

Figure S1. ¹H ¹³C NMR HSQC-DEPT spectra of the OS of *B. holmesii* ATCC 51541 and *B. pertussis* 606 [overlay spectrum]; *Resonances placed in frames indicate variants of the residue $F \rightarrow 3,4$)-L- α -D-Hepp-(1 \rightarrow in different environment; The remaining resonances of the initially identified residue G (δ_{H1}/δ_{C1} 4.95/96.9) and (δ_{H2}/δ_{C2} 3.85/73.4) were not resolved from those of residue F.

	Strain	Chemical Shifts (ppm)								
Residue		H-1	H-2	H-3	H-4	H-5	H-6, H-6'	H-7	H-8, H-8′	
		C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	
	Bp606			3.12	4.38	4.02	4.13	3.89	3.66, 3.60	
\mathbf{K} do (4.7) and \mathbf{K} dof			203.1	42.9	77.4	83.8	75.4	83.6	61.1	
Kuu $\rightarrow 4,7$ <i>j</i> -aliilKuuj	Bhol			3.12	4.39	4.02	4.14	3.89	3.66, 3.60	
			202.9	42.8	77.4	83.8	75.4	83.7	61.1	
Kdoʻ →4,7)-anhKdof	Bp606			3.11	4.50	4.12	4.08	3.74	3.67, 3.58	
			203.3	39.1	75.7	80.2	74.7	84.8	61.8	
	Bhol			3.09	4.51	4.12	4.08	3.74	3.67, 3.58	
			203.2	38.8	75.8	80.2	74.7	84.8	61.8	
	Bp606	5.47	3.31	3.94	3.63	3.73	3.78, 3.73			
$\mathbf{A} \rightarrow 4$)- α -GlcnN-(1 \rightarrow	Брооо	97.4	54.5	70.3	74.9	71.9	60.5			
	Bhol	5.48	3.33	3.94	3.63	3.74	3.78	3.73		
		97.3	54.5	70.3	74.9	71.9	60.5			
B →2,7)-L-α-D-Hepp-	Bp606	5.38	3.86	3.90	3.84	3.46	4.18	3.70		
		99.7	79.9	70.5	66.6	72.2	68.0	70.3		
$(1 \rightarrow$	Bhol	5.39	3.85	3.91	3.84	3.45	4.17	3.70		
	Ditoi	99.7	79.8	70.4	66.5	72.1	67.9	70.3		
	Bp606	5.27	3.96	3.64	3.78	3.55	3.90	3.65, 3.62		
С L- α -D-Hepp-(1→		101.2	70.1	70.3	65.8	72.5	68.5	62.5		
	Bhol	5.27	3.96	3.74	3.81	3.54	3.94	3.62		
		101.2	70.1	70.5	65.9	72.5	68.5	62.7		
$\mathbf{D} \propto ColuNA (1)$	Bp606	5.16	3.44	4.03	4.15	4.33				
		94.5	50.5	66.7	69.7	72.3	175.1			
Du-Gaipivi-(1)	Bhol	5.17	3.47	4.04	4.16	4.33				
		94.4	50.5	66.7	69.7	72.3	175.1			
E α-GlcpN-(1→	Bp606	5.12	3.28	3.85	3.45	3.70	3.78, 3.72			
		96.0	54.1	69.8	69.4	72.2	60.2			
	Rhol	5.12	3.28	3.86	3.44	3.70	3.78, 3.72			
	DIIOI	96.0	54.1	69.8	69.4	72.2	60.2			
F →3,4)-L-α-D-Hepp-	Bp606	5.07	3.90	3.84	4.23	3.54	3.95	3.67, 3.65		
		97.7	73.5	79.9	71.7	71.3	68.9	62.7		
(1→	Bhol	5.07	3.90	3.84	4.23	3.53	3.93	3.67, 3.65		
	סחט	97.8	73.3	76.7	71.7	71.4	68.9	62.7		
H α-GlcpA-(1→	Bp606	4.97	3.52	3.69	3.39	4.04				
		101.0	71.9	71.6	72.3	73.8	176.6			
	Bhol	4.99	3.52	3.68	3.39	4.03				
		101.0	71.9	71.6	72.3	73.8	176.6			
I* α-GlcpA-(1→	Bp606	4.96	3.51	3.67	3.37	4.01				
		101.1	72.1	71.5	72.2	73.8	176.7			
	Bhol	4.95	3.52	3.67	3.38	4.01				
		101.2	72.1	71.6	72.2	73.9	176.7			

Table S1. 1H 13C NMR chemical shifts of the core oligosaccharides of *B. pertussis 606* and *B. holmesii* ATCC 51541 *

	Strain	Chemical Shifts (ppm)							
Residue		H-1	H-2	H-3	H-4	H-5	H-6, H-6′	H-7	H-8, H-8′
		C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8
J →4,6)-β-Glc <i>p</i> -(1→	Bp606	4.39	3.27	3.56	3.44	3.67	3.76, 3.89		
		101.4	73.4	76.4	78.9	72.9	67.2		
	Bhol	4.40	3.27	3.55	3.44	3.66	3.76, 3.89		
		101.4	73.4	76.4	79.0	73.0	67.3		

* The additional CH₂- signals at δH1/δC1 (3.13/40.5 ppm), δH1/δC1 (3.18/39.8 ppm) and δH2/δC2 (3.9/60.2 ppm), δH2/δC2 (4.09/62.0 ppm) for the *B. pertussis* 606 OS and at δH1/δC1 (3.17/40.0 ppm) and δH2/δC2 (4.07/62.2 ppm) for the *B. holmesii* OS V indicate the presence of phosphoethanolamine in the intact core oligosaccharides of these strains. P-EtN correlations were not resolved and the substitution position is only tentative.

D 1	Atom H-1/C-1 Connectivities to Inter-Residue							
Kesidue	(ppm)	δc	ðн	Atom/Residue				
A →4)- <i>α</i> -Glc <i>p</i> N-(1→	97.4/5.47	78.9	3.44	C-4, H-4 of J				
B →2,7)-L-α-D-Hepp-(1→	99.7/5.38	79.9	3.84	C-3, H-3 of F				
С L- α -D-Hep p -(1→	101.2/5.27	74.9	3.63	C-6, H-6/6' of A				
D α -Gal <i>p</i> NA-(1 \rightarrow	94.5/5.15	67.2	3.76/3.89	C-6, H-6/6' of J				
E α-GlcpN-(1→	96.0/5.12	70.3	3.70	C-7, H-7 of B				
F →3,4)-L-α-D-Hepp-(1→	97.7/5.07	83.7	4.02	C-5, H-5 of Kdo				
H α -GlcpA-(1 \rightarrow	101.0/4.97	79.9	3.86	C-2, H-2 of B				
I α -GlcpA-(1 \rightarrow	101.1/4.96	79.9	3.85	C-2, H-2 of B				
J →4,6)-β-Glc <i>p</i> -(1→	101.4/4.39	71.7	4.23	C-4, H-4 of F				

 Table S2. Selected inter-residue NOE and ³JH,c-connectivities from the anomeric atoms of the core oligosaccharide of *B. pertussis* 606