. Cyclosporin A prevented
insulin resistance and enhances glut4 expression in cell culture. It was suggested that the protective
effect of CsA on insulin resistance is associated with inhibition of the pore, but not the effect on signaling
pathways [218].

It was demonstrated that ANT1 protein abundance was not significantly reduced in skeletal muscle
mitochondria of ZDF rats compared with the wild-type control rats [213]. At the same time, it was also
shown that ANT1-deficient animals are insulin-hypersensitive, glucose-tolerant, and resistant to high
fat diet-induced toxicity. In ANT1-deficient skeletal muscle, mitochondrial gene expression is induced
in association with the hyperproliferation of mitochondria [234].

At the same time, mitochondria obtained from gastrocnemius muscles of streptozotocin-induced
T1DM mice showed a decrease in mitochondrial respiratory control ratio and to decreased calcium-
dependent MPT pore. [205]. Thus, the diabetic model (or its type) has a significant effect on the resistance
of mitochondria to the induction of the MPT pore in skeletal muscle cells. More comprehensive
research is required using various models to determine the more precise direction of these changes.
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3.3.4. Neural Tissue

The development of diabetes mellitus is also known to increase the sensitivity of brain
mitochondria to MPT [206,210,235]. In patients with diabetes, brain CypD protein levels were increased.
Diabetes triggers enhancement of F1F0 ATP synthase—CypD interaction, which in turn leads to MTP
opening [210]. The sensitivity of brain mitochondria to MPT decreased in cyclophilin D-deficient mice with
streptozotocin-induced diabetes. ATP synthesis deficits, oxidative stress and mitochondrial dysfunction
were also suppressed in these mice [210].

Cyclosporin A also prevented seizure from occurring and virtually eliminated neuronal necrosis
under hyperglycemia [219]. Moreover, the administration of cyclosporin A blocked the osmotic swelling
of Müller cells in retinal slices from diabetic animals [236]. Hyperglycemia has been shown to be
accompanied by significant rearrangements of the mitochondrial proteome and, especially, an increase
in the level of ANT1 in the mitochondria of nerve cells in in vitro experiments [214]. However, as with
skeletal muscle mitochondria, there is evidence that streptozotocin-induced diabetes did not promote
brain mitochondrial dysfunction, suggesting that oxidative stress associated with type 1 diabetes
is not directly related to mitochondrial dysfunction, but probably is related to extramitochondrial
factor(s) [207].

3.3.5. Kidney

As in the case of skeletal muscle and brain mitochondria, there are conflicting data on the role of
the MPT pore in the development of mitochondrial dysfunction in diabetic kidney cells. On the one
hand, kidney mitochondria from the diabetic animals had an increased susceptibility to the induction
of the MPT pore by Ca2+ [208]. CypD loss triggers a metabolic shift in mouse kidneys towards
glycolysis and Krebs cycle activity. The shift is accompanied by increased glucose consumption and
a transcriptional upregulation of effectors of glucose metabolism in the kidney [237]. On the other
hand, it was recently shown that cyclophilin D-null mice are not protected against T1DM-induced
albuminuria. Alisporivir (a non-immunosuppressive CsA analog) did not improve renal function nor
pathology in db/db mice. In these mice, alisporivir had no effect on changes in the structure and function
of mitochondria. Thus, the authors concluded that direct targeting of cyclophilin D will likely not
improve renal outcomes [211]. It should be noted that streptozotocin administration in C57BL/6 mice
led to a decrease in the level of ATP synthase in kidney cells [211], while injection of streptozotocin
in Sprague-Dawley rats caused an increase in the content of ATP synthase and its activity in renal
mitochondria [216].

3.3.6. Liver

Unlike other tissues, an increase in the resistance of liver mitochondria to MPT in type 1 and type 2
diabetes mellitus is described in most studies [41,114,238]. It was manifested as a Ca2+-dependent
mitochondrial swelling delay and an increase in the Ca2+ capacity of organelles. However, an increase
in the resistance of liver mitochondria to pore opening was manifested against the background of an
increase in the level of lipid peroxidation products. It was suggested that the increased resistance of
the organelles to MPT might be underlain by metabolic changes, such as an increase in the content
of coenzyme Q or cardiolipin [114]. We recently demonstrated that streptozotocin-induced diabetes
leads to a decrease in the levels of ANT1 and the c-subunit of ATP- synthase in liver mitochondria.
This may be the cause of increased mitochondrial resistance to MPT in diabetes mellitus. It should be
noted that an increase in the resistance of liver mitochondria to MPT pore opening is simultaneously
accompanied by an increase in the sensitivity of organelles to cyclosporin A-insensitive lipid pore
induced by palmitic acid and Ca2+ [41].

Cyclosporin A reduced the expression of PGC-1a in HepG2 cells. In addition, mtDNA level,
mitochondria mass, ATP production, and cytochrome c oxidase activity were significantly reduced
by treatment with cyclosporin A [220]. All this suggests that cyclosporin A inhibits mitochondrial
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biogenesis in liver cells. In addition, pharmacological and genetic inhibition of CypD has been shown
to concomitantly reduce ER-mitochondria interactions and lead to hepatic insulin resistance and an
increase in lipid accumulation [239].

However, it should be noted that the liver mitochondria of female NOD/Unib mice (non-obese
diabetic mouse model) were more sensitive to MPT pore opening than the mitochondria of the control
animals (Balb/c) [127].

In general, one could assume that in the case of pore opening, diabetes mellitus exhibits a
pronounced tissue specificity (and, probably, model specificity). Diabetes mellitus enhances this
process in some tissues, causing cardio- and myopathy and, ultimately, cell death. On the other hand,
liver cells show adaptive changes that lead to a decrease in the sensitivity of mitochondria and cells to
MPT. It seems reasonable to assume that this adaptation is necessary to maintain the primary functions
of liver, including the neutralization of xenobiotics. The presence of enzyme systems for the xenobiotic
neutralization allows liver cells to specifically adapt to stresses.

3.4. MPT Pore as a Target for Diabetes Management

The issue of MPT pore as a target in the treatment of diabetes mellitus is rather complicated.
According to a wide range of studies, cyclosporin A and other MPT pore inhibitors contribute to the
suppression of mitochondrial dysfunction and improve the quality of life of animals [217,219,232].
Administration of high-dose cyclosporin A has been demonstrated to induce remission of type 1
diabetes mellitus [240]. On the other hand, the same cyclosporin causes suppression of mitochondrial
biogenesis in liver cells [220]. Mice with the deletion of cyclophilin D show the development of
hyperglycemia, insulin resistance, and glucose intolerance, albeit resistant to diet-induced obesity [241].
However, it should be noted that the in vivo interpretation of the effects of cyclosporin A as an MPT
inhibitor may not always be correct. Cyclosporin A is a well-known immune suppressor, and its effect
can be associated not only with the suppression of MPT, but also with the effect on various signaling
pathways in humans and animals.

Synthetic and natural antidiabetic compounds exhibit a bi-directional effect on MPT pore opening.
Notably, metformin has been shown to inhibit MPT pore opening in mitochondria, enhances biogenesis,
and prevents cell death [61,242,243]. However, there is an evidence that metformin stimulates MPT in
rat liver mitochondria [244]. The thiazolidinedione class of antidiabetic agents also shows a similar
stimulating effect on MPT pore [245]. Moreover, troglitazone enhanced MPT pore induction in the liver
of diabetic Zucker (fa/fa) rats [246]. The natural polyphenolic compound luteolin, reduces mortality
from coronary artery diseases, including diabetes [107]. It has been shown to inhibit MPT pore
opening [247]. On the other hand, the plant alkaloid berberine, used in traditional Chinese medicine
and possessing antidiabetic properties [248], causes an inhibition of mitochondrial respiration and a
decrease on Ca2+ loading capacity through induction of the mitochondrial permeability transition [249].
All this suggests that it is necessary to carefully approach the issue of diabetes mellitus therapy through
the modulation of MPT pore activity.

4. Conclusions

Mitochondrial dysfunction is now widely recognized as an important factor in the development
of diabetes. Management of mitochondrial dysfunction can undoubtedly contribute to improving
glucose metabolism and seems promising in the context of diabetes therapy. At the same time, it must
be remembered that diabetes affects the functioning of mitochondria in various organs and tissues with
different intensities. This is clearly seen especially in the MPT pore opening in mitochondria. The use
of a wide range of animal models, regimens, and duration of exposure to diabetic stress often leads to
rather contradictory results regarding mitochondrial functional changes in diabetes. It is clear that
mitochondria play a key role in both compensatory processes and pathological changes under diabetic
stress. In this regard, it is necessary to carefully approach the issue of regulation of mitochondrial
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dysfunction in diabetes mellitus and conduct detailed comprehensive all organ studies of compounds
that affect the functioning of mitochondria.
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ANT Adenine nucleotide translocator
DRP1 Dynamin-related protein 1
GK Goto-Kakizaki (GK) rats
MAM Mitochondria-associated ER membranes
MCU Mitochondrial Ca2+ uniporter
MICU Mitochondrial Ca2+ uptake protein
MPT Mitochondrial permeability transition
NCLX Na+/Li+/Ca2+ exchanger
Parkin E3 ubiquitin ligase Parkin
PGC-1α Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α
PINK1 PTEN-induced putative kinase 1
ROS Reactive oxygen species
SGLT2 Sodium-glucose linked transporter 2
T1DM Type 1 diabetes mellitus
T2DM Type 2 diabetes mellitus
UCP Uncoupling protein
VDAC Voltage-dependent anion channel
ZDF Zucker diabetic fatty (ZDF-Lepr fa/fa or fa/fa) rats
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174. Šileikytė, J.; Forte, M. The mitochondrial permeability transition in mitochondrial disorders. Oxid. Med.
Cell Longev. 2019, 3403075. [CrossRef] [PubMed]

175. Zoratti, M.; Szabò, I. The mitochondrial permeability transition. Biochim. Biophys. Acta 1995, 1241, 139–176.
[CrossRef]

176. Shanmughapriya, S.; Rajan, S.; Hoffman, N.E.; Higgins, A.M.; Tomar, D.; Nemani, N.; Hines, K.J.; Smith, D.J.;
Eguchi, A.; Vallem, S.; et al. SPG7 is an essential and conserved component of the mitochondrial permeability
transition pore. Mol. Cell 2015, 60, 47–62. [CrossRef] [PubMed]

177. Efimov, S.V.; Dubinin, M.V.; Kobchikova, P.P.; Zgadzay, Y.O.; Khodov, I.A.; Belosludtsev, K.N.; Klochkov, V.V.
Comparison of cyclosporin variants B-E based on their structural properties and activity in mitochondrial
membranes. Biochem. Biophys. Res. Commun. 2020, 526, 1054–1060. [CrossRef] [PubMed]

178. Hurst, S.; Baggett, A.; Csordas, G.; Sheu, S.S. SPG7 targets the m-AAA protease complex to process MCU
for uniporter assembly, Ca2+ influx, and regulation of mitochondrial permeability transition pore opening.
J. Biol. Chem. 2019, 294, 10807–10818. [CrossRef]

179. Halestrap, A.P.; Richardson, A.P. The mitochondrial permeability transition: A current perspective on its
identity and role in ischaemia/reperfusion injury. J. Mol. Cell Cardiol. 2015, 78, 129–141. [CrossRef] [PubMed]

180. Rück, A.; Dolder, M.; Wallimann, T.; Brdiczka, D. Reconstituted adenine nucleotide translocase forms a
channel for small molecules comparable to the mitochondrial permeability transition pore. FEBS Lett. 1998,
426, 97–101. [CrossRef]

181. Beutner, G.; Rück, A.; Riede, B.; Brdiczka, D. Complexes between porin, hexokinase, mitochondrial creatine
kinase and adenylate translocator display properties of the permeability transition pore. Implication for
regulation of permeability transition by the kinases. Biochim. Biophys. Acta 1998, 1368, 7–18. [CrossRef]

182. Crompton, M.; Virji, S.; Ward, J.M. Cyclophilin-D binds strongly to complexes of the voltage-dependent
anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur. J.
Biochem. 1998, 258, 729–735. [CrossRef]

183. Kokoszka, J.E.; Waymire, K.G.; Levy, S.E.; Sligh, J.E.; Cai, J.; Jones, D.P.; MacGregor, G.R.; Wallace, D.C.
The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 2004,
427, 461–465. [CrossRef]

http://dx.doi.org/10.11909/j.issn.1671-5411.2015.03.003
http://www.ncbi.nlm.nih.gov/pubmed/26089852
http://dx.doi.org/10.1155/2012/242984
http://www.ncbi.nlm.nih.gov/pubmed/21785581
http://dx.doi.org/10.1371/journal.pone.0182027
http://www.ncbi.nlm.nih.gov/pubmed/28742858
http://dx.doi.org/10.2337/db13-1751
http://www.ncbi.nlm.nih.gov/pubmed/24947355
http://dx.doi.org/10.1016/j.cmet.2018.09.008
http://dx.doi.org/10.1152/ajpcell.00087.2012
http://dx.doi.org/10.1691/ph.2018.8544
http://dx.doi.org/10.3390/biom10070998
http://dx.doi.org/10.1016/j.tips.2018.11.004
http://dx.doi.org/10.1155/2019/3403075
http://www.ncbi.nlm.nih.gov/pubmed/31191798
http://dx.doi.org/10.1016/0304-4157(95)00003-A
http://dx.doi.org/10.1016/j.molcel.2015.08.009
http://www.ncbi.nlm.nih.gov/pubmed/26387735
http://dx.doi.org/10.1016/j.bbrc.2020.03.184
http://www.ncbi.nlm.nih.gov/pubmed/32307084
http://dx.doi.org/10.1074/jbc.RA118.006443
http://dx.doi.org/10.1016/j.yjmcc.2014.08.018
http://www.ncbi.nlm.nih.gov/pubmed/25179911
http://dx.doi.org/10.1016/S0014-5793(98)00317-2
http://dx.doi.org/10.1016/S0005-2736(97)00175-2
http://dx.doi.org/10.1046/j.1432-1327.1998.2580729.x
http://dx.doi.org/10.1038/nature02229


Int. J. Mol. Sci. 2020, 21, 6559 29 of 32

184. Leung, A.W.; Varanyuwatana, P.; Halestrap, A.P. The mitochondrial phosphate carrier interacts with
cyclophilin D and may play a key role in the permeability transition. J. Biol. Chem. 2008, 283, 26312–26323.
[CrossRef] [PubMed]

185. Antoniel, M.; Jones, K.; Antonucci, S.; Spolaore, B.; Fogolari, F.; Petronilli, V.; Giorgio, V.; Carraro, M.; Di
Lisa, F.; Forte, M.; et al. The unique histidine in OSCP subunit of F-ATP synthase mediates inhibition of the
permeability transition pore by acidic pH. EMBO Rep. 2018, 19, 257–268. [CrossRef] [PubMed]

186. Giorgio, V.; von Stockum, S.; Antoniel, M.; Fabbro, A.; Fogolari, F.; Forte, M.; Glick, G.D.; Petronilli, V.;
Zoratti, M.; Szabó, I.; et al. Dimers of mitochondrial ATP synthase form the permeability transition pore.
Proc. Natl. Acad. Sci. USA 2013, 110, 5887–5892. [CrossRef]
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