Supplemental information

Figure S1. Root mean square deviation (RMSD) of (a) (R)-T2 and (b) (S)-T2 with $\alpha 3 \beta 4 \mathrm{nAChR}$ homology model from the initial conformation performed during molecular dynamic simulations.

Figure S2. Ramachandran plot assessments of (a) $\alpha 7$ and (b) $\alpha 3 \beta 4$ nAChR homology models from PROCHECK. Red, most favorable region (91.1 and 92.3%); yellow, additional allowed regions (6.6 and 7.6%); light brown, generously allowed region (0.5 and 1.0%); and white, disallowed region (0.5 and 0.3%).

Ls-	--LD---RADILYN-- IRQTSRPDVIPTQRDRPVAVSVSLKFINILEVNEITNEVDVV	51
$\alpha 7$	--GEFQRKLYKELV--KNYNPLERP---VANDSQPLTVYFSLSLLQIMDVDEKNQVLTTN	53
$\alpha 3$	--SEAEHRLFERLF--EDYNEIIRP---VANVSDPVIIHFEVSMSQLVKVDEVNQIMETN	53
$\beta 4$	RVANAEEKLMDDLLNKTRYNNLIRP---ATSSSQLISIKLQLSLAQLISVNEREQIMTTN	57
Ls-	FWQQTTWSDRTLAWNSSHSPD--QVSVPISSLWVPDLAAYNAISKP-EVLTPQLARVVSD	108
$\alpha 7$	IWLQMSWTDHYLQWNVSEYPGVKTVRFPDGQIWKPDILLYNSADERFDATFHTNVLVNSS	113
$\alpha 3$	LWLKQIWNDYKLKWNPSDYGGAEFMRVPAQKIWKPDIVLYNNAVGDFQVDDKTKALLKYT	113
$\beta 4$	WWLKQEWTDYRLTWNSSRYEGVNILRIPAKRIWLPDIVLYNNADGTYEVSVYTNLIVRSN	117
Ls-	GEVLYMPSIRQRFSCDVSGVD-TESGATCRIKIGSWTHHSREISVDPTTENSDDSEYFSQ	167
$\alpha 7$	GHCQYLPPGIFKSSCYIDVRWFPFDVQHCKLKFGSWSYGGWSLDLQMQ--EADISG-YIP	170
$\alpha 3$	GEVTWIPPAIFKSSCKIDVTYFPFDYQNCTMKFGSWSYDKAKIDLVLIGSSMNLKD-YWE	172
$\beta 4$	GSVLWLPPAIYKSACKIEVKYFPFDQQNCTLKFRSWTYDHTEIDMVLMTPTASMDD-FTP	176

Ls- YSRFEILDVTQKKNSVTYSCCPEAYEDVEVSLNFRKKGRSEIL 210
$\alpha 7$ NGEWDLVGIPGKRSERFYECCKEPYPDVTFTVTMRRRT----- 208
a3 SGEWAIIKAPGYKHDIKYNCCEEIYPDITYSLYIRRL------ 209
$\beta 4$ SGEWDIVALPGRRTV---NPQDPSYVDVTYDFIIKRKPLFYT- 215
Figure S3. The sequence alignment of AChBP from Lymnaea stagnalis (Ls-) and $\alpha 7, \alpha 3$ and $\beta 4$ subtypes of nAChR. The red box indicated conserved amino acid residues.

Figure S4. The binding interaction of EVP-6124, a reference $\alpha 7 \mathrm{nAChR}$ ligand to (a) $\alpha 7 \mathrm{nAChR}$ and (b) $\alpha 3 \beta 4$ nAChR . The quinuclidine is able to form two cation- π interactions to $\operatorname{TrpA149}$ and $\operatorname{TyrA195}$ and one hydrogen bond interaction with $\operatorname{TrpA149}$ in $\alpha 7 \mathrm{nAChR}$, whereas it can interact via hydrogen bond with only AspB173 in $\alpha 3 \beta 4$ nAChR . This ligand is capable of forming $\pi-\pi$ interaction with the amino acid residues $\operatorname{TrpB55}$ in $\alpha 7 \mathrm{nAChR}$ and TrpA149 and TyrA190 in $\alpha 3 \beta 4$ nAChR. Color schemes for residues and binding interaction: green, hydrophobic residues; light purple, polar residues; red ring, acidic residues; arrow head, hydrogen bond interaction (the donor is at the base of the arrow and the acceptor is at the head); line of benzene ring with plus symbol, cation- π interaction; line of two benzene rings, $\pi-\pi$ interaction.

Figure S5. The binding interaction of AT-1001, a reference $\alpha 3 \beta 4 \mathrm{nAChR}$ ligand to (a) $\alpha 7 \mathrm{nAChR}$ and (b) $\alpha 3 \beta 4$ nAChR. The bicyclic amine is able to form two cation $-\pi$ interactions to TrpA149 and TyrA195 in $\alpha 7 \mathrm{nAChR}$, whereas it can interact with both TrpA149 and TyrA197 via cation- π interaction in $\alpha 3 \beta 4 \mathrm{nAChR}$. Hence, the hydrogen atom of protonated quinuclidine can form hydrogen bond interaction with the backbone of TrpA149 in both nAChRs and the secondary amine can form hydrogen bond interaction with the backbone of TrpA149 in $\alpha 7 \mathrm{nAChR}$. Color schemes for residues and binding interaction: green, hydrophobic residues; light purple, polar residues; arrow head, hydrogen bond interaction (the donor is at the base of the arrow and the acceptor is at the head); line of benzene ring with plus symbol, cation $-\pi$ interaction.

Table S1. The binding energy and ligand efficiency of ligands to $\alpha 3 \beta 4$ and $\alpha 7$ nAChRs.

Compound	$\alpha 3 \beta 4 \mathrm{nAChR}$			$\alpha 7 \mathrm{nAChR}$		
	\% Member in the largest cluster	Free binding energy, $\Delta \mathrm{G}$	Ligand efficiency (LE)*	\% Member in the largest cluster	Free Binding energy, $\Delta \mathrm{G}$	Ligand efficiency $(\mathrm{LE})^{*}$
EVP6124	100	-11.73	-0.56	76	-10.75	-0.51
AT-1001	55	-10.16	-0.56	40	-10.75	-0.6
	31	-9.89	-0.55	25	-9.83	-0.55
(R)-T1	63	-11.1	-0.55	91	-10.11	-0.51
(S)-T1	100	-10.24	-0.51	91	-9.89	-0.49
(R)-T2	66	-11.15	-0.56	70	-11.39	-0.57
$(S)-\mathrm{T} 2$	100	-10.45	-0.52	42	-9.92	-0.50
				41	-9.88	-0.49
(R)-T3	42	-11.43	-0.50	48	-11.54	-0.50
	31	-11.27	-0.49	37	-10.91	-0.47
(S)-T3	60	-11.52	-0.50	34	-11.15	-0.48
				32	-10.92	-0.47
(R)-T4	51	-11.49	-0.48	38	-11.28	-0.47
	39	-11.94	-0.5	32	-11.75	-0.49
(S)-T4	95	-11.85	-0.49	40	-11.44	-0.48
				17	-11.21	-0.47
(R)-T5	64	-14.18	-0.53	78	-13.57	-0.50
(S)-T5	88	-14.25	-0.53	67	-13.36	-0.49
(R)-T6	83	-14.64	-0.52	84	-13.84	-0.49
(S)-T6	91	-14.72	-0.53	89	-13.73	-0.49

[^0]

Figure S6. The binding interaction of the (S)-enantiomer of T1-T6 to $\alpha 3 \beta 4 \mathrm{nAChR}$. The green arrow indicated hydrogen bond interaction between the N atom of quinuclidine and AspB173. Color schemes for residues and binding interaction: green, hydrophobic residues; light purple, polar residues; red ring, acidic residues; arrow head, hydrogenbond interaction (the donor is at the base of the arrow and the acceptor is at the head); line of two benzene rings, $\pi-\pi$ interaction.

(R)-T3

(R)-T6

Figure S7. The binding interaction of the (R)-enantiomer of T1-T6 to $\alpha 3 \beta 4$ nAChR. Color schemes for residues and binding interaction: green, hydrophobic residues; light purple, polar residues; red ring, acidic residues; arrow head, hydrogen bond interaction (the donor is at the base of the arrow and the acceptor is at the head); line of benzene ring with plus symbol, cation $-\pi$ interaction; line of two benzene rings, $\pi-\pi$ interaction.

(R)-T2

Figure S8. The binding interaction of the (R)-enantiomer of T1-T6 to $\alpha 7$ nAChR. Color schemes for residues and binding interaction: green, hydrophobic residues; light purple, polar residues; arrow head, hydrogen bond interaction (the donor is at the base of the arrow and the acceptor is at the head); line of benzene ring with plus symbol, cation- π interaction; line of two benzene rings, $\pi-\pi$ interaction.
(S) - T 1
(iig

(S) -T 2

(S)-T4
(ivis)

(S)-T6

Figure S9. The binding interaction of the (S)-enantiomer of T1-T6 to $\alpha 7 \mathrm{nAChR}$. Color schemes for residues and binding interaction: green, hydrophobic residues; light purple, polar residues; line of benzene ring with plus symbol, cation $-\pi$ interaction; line of two benzene rings, $\pi-\pi$ interaction.

[^0]: * LE is the ratio of Gibbs free energy $(\Delta \mathrm{G})$ to the number of non-hydrogen atoms of the ligand.

