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Abstract: The volume, composition, and movement of the cerebrospinal fluid (CSF) are important
for brain physiology, pathology, and diagnostics. Nevertheless, few studies have focused on the
main structure that produces CSF, the choroid plexus (CP). Due to the presence of monocarboxylate
transporters (MCTs) in the CP, changes in blood and brain lactate levels are reflected in the CSF.
A lactate receptor, the hydroxycarboxylic acid receptor 1 (HCA1), is present in the brain, but whether it
is located in the CP or in other periventricular structures has not been studied. Here, we investigated
the distribution of HCA1 in the cerebral ventricular system using monomeric red fluorescent protein
(mRFP)-HCA1 reporter mice. The reporter signal was only detected in the dorsal part of the third
ventricle, where strong mRFP-HCA1 labeling was present in cells of the CP, the tela choroidea, and the
neuroepithelial ventricular lining. Co-labeling experiments identified these cells as fibroblasts (in the
CP, the tela choroidea, and the ventricle lining) and ependymal cells (in the tela choroidea and the
ventricle lining). Our data suggest that the HCA1-containing fibroblasts and ependymal cells have
the ability to respond to alterations in CSF lactate in body–brain signaling, but also as a sign of
neuropathology (e.g., stroke and Alzheimer’s disease biomarker).

Keywords: HCA1; HCAR1; GPR81; lactate; dorsal third ventricle; choroid plexus; tela choroidea;
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1. Introduction

The cerebrospinal fluid (CSF) is a clear, colorless fluid circulating through the cerebral ventricles
and perivascular space. It serves a number of functions within the central nervous system (CNS),
including hydrodynamic and metabolic aspects [1]. The CSF volume circulating at any given time
is about 150 mL [2]. Reduced CSF volume can impair normal brain development and function,
whereas increased CSF volume can cause hydrocephalus [3]. Furthermore, the CSF is involved in
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distribution of nutrients, hormones, and growth factors to the brain parenchyma. These solutes
are fundamental for normal brain function [2]. The CSF is also involved in the removal of waste
products implicated in neurodegeneration and brain injury, for instance, as the vehicle of the brain’s
“glymphatic system” [4,5]. Therefore, the volume, composition, and movement of the CSF are of the
utmost physiological importance [6]. Consequently, CSF samples are used to analyze for biomarkers
in neurological diseases [7]. Despite the significant role of CSF volume, composition, and movement in
physiology, pathology, and diagnostics, the choroid plexus (CP)—the main structure that produces
CSF—is among the least studied structures of the brain [8].

The CP is a highly vascularized tissue that is located in the cerebral ventricles [3]. In fact, this tiny
brain structure—comprising 0.25% of brain volume [9]—plays a large role in nourishing and protecting
the brain [10]. The vascular endothelium of the CP is highly fenestrated and lacks tight junctions
between the endothelial cells, allowing for blood plasma to filter through. To gain access to the
CSF, the filtered blood plasma needs to pass through a layer of epithelial cells that are connected by
tight junctions. These cells, at the border to the cerebral ventricles, form a highly selective barrier
between blood plasma/interstitial fluid (ISF) and the CSF, namely the blood–CSF barrier (BCSFB) [11].
The production rate of the CSF is largely controlled by the blood flow through the CP, while the exact
composition of the CSF is regulated at the level of the epithelial cells. Optimal functioning of the
CP-CSF system is crucial for the maintenance and function of the CNS [3].

The CP is located in the cerebral ventricles, along the rim (“limbus”) of the hemisphere where
the cerebral cortex abuts on the diencephalon, and similarly where the cerebellar cortex abuts on the
rhombencephalon. Here, the neural tube does not develop neuroblasts and remains as the originally
single layer of cuboid neuroectodermal cells (final ependyma), resting on mesenchymal connective
tissue, which carries blood vessels (final pia mater). Proliferation of the vascular mesenchyme
invaginates the ependyma lined ventricle lumen, forming the CP [12]. The cerebral ventricular
system is made up by four cavities—the (bi)lateral, the third, and the fourth ventricles [13]. The third
ventricle is located deep in the central part of the brain, making it one of the most inaccessible regions.
It is a narrow and funnel-shaped cavity situated at the midline. The third ventricle is surrounded
by many vascular structures (e.g., the circle of Willis and its branches) and crossed by the massa
intermedia [14,15]. The third ventricle has a roof, a floor, and four walls. The roof, which makes a
gentle upward arch, consist of four layers: one layer of neural tissue (formed by the fornix), two layers
of tela choroidea (formed by meningeal pia mater and ependymal cells) interconnected by trabeculae,
and one layer of cerebral vasculature in the velum interpositum (the space between the two layers
of tela choroidea) [14,15]. The tela choroidea of the third ventricle gives further rise to the CP, which
extends into the lateral ventricles [14,15].

The CNS is sealed from the blood by two distinct barriers: the endothelial blood–brain barrier (BBB)
and the epithelial BCSFB [16,17]. The neuroepithelial lining of the cerebral ventricles also provides a
barrier between the CSF and the brain, but knowledge of the nature and importance of this barrier also
remains sparse. These physical barriers provide selective permeability for endogenous and exogenous
substances at the interfaces, hence protecting the brain parenchyma against toxicants [18]. For nutrients,
such as glucose and lactate, specific transporters are present in the barriers, allowing these substances
to pass through [19]. For lactate, the transport occurs through monocarboxylate transporters (MCTs),
which are also known as the solute carrier family 16 (SLC16) (www.genenames.org), as facilitated
diffusion, meaning that the direction of transport is dependent on the lactate gradient [20]. Lactate is
produced through glycolysis and builds up in the tissue when glycolytic activity exceeds mitochondrial
respiration [20]. Therefore, chronically elevated lactate in the brain is considered a pathological
sign and is found in neurological diseases such as stroke [21] and Alzheimer’s disease (AD) [22].
MCTs in the BBB allow lactate flux from brain to blood [20]. The CP also expresses MCTs: MCT1
(SLC16A1) in the apical membrane of ependymal cells lining the ventricles and MCT3 (SLC16A8) in
the basolateral membrane of epithelial cells [23], allowing lactate to flux between blood and CSF with
its gradient. Therefore, changes in brain and blood lactate are reflected in the CSF. In response to stroke,
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the lactate concentration in the CSF increases from below 1.5 mmol/L to above 2 mmol/L [21]. AD is
associated with higher CSF lactate levels, which are presumably caused by compromised mitochondrial
function [22]. In fact, lactate levels in the CSF has been suggested as a biomarker for mitochondrial
defects in the CNS [24]. Somewhat surprisingly, lactate was found to be higher in patients with mild
AD than in patients with moderate-to-severe AD, although both groups showed lactate levels above
what was detected in health age-matched controls [25]. In addition to being used as a metabolite,
lactate can also affect brain function by activation of the hydroxycarboxylic acid receptor 1 (HCA1, also
abbreviated as HCAR1 (www.genenames.org)) [26–30]. The lactate receptor HCA1 is an inhibitory
G-protein-coupled receptor (GPCR), and activation of the receptor leads to the inhibition of adenylyl
cyclase. The receptor may modulate neuronal activity through both the Gα and Gβγ subunits [31].
Previously, we showed that HCA1 is located on fibroblast in the pia mater, progressing along some of
the large blood vessels that penetrate from the pia into the brain parenchyma [26]. Upon activation,
HCA1 induces angiogenesis in the hippocampus and the cerebral cortex [26]. In a very recent study,
we also demonstrated that activation of HCA1 induced neurogenesis in the subventricular zone (SVZ),
but not in the subgranular zone (SGZ) [32]. Whether lactate in the CSF has access to HCA1, and hence
may affect brain function, is not known.

In the present study, we investigated the distribution of the lactate receptor HCA1 in the cerebral
ventricular system, including in the CP, using monomeric red fluorescent protein (mRFP)-HCA1

reporter mice and immunohistochemical analysis.

2. Results

2.1. Distribution of the Lactate Receptor HCA1 in the Cerebral Ventricular System

To investigate the distribution of the lactate receptor HCA1 in the cerebral ventricular system,
we performed immunohistochemistry on free floating coronal sections from the mRFP-HCA1 reporter
mouse brain by using signal-enhancing mRFP antibody. Within the ventricular system, reporter signal
immunoreactivity was only detected in the dorsal part of the third ventricle, with no detectable labeling
in the ventral part of the third ventricle, the fourth ventricle, or the lateral ventricles. More specifically,
strong mRFP-HCA1 labeling was present in the vascularized network of the CP in the roof of the
dorsal part of the third ventricle (Figure 1a), the tela choroidea in the roof of the dorsal part of the third
ventricle (Figure 1b), and the neuroepithelial lining of the dorsal part of the third ventricle (Figure 1c,d).
The mRFP-HCA1 labeling appeared in a cell-like pattern along the positive structures, each with a
clear core, which was consistent with a lack of labeling in the nucleus. The reporter signal was not
detected in these structures in the mRFP-HCA1 negative control mouse (data not shown).
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Figure 1. Distribution of hydroxycarboxylic acid receptor 1 (HCA1) in the cerebral ventricular system. 
Background: Image from Nissl stained coronal section of the mouse brain illustrates the anatomical 
localization of the brain structures studied. Insets: confocal micrographs from coronal sections of the 
mRFP-HCA1 reporter mouse brain demonstrate strong labeling in (a) the CP; (b) tela choroidea; (c,d) 
ventricle lining. CC: corpus callosum; CP: choroid plexus; D3V: dorsal third ventricle; DF: dorsal 
fornix; HCF: hippocampal formation; LV: lateral ventricles; TC: tela choroidea; TH: thalamus. 

2.2. The Lactate Receptor HCA1 in the Choroid Plexus in the Roof of the Dorsal Part of the Third Ventricle 

Collagen IV is an extracellular membrane matrix (ECM) protein in the vascular basement 
membranes that separate epithelial and endothelial cells from the underlying tissues [33]. An 
antibody against collagen IV was used to outline the vasculature of the CP to explore if the mRFP-
HCA1 positive cells were localized in, or in close proximity to, the endothelial cells of brain capillaries. 
As expected, the basal lamina marker collagen IV and mRFP-HCA1 did not co-localize. Furthermore, 
we did not detect a pattern where mRFP-HCA1 cells were localized along the luminal side of the 
collagen IV-positive basal lamina, as could be expected if HCA1 was expressed in endothelial cells. 
Hence, the mRFP-HCA1 was probably not localized within the endothelial cells in the CP capillaries 
(Figure 2a–d). 

Vimentin is an intermediate filament (IF) protein expressed in fibroblasts [34]. Immunolabeling 
of mature fibroblast by an antibody against vimentin produced a strong labeling of cells in the CP. 
mRFP-HCA1 was localized in some, but not all, vimentin-positive mature fibroblast in the CP (Figure 
2e–h). Interestingly, there seemed to be distinct regions that contained a high number of HCA1-
containing fibroblasts, while other regions contained fibroblast with no—or very low—levels of 
mRFP-HCA1. In a previous study [26], mRFP-HCA1 was described in platelet-derived growth factor 
receptor beta (PDGFR-β) positive cells in the hippocampus, which were suggested to be immature 
pericytes based on their location and morphology. In the present study, mRFP-HCA1 was also found 
to be localized in cells that were positive for PDGFR-β. PDGFR-β is expressed by developing smooth 
muscle cells, similar to pericytes, but also by myofibroblasts, which are smooth muscle-containing 
immature fibroblasts [35]. The PDGFR-β labeling, binding to a plasma membrane-bound protein, was 

Figure 1. Distribution of hydroxycarboxylic acid receptor 1 (HCA1) in the cerebral ventricular system.
Background: Image from Nissl stained coronal section of the mouse brain illustrates the anatomical
localization of the brain structures studied. Insets: confocal micrographs from coronal sections of
the mRFP-HCA1 reporter mouse brain demonstrate strong labeling in (a) the CP; (b) tela choroidea;
(c,d) ventricle lining. CC: corpus callosum; CP: choroid plexus; D3V: dorsal third ventricle; DF: dorsal
fornix; HCF: hippocampal formation; LV: lateral ventricles; TC: tela choroidea; TH: thalamus.

2.2. The Lactate Receptor HCA1 in the Choroid Plexus in the Roof of the Dorsal Part of the Third Ventricle

Collagen IV is an extracellular membrane matrix (ECM) protein in the vascular basement
membranes that separate epithelial and endothelial cells from the underlying tissues [33]. An antibody
against collagen IV was used to outline the vasculature of the CP to explore if the mRFP-HCA1 positive
cells were localized in, or in close proximity to, the endothelial cells of brain capillaries. As expected, the
basal lamina marker collagen IV and mRFP-HCA1 did not co-localize. Furthermore, we did not detect
a pattern where mRFP-HCA1 cells were localized along the luminal side of the collagen IV-positive
basal lamina, as could be expected if HCA1 was expressed in endothelial cells. Hence, the mRFP-HCA1

was probably not localized within the endothelial cells in the CP capillaries (Figure 2a–d).
Vimentin is an intermediate filament (IF) protein expressed in fibroblasts [34]. Immunolabeling

of mature fibroblast by an antibody against vimentin produced a strong labeling of cells in the
CP. mRFP-HCA1 was localized in some, but not all, vimentin-positive mature fibroblast in the CP
(Figure 2e–h). Interestingly, there seemed to be distinct regions that contained a high number of
HCA1-containing fibroblasts, while other regions contained fibroblast with no—or very low—levels of
mRFP-HCA1. In a previous study [26], mRFP-HCA1 was described in platelet-derived growth factor
receptor beta (PDGFR-β) positive cells in the hippocampus, which were suggested to be immature
pericytes based on their location and morphology. In the present study, mRFP-HCA1 was also found
to be localized in cells that were positive for PDGFR-β. PDGFR-β is expressed by developing smooth
muscle cells, similar to pericytes, but also by myofibroblasts, which are smooth muscle-containing
immature fibroblasts [35]. The PDGFR-β labeling, binding to a plasma membrane-bound protein,
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was not expressed in the cytosol, but it rather outlined the mRFP-HCA1 positive cells and some
(mRFP-HCA1-negative) smaller fragments/processes (Figure 2i–l).

Pericytes are known to have an important role in controlling cerebral blood flow [36,37], and in
the CP, this would regulate the rate of the CSF production. Given the co-localization of mRFP-HCA1

with PDGFR-β, which may suggest the presence of HCA1 in immature pericytes, a new labeling
experiment was performed with mRFP-HCA1 and a marker for immature cells, including pericytes,
such as neuron-glial antigen 2 (NG2) [38]. The NG2 antibody produced a strong cellular labeling along
the outline of the CP. No co-localization with mRFP-HCA1 and NG2 was observed in this experiment
(Figure 2m–p).

The CP contains microglia (parenchymal macrophages) that traffic into the cerebral ventricles [11].
To investigated whether mRFP-HCA1 was present in immune cells in the CP, immunolabeling for
the microglia/macrophage marker ionized calcium binding adaptor molecule 1 (Iba1) together with
mRFP-HCA1 was performed. Although Iba1 immunoreactivity and mRFP-HCA1 positive cells were
localized in the same region of the CP, the two antibodies did not show any co-localization (Figure 2q–t),
suggesting that immune cells of the CP do not express HCA1.

Astrocytes contribute to the integrity of the CNS barriers, neurotransmitter regulation, and energy
metabolism [39]. Moreover, lactate has been suggested to act on HCA1 of astrocytes [40]. Therefore,
co-labeling for mRFP-HCA1 and glial fibrillary acidic protein (GFAP) was used to investigate whether
mRFP-HCA1 was present in mature astrocytes in the CP. However, co-localization of the GFAP-positive
astrocytes with mRFP-HCA1 positive cells was not observed (Figure 2u–x).
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 15 

 

 
Figure 2. HCA1 in the choroid plexus. In the CP in the roof of the dorsal part of the third ventricle, 
mRFP-HCA1 (red in a-x) was found in cell-like structures surrounding a 4′,6-diamidino-2-
phenylindole (DAPI)-positive nucleus (blue in a–x). mRFP-HCA1 did not co-localize with the basal 

Figure 2. Cont.



Int. J. Mol. Sci. 2020, 21, 6457 6 of 14

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 15 

 

 
Figure 2. HCA1 in the choroid plexus. In the CP in the roof of the dorsal part of the third ventricle, 
mRFP-HCA1 (red in a-x) was found in cell-like structures surrounding a 4′,6-diamidino-2-
phenylindole (DAPI)-positive nucleus (blue in a–x). mRFP-HCA1 did not co-localize with the basal 

Figure 2. HCA1 in the choroid plexus. In the CP in the roof of the dorsal part of the third ventricle,
mRFP-HCA1 (red in a-x) was found in cell-like structures surrounding a 4′,6-diamidino-2-phenylindole
(DAPI)-positive nucleus (blue in a–x). mRFP-HCA1 did not co-localize with the basal lamina marker
collagen IV (green in a–d). mRFP-HCA1 did co-localize with the mature fibroblast marker vimentin
(green in e–h). Note that mRFP-HCA1 was present on some vimentin-positive cells (long arrows),
but not others (arrowhead), and that some mRFP-HCA1 did not express vimentin (short arrow).
Furthermore, some mRFP-HCA1 positive cells also co-localized with platelet-derived growth factor
receptor beta (PDGFR-β) (green in i–l), which labels immature fibroblasts and immature pericytes.
Again, we found that mRFP-HCA1 was present in only a subset of PDGFR-β-positive cells (long
arrows) and not in others (arrowhead). Some mRFP-HCA1 did not express PDGFR-β (short arrow).
mRFP-HCA1 did not co-localize with the immature cell marker neuron-glial antigen 2 (NG2) (green in
m–p) which also labels immature pericytes, microglia/macrophage marker Iba1 (green in q–t), nor the
mature astrocyte marker glial fibrillary acidic protein (GFAP) (green in u–x). Scale bars: 50 µm. Typical
pictures shown, n = 5.

2.3. The Lactate Receptor HCA1 in the Neuroepithelial Lining of the Dorsal Part of the Third Ventricle

As described in the CP, we also detected vimentin-positive cells in the walls of the dorsal part
of the third ventricle, and some of the vimentin-positive cells expressed mRFP-HCA1 (Figure 3a–d).
We further detected mRFP-HCA1 in PDGFR-β positive cells in the walls of the dorsal part of the
third ventricle (Figure 3e–h). The co-labeling with the ependymal cells marker urate transporter 1
(URAT1) and mRFP-HCA1 showed an overlapping labeling pattern with the two antibodies, suggesting
co-localization in the same cells. The mRFP labeling, as well as the URAT1 labeling clearly surrounded
the DAPI-stained nuclei, indicating the staining of cell somata. Based on the known localization of
URAT1 in the dorsal part of the third ventricle, the co-localization with this marker suggests that
mRFP-HCA1 was localized in ependymal cells lining the ventricle wall. Interestingly, we found
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mRFP to be present in some, but not all URAT1-positive ependymal cells, suggesting that subtypes of
ependymal cells exist, and that only some of the ependymal cells are HCA1 positive (Figure 3i–l).
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Figure 3. HCA1 in the neuroepithelial ventricular lining of the ventricle. In the neuroepithelial lining
of the dorsal part of the third ventricle, mRFP-HCA1 (red in a–l) was found in cell-like structures
surrounding a DAPI-positive nucleus (blue in a–l). mRFP-HCA1 positive cells co-localized with the
mature fibroblast marker vimentin (green in a–d). Some vimentin-positive cells (long arrows) but not
others (arrowhead) expressed mRFP-HCA1, while some mRFP-HCA1-positive cells did not express
vimentin (short arrow). Furthermore, mRFP-HCA1 positive cells also co-localized with the immature
fibroblasts and immature pericytes marker PDGFR-β (green in e–h). In addition, here, we found
that mRFP-HCA1 was present in only a subset of PDGFR-β-positive cells (long arrows) and not in
others (arrowhead). Some mRFP-HCA1 did not express PDGFR-β (short arrow). mRFP-HCA1-positive
cells co-localized with the ependymal cell marker urate transporter 1 (URAT1) (green in i–l). Some
URAT1-positive cells (long arrows) but not others (arrowhead) expressed mRFP-HCA1, while some
mRFP-HCA1-positive cells did not express URAT1 (short arrow). Scale bars: 50 µm (a–h) and 20 µm
(i–l). Typical pictures shown, n = 5.

2.4. The Lactate Receptor HCA1 in the Tela Choroidea in the Roof of the Dorsal Part of the Third Ventricle

The mRFP-HCA1 labeling was particularly strong in the tela choroidea. The meningeal pia mater,
which contributes to form the tela choroidea [14,15], contains a thin sheet of flattened fibroblasts.
These pial fibroblasts secrete vimentin [34]. As described in the CP, we also detected vimentin-positive
cells in the tela choroidea in the roof of the dorsal part of the third ventricle, and most of the
vimentin-positive cells expressed mRFP-HCA1 (Figure 4a–d). We also detected mRFP-HCA1 in
PDGFR-β positive cells in the tela choroidea (Figure 4e–h). Ependymal cells also contribute to form
the tela choroidea [14,15]. The co-labeling with the ependymal cell marker URAT1 and mRFP-HCA1

showed an overlapping labeling pattern with the two antibodies, suggesting co-localization in the
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same cells. This was observed in the tela choroidea in the roof of the dorsal part of the third ventricle
(Figure 4i–l).
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a–d). Some vimentin-positive cells (long arrows) but not others (arrowhead) expressed mRFP-HCA1, 
while some mRFP-HCA1-positive cells did not express vimentin (short arrow). Furthermore, mRFP-

Figure 4. HCA1 in the tela choroidea. In the tela choroidea of the dorsal part of the third ventricle,
mRFP-HCA1 (red in a–l) was found in cell-like structures surrounding a DAPI-positive nucleus (blue in
a–l). mRFP-HCA1 positive cells co-localized with the mature fibroblast marker vimentin (green in a–d).
Some vimentin-positive cells (long arrows) but not others (arrowhead) expressed mRFP-HCA1, while
some mRFP-HCA1-positive cells did not express vimentin (short arrow). Furthermore, mRFP-HCA1

positive cells also co-localized with the immature fibroblasts and immature pericytes marker PDGFR-β
(green in e–h). In addition, here, we found that mRFP-HCA1 was present in only a subset of
PDGFR-β-positive cells (long arrows) and not in others (arrowhead). Some mRFP-HCA1 did not
express PDGFR-β (short arrow). mRFP-HCA1 positive cells co-localized with the ependymal cell
marker URAT1 (green in i–l). Some URAT1-positive cells (long arrows) but not others (arrowhead)
expressed mRFP-HCA1, while some mRFP-HCA1-positive cells did not express URAT1 (short arrow).
Scale bars: 50 µm (a–h) and 20 µm (i–l). Typical pictures shown, n = 5.

3. Discussion

The CSF volume, composition, and movement play a significant role in the physiology, pathology,
and diagnostics of the CNS [6]. Nevertheless, the CP that produces the CSF, and the neuroepithelial
lining of the cerebral ventricles that separates the brain from the CSF, remain among the least studied
structures of the brain [8]. Nutrients, hormones, growth factors [2], and waste products [4,5] released
in the brain or transported in the blood may be found in the CSF, because a number of transporters and
carrier proteins are present at the BBB and the BCSFB. Lactate, a metabolite from glycolysis, may enter
the CSF through MCTs in the BBB [20] or the CP [23], and an elevated lactate level in the CSF has
been suggested as a biomarker for neurological disorders [7], including stroke [21] and AD [22]. In the
present study, we demonstrate that lactate in the CSF may actually directly affect cells at the border
between the CSF and the brain or the blood, respectively, since these cells show an mRFP-HCA1
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reporter signal. We demonstrate that the lactate receptor HCA1 protein is distributed in the dorsal part
of the third ventricle. Here, it is localized in cells of the CP, the tela choroidea, and the neuroepithelial
ventricular lining. The Allen Brain Atlas (https://mouse.brain-map.org/experiment/show/77464856)
shows an mRNA signal for HCA1 that supports these findings (although at limited resolution) but
indicates a more general distribution in the CP and ventricular lining. Therefore, a wider distribution
of the protein might exist, although it is not detected at the sensitivity of the present method. Being a
soluble protein, and having no tag for targeting to any specific cell compartment, mRFP is distributed
throughout the cytoplasm of the HCA1-expressing cells [41]. Therefore, the localization data presented
in the present study cannot show whether HCA1 has a polarized localization in the fibroblasts or
ependymal cells. Consequently, we cannot conclude whether HCA1 in these cells are facing the CSF,
the brain parenchyma, or both.

Our localization of mRFP-HCA1 immunohistochemistry experiments places HCA1 in some, but not
all vimentin-positive cells, presumably pia-derived fibroblast, in these structures. Some mRFP-HCA1

reporter signal was also found in URAT1-positive ependymal cells, as well as in PDGFR-β-positive
cells, which could be immature pericytes or immature fibroblasts. HCA1 was not found in any of the
other cells tested in our study, including in immature (NG2-positive) pericytes. The use of antibodies
to identify specific cell types is always encumbered with a degree of uncertainty, as the antibodies may
be unspecific, or the antigens recognized by the antibodies may be present in more than one cell type.
In our experiment, we used antibodies against well-established cell type markers and that have been
shown in several studies to selectively label the antigens of interest. The only exception is the URAT1
antibody, which has been extensively tested by us [42,43]. Furthermore, the interpretations of our data
are based on immunolabeling as well as the morphology and localization of the cells.

Fibroblasts are known to release growth factors, including insulin-like growth factor (IGF) and
vascular endothelial growth factor (VEGF) [44]. In a previous study, we reported that hippocampal
VEGFA levels increase in response to the activation of HCA1 in mice [26]. The localization of
lactate-sensing fibroblasts along the surfaces of the third ventricle, as demonstrated in the present
study, opens for the possibility that these fibroblasts release growth factors in response to increased
CSF lactate via HCA1. Data from our group demonstrate that neurogenesis in the SVZ, but not in the
SGZ, is enhanced HCA1-dependently by lactate [32]. The HCA1-dependent release of growth factors
into the CSF may underlie such a differential effect between the two neurogenic niches, but this has not
been demonstrated experimentally.

Furthermore, the localization of HCA1 reported in the present study suggests that the lactate
receptor is in near proximity to lactate transporters, the MCTs: MCT1 is located in the apical membrane
of ependymal cells lining the ventricles, and MCT3 is located in the basolateral membrane of epithelial
cells of the CP [23]. HCA1 localized close to the MCTs places the lactate receptor in an ideal position to
sense lactate that is being released to the CSF. Since lactate transport through the MCTs follows the
lactate gradient, the increase of lactate in the CSF represents an increase in lactate in the brain or blood,
depending on which cells the lactate fluxes through, and receptors placed on these cells would be hit
earlier and stronger than ones placed on cells not fluxing lactate.

The ependymal cells line the cerebral ventricular system and make up the ventricular barrier [18].
Contrary to the BCSFB, the ependymal cells are joined with adherence junctions but lack occluding
junctions, enabling the diffusion of CSF from the ventricular space into the brain parenchyma [18].
Their role in the brain is to support the adjacent SVZ [45,46] and, similar to the fibroblast, to produce
growth factors (e.g., fibroblast growth factor (FGF), IGF, and VEGF) [46,47]. The functional or clinical
relevance of HCA1 in the cerebral ventricular system has not been examined, but based on the
localization of HCA1 and the known function of the cells that express the receptor, it is not unlikely that
lactate-sensing fibroblasts and lactate-sensing ependymal cells may act in synergy to release growth
factors in response to CSF lactate levels.

https://mouse.brain-map.org/experiment/show/77464856
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4. Materials and Methods

4.1. Animals

This study was formally approved by the by the Norwegian Animal Research Authority (FOTS
ID 12521 (approval date: 16 June 2017), 8243 (approval date: 8 March 2016) and 15525 (approval date:
14 August 2018)) and the Animal Use and Care Committee of the Institute of Basic Medical Sciences,
Faculty of Medicine, University of Oslo. Animals were maintained under a 12:12 light/dark cycle
with free access to food and water. Animal experiments were carried out by Federation of Laboratory
Animal Science Associations (FELASA)-certified personnel in strict accordance with the directive
2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of
animals used for scientific purposes. The experiments are reported in compliance with the Animal
Research: Reporting in Vivo Experiments (ARRIVE) guidelines 2.0 [48].

Monomeric red fluorescent protein (mRFP)-HCA1 reporter mice (n = 5) were used in this study.
The mRFP-HCA1 reporter mouse line was generated by inserting a cassette consisting of the mRFP
under the control of the mouse HCA1 promoter as described [49], and it was a kind gift from Prof. Dr.
Stefan Offermanns, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany. Since
mRFP is a soluble protein, cells that express HCA1 display mRFP throughout cytoplasm of the cell [41].
The wild-type C57BL/6 mouse, which expresses HCA1 but not mRFP, was used as a negative control in
the labeling experiments.

4.2. Immunohistochemistry

mRFP-HCA1 reporter and control mice were deeply anesthetized with zolazepam 3.3 mg/mL,
tiletamine 3.3 mg/mL, xylazine 0.5 mg/mL, and fentanyl 2.6 mg/mL (0.1 mL/10 g bodyweight,
intraperitoneally). After the cessation of all reflexes, the mice were transcardially perfused with
a fixative consisting of 4% formaldehyde (freshly made from paraformaldehyde) in 0.1 M sodium
phosphate buffer pH 7.4 (NaPi) at infusion rate 5 mL/min for 8 min. Then, brains were dissected
out and immersed in 30% sucrose in Milli-Q water overnight at 4 ◦C for cryoprotection. The brains
were sectioned coronally into 20 µm thick sections at −22 ◦C using a freezing microtome. Immediate
processing of the brains is essential, as the mRFP signal is rapidly lost.

Free-floating brain sections were rinsed (2 × 10 min) in PBS (10 mM NaPi with 135 mM NaCl),
and unspecific labeling sites were blocked by incubation in a blocking solution (1% bovine serum
albumin (BSA) and 3% new born calf serum (NCS) in PBS with 0.5% Triton X-100 (PBST)) for 2 h.
Then, the sections were incubated with primary antibodies diluted in blocking solution overnight.
The mRFP signal was enhanced by rat anti-mRFP (5F8, ChromoTek, Munich, Germany; diluted 1:500).
The following antibodies were used one by one for co-labeling with mRFP: rabbit anti-collagen IV
(ab6586, Abcam, Cambrige, UK; diluted:1:500), mouse anti-vimentin (code E-5, sc-373717, Santa Cruz
Biotechnology, Dallas, TX, USA; diluted 1:250), rabbit anti-PDGFR-β (Y92, ab32570, Abcam, UK; diluted
1:100), rabbit anti-NG2 (AB5320, Millipore, Burlington, MA, USA; diluted: 1:200), rabbit anti-Iba1
(019-19741, Wako, TX, USA; diluted 1:500), mouse anti-GFAP (3670S, Cell Signaling Technology,
Leiden, The Netherlands; diluted 1:500) or anti-mouse URAT1 [42,43]. After the overnight incubation
with the primary antibodies, the sections were rinsed (6 × 10 min) in PBS and incubated with
fluorescence species-specific secondary antibodies diluted in blocking solution for 2 h (shield from
light). The secondary antibodies were anti-rat CY3 (712-165-150, Jackson ImmunoResearch, Sigrov, PA,
USA; diluted: 1:1000), anti-rabbit Alexa Flour 488 (A21206, Invitrogen, Carlsbad, CA, USA; diluted:
1:1000), or anti-mouse Alexa Flour 488 (A21202, Invitrogen, USA; diluted: 1:1000). Then, they were
rinsed (1 × 5 min) in PBS, incubated with DAPI (4′,6-diamidino-2-phenylindole, D9542, Sigma-Aldrich,
St. Louis, MO, USA; diluted 1:5000 in PBS) for 15 min, and rinsed (1× 5 min) in PBS. Finally, the sections
were mounted on glass slides (Superfrost Plus, Thermo Fisher Scientific, Walsham, MA, USA) with
Prolong Gold Antifade reagent (Life Technologies, Carlsbad, CA USA) and cover slipped (Corning
cover glasses, Corning, NY, USA).
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4.3. Image Acquisition

Images were acquired using a confocal laser scanning microscope (Zeiss LSM880—Fast Airy
Scan, Carl Zeiss Microscopy, Jena, Germany) with the corresponding software (ZEN, Carl Zeiss
Microscopy, Germany). The fluorescence signals were detected by focusing three laser beams onto
the specimens (laser wavelengths: 405 nm, 488 nm, and 561 nm) with a small spatial pinhole for
optimal optical resolution and contrast (AiryUnits: 1,8–2,8). Z-stack images were obtained through the
entire thickness of the section, creating optically sectioned images (optical image thickness: 1 µm).
Overview images were taken at low magnification (20×), while more detailed images were taken at high
magnification (40× and 63×, as needed). The regions of interest included the CP, tela choroidea, and the
neuroepithelial lining of the dorsal part of the third ventricle. The microscopy settings were adapted
for each antibody but were identical for the mRFP-HCA1 positive reporter mice and the mRFP-HCA1

negative control mouse. A total of 5 mRFP-HCA1 positive reporter mice and 1 mRFP-HCA1 negative
control mouse were included for each labeling experiment.

5. Conclusions

The lactate receptor HCA1 is distributed in the dorsal part of the third ventricle. It is a plasma
membrane GPCR localized in the CP, the tela choroidea, and the neuroepithelial ventricular lining.
This suggests that HCA1 may be activated by increases in lactate, released to the CSF from the
ventricular and stromal space, and also gaining access to the CSF from blood (carried through the BBB
and BCSFB by MCTs). Moreover, the cells expressing HCA1 in the dorsal part of the third ventricle
are fibroblasts and ependymal cells. Both cell types have neuromodulating and neuroprotective roles.
Therefore, HCA1 is possibly involved in the regulation of growth factor release to the CSF, and hence,
in mechanisms downstream of the growth factors, under normal and pathophysiological conditions in
the young and adult brain.
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Abbreviations

AD Alzheimer’s disease
BBB Blood–brain barrier
BCSFB Blood–cerebrospinal fluid barrier
CNS Central nervous system
CP Choroid plexus
CSF Cerebrospinal fluid
FGF Fibroblast growth factor
GFAP Glial fibrillary acidic protein
GPCR G-protein-coupled receptor
HCA1 Hydroxycarboxylic acid receptor 1
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Iba1 Ionized calcium binding adaptor molecule 1
IF Intermediate filament
ISF Interstitial fluid
MCTs Monocarboxylate transporters
mRFP Monomeric red fluorescent protein
NG2 Neuron-glial antigen 2
PDGFRβ Platelet-derived growth factor receptor beta
SGZ Subgranular zone
SLC16 Solute carrier family 16
SVZ Subventricular zone
URAT1 Urate transporter 1
VEGF Vascular endothelial growth factor

References

1. Tumani, H.; Huss, A.; Bachhuber, F. The cerebrospinal fluid and barriers—Anatomic and physiologic
considerations. In Handbook of Clinical Neurology; Deisenhammer, F., Teunissen, C.E., Tumani, H., Eds.;
Elsevier: Amsterdam, The Netherlands, 2018; Volume 146, pp. 21–32.

2. Spector, R.; Snodgrass, S.R.; Johanson, C. A balanced view of the cerebrospinal fluid composition and
functions: Focus on adult humans. Exp. Neurol. 2015, 273, 57–68. [CrossRef] [PubMed]

3. Lun, M.P.; Monuki, E.S.; Lehtinen, M.K. Development and functions of the choroid plexus–cerebrospinal
fluid system. Nat. Rev. Neurosci. 2015, 16, 445–457. [CrossRef] [PubMed]

4. Mestre, H.; Mori, Y.; Nedergaard, M. The Brain’s Glymphatic system: Current controversies. Trends Neurosci.
2020, 43, 458–466. [CrossRef] [PubMed]

5. Taoka, T.; Naganawa, S. Glymphatic imaging using MRI. J. Magn. Reson. Imaging 2019, 51, 11–24. [CrossRef]
6. Bothwell, S.W.; Janigro, D.; Patabendige, A. Cerebrospinal fluid dynamics and intracranial pressure elevation

in neurological diseases. Fluids Barriers CNS 2019, 16, 9. [CrossRef]
7. Willemse, E.A.; Vermeiren, Y.; Garcia-Ayllon, M.-S.; Bridel, C.; De Deyn, P.P.; Engelborghs, S.;

Van Der Flier, W.M.; Jansen, E.E.; Lopez-Font, I.B.; Mendes, V.; et al. Pre-analytical stability of novel
cerebrospinal fluid biomarkers. Clin. Chim. Acta 2019, 497, 204–211. [CrossRef]

8. Talhada, D.; Costa-Brito, A.R.; Duarte, A.C.; Costa, A.R.; Quintela, T.; Tomás, J.; Gonçalves, I.; Santos, C.R.A.
The choroid plexus: Simple structure, complex functions. J. Neurosci. Res. 2019, 98, 751–753. [CrossRef]

9. Spector, R.; Johanson, C.E. The mammalian choroid plexus. Sci. Am. 1989, 261, 68–74. [CrossRef]
10. Spector, R.; Keep, R.F.; Snodgrass, S.R.; Smith, Q.R.; Johanson, C. A balanced view of choroid plexus structure

and function: Focus on adult humans. Exp. Neurol. 2015, 267, 78–86. [CrossRef]
11. Meeker, R.B.; Williams, K.; Killebrew, D.A.; Hudson, L. Cell trafficking through the choroid plexus.

Cell Adhes. Migr. 2012, 6, 390–396. [CrossRef]
12. Sandler, T.W. Langman’s Medical Embryology, 6th ed.; Williams & Wilkins: Baltimore, MD, USA, 1990.
13. Stratchko, L.; Filatova, I.; Agarwal, A.; Kanekar, S.G. The Ventricular system of the brain: Anatomy and

normal variations. Semin. Ultrasound CT MRI 2016, 37, 72–83. [CrossRef]
14. Rhoton, A. The lateral and third ventricles. Neurosurgery 2002, 51, S1-207–S1-271. [CrossRef] [PubMed]
15. Tsutsumi, S.; Ishii, H.; Ono, H.; Yasumoto, Y. The third ventricle roof: An anatomical study using constructive

interference in steady-state magnetic resonance imaging. Surg. Radiol. Anat. 2017, 40, 123–128. [CrossRef]
16. Engelhardt, B.; Sorokin, L. The blood–brain and the blood–cerebrospinal fluid barriers: Function and

dysfunction. Semin. Immunopathol. 2009, 31, 497–511. [CrossRef] [PubMed]
17. Dias, M.C.; Mapunda, J.A.; Vladymyrov, M.S.; Engelhardt, B. Structure and junctional complexes of

endothelial, epithelial and glial brain barriers. Int. J. Mol. Sci. 2019, 20, 5372. [CrossRef]
18. Schmitt, G.; Parrott, N.; Prinssen, E.; Barrow, P. The great barrier belief: The blood–brain barrier and

considerations for juvenile toxicity studies. Reprod. Toxicol. 2017, 72, 129–135. [CrossRef] [PubMed]
19. Bordone, M.; Salman, M.M.; Titus, H.E.; Amini, E.; Andersen, J.V.; Chakraborti, B.; Diuba, A.V.;

Dubouskaya, T.G.; Ehrke, E.; De Freitas, A.E.; et al. The energetic brain—A review from students to
students. J. Neurochem. 2019, 151, 139–165. [CrossRef]

http://dx.doi.org/10.1016/j.expneurol.2015.07.027
http://www.ncbi.nlm.nih.gov/pubmed/26247808
http://dx.doi.org/10.1038/nrn3921
http://www.ncbi.nlm.nih.gov/pubmed/26174708
http://dx.doi.org/10.1016/j.tins.2020.04.003
http://www.ncbi.nlm.nih.gov/pubmed/32423764
http://dx.doi.org/10.1002/jmri.26892
http://dx.doi.org/10.1186/s12987-019-0129-6
http://dx.doi.org/10.1016/j.cca.2019.07.024
http://dx.doi.org/10.1002/jnr.24571
http://dx.doi.org/10.1038/scientificamerican1189-68
http://dx.doi.org/10.1016/j.expneurol.2015.02.032
http://dx.doi.org/10.4161/cam.21054
http://dx.doi.org/10.1053/j.sult.2016.01.004
http://dx.doi.org/10.1097/00006123-200210001-00006
http://www.ncbi.nlm.nih.gov/pubmed/12234446
http://dx.doi.org/10.1007/s00276-017-1905-0
http://dx.doi.org/10.1007/s00281-009-0177-0
http://www.ncbi.nlm.nih.gov/pubmed/19779720
http://dx.doi.org/10.3390/ijms20215372
http://dx.doi.org/10.1016/j.reprotox.2017.06.043
http://www.ncbi.nlm.nih.gov/pubmed/28627392
http://dx.doi.org/10.1111/jnc.14829


Int. J. Mol. Sci. 2020, 21, 6457 13 of 14

20. Bergersen, L.H. Lactate transport and signaling in the brain: Potential therapeutic targets and roles in
body–brain interaction. Br. J. Pharmacol. 2014, 35, 176–185. [CrossRef]

21. Brouns, R.; Sheorajpanday, R.; Wauters, A.; De Surgeloose, D.; Mariën, P.; De Deyn, P.P. Evaluation of
lactate as a marker of metabolic stress and cause of secondary damage in acute ischemic stroke or TIA.
Clin. Chim. Acta 2008, 397, 27–31. [CrossRef]

22. Cunnane, S.C.; Trushina, E.; Morland, C.; Prigione, A.; Casadesus, G.; Andrews, Z.B.; Beal, M.F.;
Bergersen, L.H.; Brinton, R.D.; De La Monte, S.; et al. Brain energy rescue: An emerging therapeutic
concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 2020, 1–25. [CrossRef]

23. Philp, N.J.; Yoon, H.; Lombardi, L. Mouse MCT3 gene is expressed preferentially in retinal pigment and
choroid plexus epithelia. Am. J. Physiol. Physiol. 2001, 280, C1319–C1326. [CrossRef] [PubMed]

24. Yamada, K.; Toribe, Y.; Yanagihara, K.; Mano, T.; Akagi, M.; Suzuki, Y. Diagnostic accuracy of blood and CSF
lactate in identifying children with mitochondrial diseases affecting the central nervous system. Brain Dev.
2012, 34, 92–97. [CrossRef] [PubMed]

25. Liguori, C.; Stefani, A.; Sancesario, G.M.; Marciani, M.G.; Pierantozzi, M. CSF lactate levels, τ proteins,
cognitive decline: A dynamic relationship in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2014, 86,
655–659. [CrossRef] [PubMed]

26. Morland, C.; Andersson, K.A.; Haugen, Ø.P.; Hadzic, A.; Kleppa, L.; Gille, A.; Rinholm, J.E.; Palibrk, V.;
Diget, E.H.; Kennedy, L.H.; et al. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor
HCAR1. Nat. Commun. 2017, 8, 15557. [CrossRef] [PubMed]

27. Scavuzzo, C.J.; Rakotovao, I.; Dickson, C. Differential effects of L- and D-lactate on memory encoding and
consolidation: Potential role of HCAR1 signaling. Neurobiol. Learn. Mem. 2020, 168, 107151. [CrossRef]

28. Bozzo, L.; Puyal, J.; Chatton, J.Y. Lactate modulates the activity of primary cortical neurons through a
receptor-mediated pathway. PLoS ONE 2013, 8, e71721. [CrossRef]

29. Lauritzen, K.H.; Morland, C.; Puchades, M.A.; Holm-Hansen, S.; Hagelin, E.M.; Lauritzen, F.; Attramadal, H.;
Storm-Mathisen, J.; Gjedde, A.; Bergersen, L.H. Lactate receptor sites link neurotransmission, neurovascular
coupling, and brain energy metabolism. Cereb. Cortex 2013, 24, 2784–2795. [CrossRef]

30. Offermanns, S.; Colletti, S.L.; Lovenberg, T.W.; Semple, G.; Wise, A.; Ijzerman, A.P. international union
of basic and clinical pharmacology. LXXXII: Nomenclature and classification of hydroxy-carboxylic acid
receptors (GPR81, GPR109A, and GPR109B). Pharmacol. Rev. 2011, 63, 269–290. [CrossRef]

31. Abrantes, H.D.C.; Briquet, M.; Schmuziger, C.; Restivo, L.; Puyal, J.; Rosenberg, N.; Rocher, A.-B.;
Offermanns, S.; Chatton, J.Y. The Lactate receptor HCAR1 modulates neuronal network activity through the
activation of Gα and Gβγ Subunits. J. Neurosci. 2019, 39, 4422–4433. [CrossRef]

32. Lambertus, M.; Thøring, L.A.A.K.; Hadzic, A.; Haugen, Ø.P.; Storm-Mathisen, J.; Bergersen, L.H.; Geiseler, S.;
Morland, C. L-lactate induces neurogenesis in the mouse ventricular-subventricular zone via the lactate
receptor HCA1. Unpublished data.

33. Thomsen, M.S.; Routhe, L.J.; Moos, T. The vascular basement membrane in the healthy and pathological
brain. Br. J. Pharmacol. 2017, 37, 3300–3317. [CrossRef]

34. Pikor, N.B.; Cupovic, J.; Onder, L.; Gommerman, J.; Ludewig, B. Stromal cell niches in the inflamed central
nervous system. J. Immunol. 2017, 198, 1775–1781. [CrossRef]

35. Bergers, G.; Song, S. The role of pericytes in blood-vessel formation and maintenance1. Neuro-Oncology 2005,
7, 452–464. [CrossRef] [PubMed]

36. Attwell, D.; Mishra, A.; Hall, C.N.; O’Farrell, F.M.; Dalkara, T. What is a pericyte? Br. J. Pharmacol. 2015, 36,
451–455. [CrossRef] [PubMed]

37. Hartmann, D.A.; Underly, R.G.; Grant, R.I.; Watson, A.N.; Lindner, V.; Shih, A.Y. Pericyte structure and
distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics
2015, 2, 41402. [CrossRef] [PubMed]

38. Girolamo, F.; Errede, M.; Longo, G.; Annese, T.; Alias, C.; Ferrara, G.; Morando, S.; Trojano, M.; De Rosbo, N.K.;
Uccelli, A.; et al. Defining the role of NG2-expressing cells in experimental models of multiple sclerosis.
A biofunctional analysis of the neurovascular unit in wild type and NG2 null mice. PLoS ONE 2019,
14, e0213508. [CrossRef]

39. Magaki, S.D.; Williams, C.K.; Vinters, H.V. Glial function (and dysfunction) in the normal & ischemic brain.
Neuropharmacology 2017, 134, 218–225. [CrossRef]

http://dx.doi.org/10.1038/jcbfm.2014.206
http://dx.doi.org/10.1016/j.cca.2008.07.016
http://dx.doi.org/10.1038/s41573-020-0072-x
http://dx.doi.org/10.1152/ajpcell.2001.280.5.C1319
http://www.ncbi.nlm.nih.gov/pubmed/11287345
http://dx.doi.org/10.1016/j.braindev.2011.08.004
http://www.ncbi.nlm.nih.gov/pubmed/21875773
http://dx.doi.org/10.1136/jnnp-2014-308577
http://www.ncbi.nlm.nih.gov/pubmed/25121572
http://dx.doi.org/10.1038/ncomms15557
http://www.ncbi.nlm.nih.gov/pubmed/28534495
http://dx.doi.org/10.1016/j.nlm.2019.107151
http://dx.doi.org/10.1371/journal.pone.0071721
http://dx.doi.org/10.1093/cercor/bht136
http://dx.doi.org/10.1124/pr.110.003301
http://dx.doi.org/10.1523/JNEUROSCI.2092-18.2019
http://dx.doi.org/10.1177/0271678X17722436
http://dx.doi.org/10.4049/jimmunol.1601566
http://dx.doi.org/10.1215/S1152851705000232
http://www.ncbi.nlm.nih.gov/pubmed/16212810
http://dx.doi.org/10.1177/0271678X15610340
http://www.ncbi.nlm.nih.gov/pubmed/26661200
http://dx.doi.org/10.1117/1.NPh.2.4.041402
http://www.ncbi.nlm.nih.gov/pubmed/26158016
http://dx.doi.org/10.1371/journal.pone.0213508
http://dx.doi.org/10.1016/j.neuropharm.2017.11.009


Int. J. Mol. Sci. 2020, 21, 6457 14 of 14

40. Ma, K.; Ding, X.; Song, Q.; Han, Z.; Yao, H.; Ding, J.; Hu, G. Lactate enhances Arc/arg3.1 expression through
hydroxycarboxylic acid receptor 1-β-arrestin2 pathway in astrocytes. Neuropharmacology 2020, 171, 108084.
[CrossRef]

41. Campbell, R.E.; Tour, O.; Palmer, A.E.; Steinbach, P.A.; Baird, G.S.; Zacharias, D.A.; Tsien, R.Y. A monomeric
red fluorescent protein. Proc. Natl. Acad. Sci. USA 2002, 99, 7877–7882. [CrossRef]

42. Hosoyamada, M.; Takiue, Y.; Morisaki, H.; Cheng, J.; Ikawa, M.; Okabe, M.; Morisaki, T.; Ichida, K.; Hosoya, T.;
Shibasaki, T. Establishment and analysis ofSLC22A12(URAT1) knockout mouse. Nucleosides Nucleotides
Nucleic Acids 2010, 29, 314–320. [CrossRef]

43. Tomioka, N.H.; Nakamura, M.; Doshi, M.; Deguchi, Y.; Ichida, K.; Morisaki, T.; Hosoyamada, M. Ependymal
cells of the mouse brain express urate transporter 1 (URAT1). Fluids Barriers CNS 2013, 10, 31. [CrossRef]

44. Kendall, R.T.; A Feghali-Bostwick, C. Fibroblasts in fibrosis: Novel roles and mediators. Front. Pharmacol.
2014, 5, 123. [CrossRef] [PubMed]

45. Capilla-Gonzalez, V.; Herranz-Pérez, V.; Sanz-García, A. The aged brain: Genesis and fate of residual
progenitor cells in the subventricular zone. Front. Cell. Neurosci. 2015, 9, 365. [CrossRef] [PubMed]

46. Del Bigio, M.R. Ependymal cells: Biology and pathology. Acta Neuropathol. 2009, 119, 55–73. [CrossRef]
[PubMed]

47. Jiménez, A.-J.; Domínguez-Pinos, M.-D.; Guerra, M.M.; Fernández-Llebrez, P.; Pérez-Fígares, J.-M. Structure
and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers
2014, 2, e28426. [CrossRef] [PubMed]

48. Percie Du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.;
Cuthill, I.C.; Dirnagl, U.; et al. The arrive guidelines 2.0: Updated guidelines for reporting animal research.
Exp. Physiol. 2020, 105, 1459–1466. [CrossRef]

49. Ahmed, K.; Tunaru, S.; Tang, C.; Müller, M.; Gille, A.; Sassmann, A.; Hanson, J.; Offermanns, S. An autocrine
lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab. 2010, 11, 311–319.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.neuropharm.2020.108084
http://dx.doi.org/10.1073/pnas.082243699
http://dx.doi.org/10.1080/15257771003738634
http://dx.doi.org/10.1186/2045-8118-10-31
http://dx.doi.org/10.3389/fphar.2014.00123
http://www.ncbi.nlm.nih.gov/pubmed/24904424
http://dx.doi.org/10.3389/fncel.2015.00365
http://www.ncbi.nlm.nih.gov/pubmed/26441536
http://dx.doi.org/10.1007/s00401-009-0624-y
http://www.ncbi.nlm.nih.gov/pubmed/20024659
http://dx.doi.org/10.4161/tisb.28426
http://www.ncbi.nlm.nih.gov/pubmed/25045600
http://dx.doi.org/10.1113/EP088870
http://dx.doi.org/10.1016/j.cmet.2010.02.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Distribution of the Lactate Receptor HCA1 in the Cerebral Ventricular System 
	The Lactate Receptor HCA1 in the Choroid Plexus in the Roof of the Dorsal Part of the Third Ventricle 
	The Lactate Receptor HCA1 in the Neuroepithelial Lining of the Dorsal Part of the Third Ventricle 
	The Lactate Receptor HCA1 in the Tela Choroidea in the Roof of the Dorsal Part of the Third Ventricle 

	Discussion 
	Materials and Methods 
	Animals 
	Immunohistochemistry 
	Image Acquisition 

	Conclusions 
	References

