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NMR spectra of 5-(N-trifluoromethylcarboxy)aminouracil

11.40
10.78
7.79

L
T

T T T T
13.0 125 120 115

A
=]
o
T
1 105 100 95 90 85 80 60 55 50 45 40 35 3.0

75 70 65
f1 (ppm)

Figure S1. 'H NMR spectrum of 5-(N-trifluoromethylcarboxy)aminouracil.
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Figure S2. 3C NMR spectrum of 5-(N-trifluoromethylcarboxy)aminouracil.
MS and MS/MS spectra of a 5-(N-trifluoromethylcarboxy)aminouracil
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Figure S3. The MS spectrum (in negative ionization mode) of 5-(N-trifluoromethylcarboxy)-
aminouracil.
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Figure S4. The MS/MS spectrum (in negative ionization mode) of 5-(N-trifluoromethyl-
carboxy)aminouracil and ion identities.

MS and MS/MS spectra of a radioproduct
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Figure S5. The MS spectrum (in negative ionization mode) of radioproduct.
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Figure S6. The MS/MS spectrum (in negative ionization mode) of radioproduct and ion identities.

Crystallographic data for 5-(N-trifluoromethylcarboxy)aminouracil

5-(N-

Table S1. Crystal data and structure refinement  parameters for

trifluoromethylcarboxy)aminouracil.
Chemical formula CsHaN3F3Os
FW/g - mol~! 223.12
Crystal system monoclinic
Space group C2/c
alA 19.616(3)
b/A 7.268(2)
/A 11.663(3)
al° 90
B/° 100.55(2)
y/° 90
V/A3 1634.8(6)
z 8
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T/K 295(2)

Ao/ A 0.71073
Pealc/g-cm 1.813
F(000) 896
p/mm-1 0.187

6 range/° 3.38-25.00
Completness 6/% 99.9
Reflections collected 5089
Reflections unique 1441 [Rint = 0.1635]
Data/restraints/parameters 1441/0/145
Goodness of fit on F2 0.957
Final R1 value (I>20(])) 0.0706
Final wR2 value (I>20(1)) 0.1259
Final Ri1 value (all data) 0.1938
Final wR2 value (all data) 0.1733
CCDC number 2016475

Table S2. Hydrogen bonding interactions in the crystal structure of the title compound.

D-H-A d(D-H) (A) d(H-A) (A) d(D-A) (A) <D-H-A (°)
N1-H1--Q7 0.99(6) 1.83(6) 2.821(6) 174(4)
N3-H3--08i 0.77(6) 2.13(6) 2.878(6) 165(6)
N9-H9---O8ii 0.86(6) 2.04(6) 2.823(6) 151(5)
C6-H6--O11v 0.93 2.58 3.284(7) 133

Symmetry codes:(i) 1/2-x,-1/2-y,1-z; (ii) 1-x,~y,1-z; (iii) 1-x,y,3/2-z; (iv) 1/2-x,-1/2+y,3/2-z.
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Plating efficiencies (clonogenic assay)

Table S3. Plating efficiencies and survival fractions (obtained from clonogenic assay) for the PC3 cells
treated with 5-(N-trifluoromethylcarboxy)aminouracil and/or radiation.

0 uM CFs:CONHU 100 uM CF:CONHU
Dose [Gy]
Plating efficiency Survival fraction Plating efficiency Survival fraction

0 40.66 + 0.09 100.0 42.09 +0.22 100.0

0.5 35.06 + 0.56 86.2+22 28.88 +2.25 68.6 +7.1
1 28.25+1.25 69.5+4.1 23.81+0.44 56.6+1.9
2 17.63 +0.75 43.4+238 13.68 £1.31 32.5+46
4 4.69 +0.94 11.5+£32 1.75+0.38 42+13
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Hypothetic pathway for the formation of 2-oxazolidinone ring
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Figure S7. Hypothetic pathway for the formation of 2-oxazolidinone ring.

S9



Kinetic model

In order to mimic the experimental conditions ki (Scheme S1) was assumed to be equal to 3.3 -
108, which corresponds to the concentration of solvated electrons and hydroxyl radicals generated by
the experimental dose rate (0.117 Gy - s). We further assumed that the concentration of water, ¢-
butanol (both used in large excess) and hydroxyl anions (the sample was buffered, see point 2.2.3
Radiolysis) was constant during the experiment and equal to 55.5, 3.0 - 10 and 1.0 - 107 M,
respectively. For k2 (Scheme S1), the rate reported for the reaction between enya and pyrimidine was
assumed [S1], while for ks (Scheme S1) the value assigned for the reaction rate between the *OH
radicals and t-butanol, while ks results from the Debye equation for water and T = 298 K [S2]. Finally
kis (Scheme S1) was assumed to be equal to the rate evaluated by Mezyk and Madden [S3] for the self
—recombination of t-butyl alcohol radicals in water. The remaining rate constants were obtained using
transition state theory and AG" calculated at the M06-2X/6-31++G(d,p) level (Figure 6). The system of
differential equations (Equation S1) matching the mechanism depicted in Scheme 1 was integrated for
1200 s and then for further 60 000 s with ki (Scheme S1) set to 0, that corresponded to X-ray source
turned off. Reactions 1, 2, 3 and 9 (Scheme S1) were assumed to be irreversible since the
thermodynamic stimuli for the reverse processes were highly unfavorable (from 17.4 for reaction (3) to
even 67.2 kcal - mol™ for reaction (9)) making the reverse reactions completely improbable at the
ambient temperature.

X, kg
H,0 == OH" +e,, 1)
k.
[CF; — CO — R] + €5y — [CF5 — CO —R]"~ )
k
[t — But] 4+ [OH]* = [t — But]* + H,0 3)
ky
[CF; = CO—R]*~ _ [CF, — CO —R]" +F~ “4)
ks
.3
[CF, — CO—R]* + OH™ _[CF,0H — CO — R]"~ (5)
k7
kg
[CF,0H — CO—R]*~  [CFOH — CO —R]" + F~ (6)
ko
kg
[CFOH — CO — R]* + H,0 _ [CO—CO —R]" + H,0 + HF (7
k11
kig
[CO—CO —R]* + H,0 _ [COOH — COH — R]* (8)
ki3
k
[COOH — COH — R]* + [t — But]* — [COOH — CO — R] + [t — But] )

Scheme S1. Elementary reactions leading from the radical anion of CFsCONHU to N-uracil-5-
yloxamic acid. R = NHU.
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Equation S1. System of kinetic equations used for predicting the time of reaction completion.

1 d[esol] _ _ _ _
)_dt = k; —k;[CF3 — CO — R][es,]
2)% = k; — k3[OH]*[t — But]
d[CF; — CO — R]*~ _ _
3) It = —k,[CF; — CO — R]*™ + k5[CF, — CO — R]*[F~] +k, [CF3 — CO — R][esn]
4 d[CF, — CO —R]*

dt
= —k4[CF, — CO — R]*[OH"] + k,[CF,0H — CO — R]*~ — ks[CF, — CO — R]*[F~]
+k,[CF; — CO — R]"™

d [CF,0H — CO — R]*~
5, 41CF: ]

dt
= —Kg [CF,0H — CO — R]"~ +ko [CFOH — CO — R]* [F~] — k,[CF,0H — CO — R]"~
+ kg[CF, — CO — R]*[OH"]

d[CFOH — CO — R]"
6) dt

= —K,,[CFOH — CO — R]*[H,0] + k4, [CO — CO — R]*[H,O][HF]
— ko[CFOH — CO — R]*[F~] + kg[CF,0H — CO — R]*~

d
7) —3r = kalCFs = €O = R]"™ — kg[CF, — CO — R]'[F~] + kg [CF,0H — CO — R]™ ko
[CFOH — CO — R]" [F7]

d[CO — CO —R]"

%) dt

= —Kk,,[CO — CO — R]*[H,0] + k;3[COOH — COH — R]* — k;;[CO — CO — R]*[H,O][HF]
+ ky9[CFOH — CO — R]*[H,0]

d[HF]

T

= kq0[CFOH — CO — R]*[H,0] — ky,[CO — CO — R]*[H,O][HF]

d [COOH — COH — R]*
dt

10)
= —k,; [COOH — COH — R]* +k;,[CO — CO — R]*[H,0]
— k,,[COOH — COH — R]*[t — But]*

d [COOH — CO — R]

11) - = k,, [COOH — COH — R]*[t — But]*

d [CF; — COR]
12) ——-—— = —k; [CF3 — CO — R][ess]

d [t - But]" . . .
13) ————= ks[t = But][OH]" ~ ky; [COOH ~ COH — R]'[¢ — But]
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Table S4. Rate constants (T =298 K) employed in the kinetic model shown in Scheme S1. The values of
particular constants were obtained using transition state theory and activation free energies (AG)
calculated at the M06-2X/6-31++G(d,p) level. [TOH], [H20] and [t-butanol] equal to 107, 55.5 and 3 -

102 M, respectively.
Constant kT/h*exp(-AG"/(RT)) Invariant Rate constant used in the
(Scheme S1) concentration species kinetic calculations
(Equation S1)
k1 3.3-108 [MsT] 3.3-10% [MsT]
ko [S1] 2.0- 10 [M1s1] 2.0- 10" [M1s1]
ks [S4] 6.0 - 108 [M1s1] 6.0 -108 [M1s1]
Kka 5.07 - 10° [s71] 5.07 - 105 [s7]
ks 3.36 - 102 [M1s] 3.36 - 1012 [M1s7]
ke [S2] 7.4-10° [M1s1] ~OH 7.4-10? [s1]
k7 1.23 - 10718 [s71] 1.23 - 108 [s71]
ks 9.38 - 10* [s] 9.38 - 104 [s]
ko 1.20 - 10° [M1s71] 1.20 - 10° [s7!]
k1o 5.99 - 106 [M3s7] H0 3.27 -10* [M2s1]
kn 1.03 - 10" [M2s7] H:0 5.72-102 [MsT]
k12 1.84 - 105 [M1s7] H0 1.02 - 107 [s7]
ks 1.53 - 100 [s71] 1.53 -10° [s1]
k14[S3] 1.20 - 10° [M1s71] t-butanol 3.6 - 107 [M1s1]
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Cytometric analysis of histone H2A.X phosphorylation

Non-treated

CF;CONHU

Figure S8.
irradiation.
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Flow cytometric analysis of H2A. X phosphorylation. YH2A.X was measured 1 h after
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Cytotoxicity assay
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Figure S9. The viability of PC3 cells after 72 and 96 h treatment with 5-(N-
trifluoromethylcarboxy)aminouracil in a range of concentrations from 0 to 10 M. Results are shown as
mean + SD of three independent experiments performed in triplicate.

*statistically significant difference is present between treated culture compared with control (untreated
culture)
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Figure S10. Cell proliferation measured using WST-1 assay. The absorbance at 440 nm plotted as a
function of time.

*statistically significant difference is present between treated culture compared with control (untreated
culture)
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