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Abstract: No effective medical treatment exists for heart failure with preserved ejection fraction
(HFpEF), accounting for approximately half of all heart failure cases. The elevated passive myocardial
stiffness in HFpEF is attributed to a combination of alterations in the extracellular matrix (ECM)
collagen content and modifications in the sarcomeric protein titin. Here, we propose polylaminin,
a biomimetic polymer of laminin, as a promising approach for manipulating the titin isoform shift
and phosphorylation in cardiomyocytes. Exploring the pleiotropic effects of polylaminin may be a
novel strategy for alleviating symptoms in HFpEF’s multifactorial pathophysiology.

Keywords: heart failure with preserved ejection fraction; laminin; polylaminin; titin; cardiomyocyte;
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1. Introduction

Heart failure (HF) is a final common pathway for many cardiovascular diseases. Around half of
the HF population has heart failure with preserved ejection fraction (HFpEF), and its prevalence will
likely grow with the increased age and longevity of the population. Recent findings demonstrate that
the diastolic dysfunction in HFpEF results from a combination of nitric oxide metabolism dysfunction,
systemic inflammation, and diffuse fibrosis [1]. Despite extensive research efforts, the European Society
of Cardiology Heart Failure Guidelines [2] stated categorically, “No treatment has yet been be shown,
convincingly, to reduce morbidity and mortality in patients with HFpEF”.

The hallmark pathophysiological finding with HFpEF is reduced cardiac compliance and increased
diastolic passive stiffness. Total myocardial passive stiffness is the result of extracellular matrix (ECM)
stiffness and cardiomyocyte stiffness. Changes in ECM stiffness mostly originate in the interstitial
amounts of collagens I and III, highly involved in fibroblast secretion. Cardiomyocyte stiffness, on the
other hand, is largely modulated by intracellular titin—a key target for developing therapies for HFpEF
and the focus of this perspective. Titin is a large sarcomeric protein that connects the z-lines to myosin
in the cardiomyocyte and functions as a molecular spring. Titin’s elastic properties determine the
passive mechanical properties of cardiomyocytes [3,4] and can be modulated by two main mechanisms:
phosphorylation and isoform shift.

Cardiomyocytes are localized within the basement membrane, a thin, highly specialized layer
composed of ECM proteins, in which laminin is a major component [5]. Laminins are cross-shaped
molecules that in their biologically active form polymerize into a cell-associated network. Costameres
assembled by a combination of integrins and dystroglycans serve as a structural and functional bridge
connecting laminins and other proteins to the cell surface. Costameric structures (hence, integrins)
participate in signal transduction and transmit force between the contractile apparatus and ECM
through interaction with mainly titin and other Z-line associated structures, supporting the mechanical
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integrity of the sarcolemma and orchestrating mechanical signaling [6], and they also provide spatial
cues for muscle fiber organization [7].

Because alterations in titin isoform expression can modulate stiffness, we reasoned that
manipulating basement membrane proteins, specifically laminin, could alter cardiomyocyte stiffness.
To this end, our group’s preliminary in vitro and ex vivo data show that modulating basement
membrane laminin isoforms can alter gene expression—titin isoform expression, specifically—in
human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. Therefore, manipulating the
laminin content of the ECM may be an effective means of altering the cardiac titin isoform ratio to
induce structural and functional changes at the cellular level. In our view, targeting titin isoforms via
laminin may be a relevant addition to the HFpEF-management therapeutic arsenal (Figure 1).
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mechanisms through which titin-based cardiomyocyte stiffness can be modulated. The 
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titin stiffness [15]. This rationale has spurred attempts by others to modulate titin stiffness, but the 
clinical benefit of targeting titin phosphorylation in HFpEF has been, to date, unclear [16]. However, 
increasing the titin-N2BA/N2B intracellular ratio—beyond the body’s compensatory response—
would be expected to alter cardiomyocyte stiffness. 
  

Figure 1. Schematic of the relationship between stiffness and titin-N2BAs during heart failure with
preserved ejection fraction (HFpEF) progression, and prediction of its dynamics after treatment with
polylaminin. ECM-S, extracellular matrix stiffness; CM-S, cardiomyocyte stiffness; Total-S; total stiffness;
N2BA, titin N2BA content.

2. Why Titin Isoforms to Alter Cardiac Compliance?

Phosphorylation and the titin isoform shift, which is regulated by RBM20 [8], are two known
mechanisms through which titin-based cardiomyocyte stiffness can be modulated. The phosphorylation
of the titin-N2-Bus domain by protein kinase A (PKA) and protein kinase G (PKG) reduces titin stiffness
within hours, whereas the PKC phosphorylation of the PEVK regions of titin increases stiffness [9,10].
The isoform shift occurs between titin’s two main isoforms in adults: the longer, more compliant
titin-N2BA and the shorter, stiffer titin-N2B. The two isoforms differ mainly in the middle Ig region,
which is longer in titin-N2BA and yields a more compliant spring [11,12]. Evidence from the
clinical development of HF shows that an increase in titin-N2B increases cardiomyocyte stiffness,
whereas an increase in titin-N2BA decreases cardiomyocyte stiffness, thereby increasing cardiomyocyte
compliance. The titin N2BA/N2B ratio is 0.3 in healthy adult heart [11]. This ratio increases in patients
with HFpEF [10], although the increase in N2BA has been described as a compensatory response
to increased ECM stiffness in advanced-stage HFpEF [13]. However, in the case of diffuse global
fibrosis commonly observed in patients with HFpEF, many of whom are elderly and comorbid [14],
the physiological compensatory titin-N2BA increment appears to be insufficient in counterbalancing
the increased ECM stiffness, leading to the diastolic impairment characteristic of the condition.

Shifting the relative titin isoform ratio and altering titin phosphorylation remain promising
treatment targets in HFpEF. In patients with HFpEF, titin is phosphorylated at lower levels at protein
kinase A sites and at higher levels at protein kinase C (PKC) sites, which is consistent with increased
titin stiffness [15]. This rationale has spurred attempts by others to modulate titin stiffness, but the
clinical benefit of targeting titin phosphorylation in HFpEF has been, to date, unclear [16]. However,
increasing the titin-N2BA/N2B intracellular ratio—beyond the body’s compensatory response—would
be expected to alter cardiomyocyte stiffness.
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3. Polylaminin’s Effects on Cardiac Stiffness

Laminins are critical for the assembly and function of the basement membrane, being tissue- and
development-stage-specific. Laminins belong to a family of 16 distinct heterotrimeric proteins. Each
laminin isoform comprises anα,β, andγ chain, each of which is named according to numerical subtypes,
e.g., laminin-211. During skeletal muscle development, the embryonic laminin isoforms laminin-111
and laminin-511 are progressively replaced with the adult isoform laminin-211 or laminin-221 at
the non-synaptic muscle basement membrane [17]. Intriguingly, laminin-α5 has been reported to
be upregulated transiently in the basement membrane in human and murine muscular dystrophy,
which is accompanied by cardiomyopathy, suggesting a degree of plasticity in basement membrane
composition in pathological muscle [18]. Given that both skeletal and cardiac muscle are striated
muscle, it is reasonable to extrapolate the role of laminin isoforms from skeletal to cardiac development.

Laminin polymers are the bioactive forms of this glycoprotein. In vitro laminin polymerization
was first demonstrated in a cell-free system, dependent on a critical protein concentration, which was
optimized by the use of planar lipid bilayers containing sulfated glycolipids and has since been
studied extensively in cultured cells [19,20]. More recently, it was demonstrated that laminin could
self-polymerize in a cell-free and lipid-free environment forming a polymer called polylaminin that
recapitulates the in vivo protein architecture [21,22].

Preliminary data from our group suggest that polylaminin can modulate the relative expression of
titin both in vitro and ex vivo (Figure 2). Cardiomyocytes cultured on polylaminin increased their gene
expression of total titin (Figure 2a). The intramyocardial injection of polylaminin in ex vivo rat hearts
(Langendorff preparation) induced a 1.9-fold increase in titin N2BA expression and a 3.9-fold decrease
in titin N2B expression after 4 h (Figure 2b). Aside from the direct effects on cardiomyocyte stiffness,
polylaminin has demonstrated immunomodulatory effects in vivo [23]. Analogously, additional
in vitro data from our group supported the idea that polylaminin decreases MMP secretion by cardiac
fibroblasts (Figure 2c) and shifts macrophage morphology toward the M2 phenotype (Figure 2d).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 6 
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on control (Ctrl) or polylaminin. Scale bar = 10 µm. * p = 0.0196, ** p = 0.021, **** p < 0.001 
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symptoms in HFpEF’s complex pathophysiology. Based on our preliminary findings, polylaminin 
appears to directly address titin-based cardiomyocyte stiffness. Moreover, polylaminin has anti-
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immune dysregulation associated with HFpEF. 
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N2B and N2BA gene expression of hearts injected with polylaminin. (c) Metalloproteinase 2 (MMP2)
and 9 (MMP9) of cardiac fibroblasts on control (Ctrl) or polylaminin. (d) Morphology of macrophages
on control (Ctrl) or polylaminin. Scale bar = 10 µm. * p = 0.0196, ** p = 0.021, **** p < 0.001.

4. Toward a Multi-Target Therapeutic for HFpEF

Elucidating the mechanisms underlying the regulation of titin by the recognition of patterns in the
basement membrane at the costameres will likely open a new window to the mechanisms underlying the
regulation of cardiomyocyte stiffness. We propose that exploring the pleiotropic effects of polylaminin
after local delivery may be a promising novel therapeutic strategy for alleviating symptoms in HFpEF’s
complex pathophysiology. Based on our preliminary findings, polylaminin appears to directly address
titin-based cardiomyocyte stiffness. Moreover, polylaminin has anti-inflammatory and anti-fibrotic
effects that may be ameliorative for the systemic inflammation and immune dysregulation associated
with HFpEF.
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PKA Protein kinase A
PKC Protein kinase C
PKG Protein kinase G
ECM Extracellular matrix
HFpEF Heart failure with preserved ejection fraction
hiPSC Human induced pluripotent stem cells

References

1. Obokata, M.; Reddy, Y.N.; Borlaug, B.A. Diastolic Dysfunction and Heart Failure With Preserved Ejection
Fraction: Understanding Mechanisms by Using Noninvasive Methods. JACC Cardiovasc. Imaging 2020, 13,
245–257. [CrossRef] [PubMed]

2. Ponikowski, P.; Voors, A.; Anker, S.; Bueno, H.; Cleland, J.; Coats, A.; Falk, V.; González-Juanatey, J.;
Harjola, V.-P.; Jankowska, E.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and
chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure
of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure
Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [PubMed]

3. Granzier, H.; Labeit, S. Cardiac titin: An adjustable multi-functional spring. J. Physiol. 2002, 541, 335–342.
[CrossRef] [PubMed]

4. Franssen, C.; Gonzalez Miqueo, A. The role of titin and extracellular matrix remodelling in heart failure with
preserved ejection fraction. Neth. Heart J. 2016, 24, 259–267. [CrossRef]

5. Rienks, M.; Papageorgiou, A.-P.; Frangogiannis, N.G.; Heymans, S.; Farrall, M. Myocardial extracellular
matrix: An ever-changing and diverse entity. Circ. Res. 2014, 114, 872–888. [CrossRef]

6. Peter, A.K.; Cheng, H.; Ross, R.S.; Knowlton, K.U.; Chen, J. The costamere bridges sarcomeres to the
sarcolemma in striated muscle. Prog. Pediatr. Cardiol. 2011, 31, 83–88. [CrossRef]

7. Hochman-Mendez, C.; De Campos, D.B.P.; Pinto, R.S.; Mendes, B.J.D.S.; Rocha, G.M.; Monnerat, G.;
Weissmuller, G.; Sampaio, L.C.; Carvalho, A.B.; Taylor, D.A.; et al. Tissue-engineered human embryonic stem
cell-containing cardiac patches: Evaluating recellularization of decellularized matrix. J. Tissue Eng. 2020, 11,
2041731420921482. [CrossRef]

http://dx.doi.org/10.1016/j.jcmg.2018.12.034
http://www.ncbi.nlm.nih.gov/pubmed/31202759
http://www.ncbi.nlm.nih.gov/pubmed/27206819
http://dx.doi.org/10.1113/jphysiol.2001.014381
http://www.ncbi.nlm.nih.gov/pubmed/12042342
http://dx.doi.org/10.1007/s12471-016-0812-z
http://dx.doi.org/10.1161/CIRCRESAHA.114.302533
http://dx.doi.org/10.1016/j.ppedcard.2011.02.003
http://dx.doi.org/10.1177/2041731420921482


Int. J. Mol. Sci. 2020, 21, 6013 5 of 5

8. Guo, W.; Schafer, S.; Greaser, M.L.; Radke, M.H.; Liss, M.; Govindarajan, T.; Maatz, H.; Schulz, H.; Li, S.;
Parrish, A.M.; et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 2012,
18, 766–773. [CrossRef]

9. Kruger, M.; Linke, W.A. Protein kinase—A phosphorylates titin in human heart muscle and reduces
myofibrillar passive tension. J. Muscle Res. Cell Motil. 2006, 27, 435–444. [CrossRef]

10. Borbely, A.; Falcão-Pires, I.; Van Heerebeek, L.; Hamdani, N.; Édes, I.; Gavina, C.; Leite-Moreira, A.F.;
Bronzwaer, J.G.; Papp, Z.; Van Der Velden, J.; et al. Hypophosphorylation of the Stiff N2B titin isoform raises
cardiomyocyte resting tension in failing human myocardium. Circ. Res. 2009, 104, 780–786. [CrossRef]

11. Neagoe, C.; Neagoe, C.; Kulke, M.; Del Monte, F.; Gwathmey, J.K.; De Tombe, P.P.; Hajjar, R.J.; Linke, W.A.
Titin Isoform Switch in Ischemic Human Heart Disease. Circulation 2002, 106, 1333–1341. [CrossRef]
[PubMed]

12. Linke, W.A.; Kruger, M. The giant protein titin as an integrator of myocyte signaling pathways. Physiology
(Bethesda) 2010, 25, 186–198. [CrossRef] [PubMed]

13. Granzier, H.L.; Hutchinson, K.; Tonino, P.; Methawasin, M.; Li, F.; Slater, R.; Bull, M.; Saripalli, C.; Pappas, C.;
Gregorio, C.; et al. Deleting titin's I-band/A-band junction reveals critical roles for titin in biomechanical
sensing and cardiac function. Proc. Natl. Acad. Sci. USA 2014, 111, 14589–14594. [CrossRef] [PubMed]

14. Dunlay, S.M.; Roger, V.L.; Redfield, M.M. Epidemiology of heart failure with preserved ejection fraction. Nat.
Rev. Cardiol. 2017, 14, 591–602. [CrossRef]

15. Zile, M.R.; Baicu, C.F.; Ikonomidis, J.S.; Stroud, R.E.; Nietert, P.J.; Bradshaw, A.D.; Slater, R.; Palmer, B.M.;
Van Buren, P.; Meyer, M.; et al. Myocardial stiffness in patients with heart failure and a preserved ejection
fraction: Contributions of collagen and titin. Circulation 2015, 131, 1247–1259. [CrossRef]

16. Redfield, M.M.; Chen, H.H.; Borlaug, B.A.; Semigran, M.J.; Lee, K.L.; Lewis, G.; LeWinter, M.M.; Rouleau, J.L.;
Bull, D.A.; Mann, D.L.; et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status
in heart failure with preserved ejection fraction: A randomized clinical trial. JAMA 2013, 309, 1268–1277.
[CrossRef]

17. Patton, B.L.; Miner, J.H.; Chiu, A.Y.; Sanes, J.R. Distribution and function of laminins in the neuromuscular
system of developing, adult, and mutant mice. J. Cell Biol. 1997, 139, 1507–1521. [CrossRef]

18. Rayagiri, S.S.; Ranaldi, D.; Raven, A.; Azhar, N.I.F.M.; Lefebvre, O.; Zammit, P.S.; Borycki, A.-G. Basal lamina
remodeling at the skeletal muscle stem cell niche mediates stem cell self-renewal. Nat. Commun. 2018, 9,
1075. [CrossRef]

19. Yurchenco, P.D.; Tsilibary, E.C.; Charonis, A.S.; Furthmayr, H. Laminin polymerization in vitro. Evidence for
a two-step assembly with domain specificity. J. Boil. Chem. 1985, 260, 7636–7644.

20. Kalb, E.; Engel, J. Binding and calcium-induced aggregation of laminin onto lipid bilayers. J. Biol. Chem.
1991, 266, 19047–19052.

21. Hochman-Mendez, C.; Cantini, M.; Moratal, D.; Salmerón-Sánchez, M.; Coelho-Sampaio, T. A Fractal Nature
for Polymerized Laminin. PLoS ONE 2014, 9, e109388. [CrossRef] [PubMed]

22. Coelho-Sampaio, T.; Tenchov, B.; Nascimento, M.A.; Hochman-Mendez, C.; Morandi, V.; Caarls, M.B.;
Altankov, G. Type IV collagen conforms to the organization of polylaminin adsorbed on planar substrata.
Acta Biomater. 2020, 111, 242–253. [CrossRef] [PubMed]

23. Menezes, K.; De Menezes, J.R.L.; Nascimento, M.A.; Santos, R.D.S.; Coelho-Sampaio, T. Polylaminin, a
polymeric form of laminin, promotes regeneration after spinal cord injury. FASEB J. 2010, 24, 4513–4522.
[CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nm.2693
http://dx.doi.org/10.1007/s10974-006-9090-5
http://dx.doi.org/10.1161/CIRCRESAHA.108.193326
http://dx.doi.org/10.1161/01.CIR.0000029803.93022.93
http://www.ncbi.nlm.nih.gov/pubmed/12221049
http://dx.doi.org/10.1152/physiol.00005.2010
http://www.ncbi.nlm.nih.gov/pubmed/20551232
http://dx.doi.org/10.1073/pnas.1411493111
http://www.ncbi.nlm.nih.gov/pubmed/25246556
http://dx.doi.org/10.1038/nrcardio.2017.65
http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013215
http://dx.doi.org/10.1001/jama.2013.2024
http://dx.doi.org/10.1083/jcb.139.6.1507
http://dx.doi.org/10.1038/s41467-018-03425-3
http://dx.doi.org/10.1371/journal.pone.0109388
http://www.ncbi.nlm.nih.gov/pubmed/25296244
http://dx.doi.org/10.1016/j.actbio.2020.05.021
http://www.ncbi.nlm.nih.gov/pubmed/32450232
http://dx.doi.org/10.1096/fj.10-157628
http://www.ncbi.nlm.nih.gov/pubmed/20643907
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Why Titin Isoforms to Alter Cardiac Compliance? 
	Polylaminin’s Effects on Cardiac Stiffness 
	Toward a Multi-Target Therapeutic for HFpEF 
	References

