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Abstract: Nitrogen is essential for the growth of plants. The ability of some plant species to obtain all
or part of their requirement for nitrogen by interacting with microbial symbionts has conferred a
major competitive advantage over those plants unable to do so. The function of certain flavonoids
(a group of secondary metabolites produced by the plant phenylpropanoid pathway) within the
process of biological nitrogen fixation carried out by Rhizobium spp. has been thoroughly researched.
However, their significance to biological nitrogen fixation carried out during the actinorhizal and
arbuscular mycorrhiza–Rhizobium–legume interaction remains unclear. This review catalogs and
contextualizes the role of flavonoids in the three major types of root endosymbiosis responsible for
biological nitrogen fixation. The importance of gaining an understanding of the molecular basis of
endosymbiosis signaling, as well as the potential of and challenges facing modifying flavonoids either
quantitatively and/or qualitatively are discussed, along with proposed strategies for both optimizing
the process of nodulation and widening the plant species base, which can support nodulation.

Keywords: flavonoids; biological nitrogen fixation; endosymbiosis; nodulation; actinorhiza;
arbuscular mycorrhiza

1. Introduction

The flavonoids form a large group of plant secondary metabolites synthesized by the
phenylpropanoid pathway: over 9000 distinct compounds have been characterized to date [1]. The major
recognized subgroups are the chalcones, flavones, flavonols, anthocyanins, proanthocyanidins and
aurones [2] (Figure 1). A wide range of plant processes makes use of flavonoids, and these include
protection from harmful radiation, sexual reproduction, defense against pests and pathogens and
tissue pigmentation. Their synthesis involves a number of discrete enzymatic steps [3]. In the
model angiosperm Arabidopsis thaliana, most of the relevant enzymes are encoded by a single-copy
gene [4]. Flavonoids are synthesized in the cytosol [5] and are typically stored in the vacuole [6],
but some are exuded into the rhizosphere [7]. The synthesis of a given flavonoid can be either
organ- and/or tissue-dependent, and can be affected by the plant’s external environment, in particular
by light intensity, ambient temperature and the availability of nitrogen [8,9]. The lateral root and
nodule primordia of the legume subterranean clover (Trifolium subterraneum) is particularly rich in
flavonoids [10], as is the root tip and lateral root primordia of A. thaliana [11].

The process of biological nitrogen fixation converts atmospheric nitrogen into ammonium, a form
that is readily utilized by plants. The ability of some plant species to supply some, if not all of their
requirement for nitrogen in this way gives them a substantial competitive advantage over those that
lack this ability. According to some estimates, biological nitrogen fixation is responsible for the fixation
in the agricultural system of up to 200 MT of nitrogen annually, representing a major saving in the cost
(both financial and environmental) of crop production. The only micro-organisms able to carry out
biological nitrogen fixation are those that produce nitrogenase, an enzyme that is required to catalyze

Int. J. Mol. Sci. 2020, 21, 5926; doi:10.3390/ijms21165926 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://dx.doi.org/10.3390/ijms21165926
http://www.mdpi.com/journal/ijms
http://www.mdpi.com/1422-0067/21/16/5926?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 5926 2 of 18

the conversion of atmospheric nitrogen to ammonium. In a highly restricted group of plant species,
the association between the host plant and the bacterial symbiont is a highly intimate one: the bacteria
are housed within nodules, a specialized organ that forms in the root. Several nitrogen-fixing bacterial
species are known to associate with non-nodulating plants; while these bacteria are generally free-living
in the rhizosphere, in some cases they are able to colonize non-specialized intercellular spaces within
the plant root [12]. The efficiency with which nitrogen is transferred to the plant by such bacteria is,
however, relatively low, and the relationship between the two organisms is regarded as opportunistic
rather than mutualistic. In genuine mutualistic symbioses, the host and symbiont appear to function
essentially as a single organism [13].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 19 

 

 
Figure 1. Major branches of the flavonoid biosynthesis pathway. Some of the critical enzymes are 
abbreviate as follows: CHS, chalcone synthase; DFR, dihydroflavonol 4-reductase; FSI/II, flavone 
synthase I/II; FLS, flavonol synthase; IFS, isoflavone synthase; IFR, isoflavone reductase; LCR, 
leucoanthocyanidin reductase; VR, vestitone reductase. Major classes of end-products are 
emphasized in boxes. 

The process of biological nitrogen fixation converts atmospheric nitrogen into ammonium, a 
form that is readily utilized by plants. The ability of some plant species to supply some, if not all of 
their requirement for nitrogen in this way gives them a substantial competitive advantage over those 
that lack this ability. According to some estimates, biological nitrogen fixation is responsible for the 
fixation in the agricultural system of up to 200 MT of nitrogen annually, representing a major saving 
in the cost (both financial and environmental) of crop production. The only micro-organisms able to 
carry out biological nitrogen fixation are those that produce nitrogenase, an enzyme that is required 
to catalyze the conversion of atmospheric nitrogen to ammonium. In a highly restricted group of 
plant species, the association between the host plant and the bacterial symbiont is a highly intimate 
one: the bacteria are housed within nodules, a specialized organ that forms in the root. Several 
nitrogen-fixing bacterial species are known to associate with non-nodulating plants; while these 
bacteria are generally free-living in the rhizosphere, in some cases they are able to colonize non-
specialized intercellular spaces within the plant root [12]. The efficiency with which nitrogen is 
transferred to the plant by such bacteria is, however, relatively low, and the relationship between the 
two organisms is regarded as opportunistic rather than mutualistic. In genuine mutualistic 
symbioses, the host and symbiont appear to function essentially as a single organism [13]. 

Two types of intracellular endosymbiosis have been recognized, namely one which requires the 
formation of a root nodule, and one that relies on arbuscular mycorrhizae (AM) [14] (Figure 2a). The 
root nodule has evolved to facilitate both nitrogen fixation by the symbiont and the assimilation of 
ammonium by the host plant. Within the nodule, the symbiont receives its carbon and energy from 
the host and in return converts atmospheric nitrogen to ammonium, a process that requires an 
anaerobic environment. The bacteria capable of establishing this form of symbiosis belong to two 
distantly related clades, namely the proteobacterial Rhizobium spp. and the actinobacterial Frankia 
spp. Meanwhile the host species all belong to the so-called “nitrogen-fixing clade” [15], which 
consists of species within either the order Fabales (nodulated by the Rhizobium spp.) or the three 
orders Cucurbitales, Fagales and Rosales (nodulated by the Frankia spp.) [16]. Phylogenetic analyses 
suggest that all nodulating plant species belong to the Fabid (Eurosid 1) clade [15]. AM-based 
symbioses are, in contrast, very widespread in the plant kingdom, involving at least 80% of all 
angiosperm species; the microbial partners are not bacteria, but rather are fungi belonging to the 
phylum Glomeromycota [3]. They themselves do not fix nitrogen, but many studies have 
demonstrated that the presence of AM in the rhizosphere enhances the colonization of legume host 
roots with Rhizobium spp. Some features of root nodule endosymbiosis may have been recruited 
from the more ancient AM symbiosis [17] (Figure 2b), which has prompted the hypothesis that the 
two processes share aspects of the early signaling events [18]. Flavonoids are known to be required 

Figure 1. Major branches of the flavonoid biosynthesis pathway. Some of the critical enzymes
are abbreviated as follows: CHS, chalcone synthase; DFR, dihydroflavonol 4-reductase; FSI/II,
flavone synthase I/II; FLS, flavonol synthase; IFS, isoflavone synthase; IFR, isoflavone reductase;
LCR, leucoanthocyanidin reductase; VR, vestitone reductase. Major classes of end-products are
emphasized in boxes. This figure was adapted from Ref. [14].

Two types of intracellular endosymbiosis have been recognized, namely one which requires the
formation of a root nodule, and one that relies on arbuscular mycorrhizae (AM) [15] (Figure 2A).
The root nodule has evolved to facilitate both nitrogen fixation by the symbiont and the assimilation
of ammonium by the host plant. Within the nodule, the symbiont receives its carbon and energy
from the host and in return converts atmospheric nitrogen to ammonium, a process that requires an
anaerobic environment. The bacteria capable of establishing this form of symbiosis belong to two
distantly related clades, namely the proteobacterial Rhizobium spp. and the actinobacterial Frankia spp.
Meanwhile the host species all belong to the so-called “nitrogen-fixing clade” [16], which consists
of species within either the order Fabales (nodulated by the Rhizobium spp.) or the three orders
Cucurbitales, Fagales and Rosales (nodulated by the Frankia spp.) [17]. Phylogenetic analyses suggest
that all nodulating plant species belong to the Fabid (Eurosid 1) clade [16]. AM-based symbioses are,
in contrast, very widespread in the plant kingdom, involving at least 80% of all angiosperm species;
the microbial partners are not bacteria, but rather are fungi belonging to the phylum Glomeromycota [3].
They themselves do not fix nitrogen, but many studies have demonstrated that the presence of AM in
the rhizosphere enhances the colonization of legume host roots with Rhizobium spp. Some features
of root nodule endosymbiosis may have been recruited from the more ancient AM symbiosis [18]
(Figure 2b), which has prompted the hypothesis that the two processes share aspects of the early
signaling events [19]. Flavonoids are known to be required for the establishment of nodules in legumes,
and are thus likely also to be important in both actinorhizal and AM symbioses [10]. This review aims
to summarize our current understanding of the signaling and control of flavonoids in the biological
nitrogen fixation process.
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Figure 2. Plant families that participate in intracellular endosymbiosis (A) and the evolution of
mutualistic symbiotic associations: a possible scenario (B) (modified from Martin et al., 2017 [20]);
a, arbuscular mycorrhiza-like and/or mucoromycotina associations; b, arbuscular mycorrhiza;
c, ectomycorrhiza; d, arbuscular mycorrhiza; e, Frankia N-fixing; f, Rhizobial N-fixing.

2. Flavonoids and Legume Symbiotic Nitrogen Fixation

The legume family (Fabaceae) is the third largest family of flowering plants, with members of
more than 650 genera, 18,000 species spread around the globe [21]. Part of their evolutionary success
is due to their symbiosis with the Rhizobium spp., which enables the plants to tolerate soils thatare
deficient in nitrogen. In natural ecosystems, the quantity of nitrogen fixed by legumes is estimated to
be 28–84 kg per hectare per year, while in a cropping environment, this can rise to several hundred
kilograms per hectare [22,23]. Legume symbionts adopt one of three strategies to achieve biological
nitrogen fixation, namely the Nod strategy, the T3SS (type III secretion system) strategy and the
non-Nod/non-T3SS strategy (Figure 3). It was well verified that flavonoids released by the roots of
legume species regulate the Nod strategy [10]. Besides that, flavonoids participate in several other
different stages of the nodulation process, such as the chemoattraction of Rhizobium, the T3SS strategy,
the development of nodule, the symbiont selection and so on.
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Figure 3. Nodulation strategies in legume symbionts (modified from Catherine and Joel, 2018 [23]).
In the Nod strategy, strain-specific lipochitin oligosaccharides (LCO) called Nod factors (NFs) are
produced under the control of nod genes. NFs are perceived by plant NF receptors that activate
the common symbiotic signaling pathway (CSSP). In the T3SS strategy, T3SS effectors activate CSSP
components by bypassing NF recognition. The mechanism of the third nodulation strategy is still
unknown, but it involves neither nod nor T3SS functions and occurs via CSSP activation.

2.1. Flavonoids Regulate the Expression of Nod Genes

A well-studied effect of root-exuded flavonoids is their regulation of Rhizobium spp. nod genes [24].
This function of flavonoids was discovered, dating back to 1986 when luteolin in Medicago sativa [25]
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and 7,4’ dihydroxyflavone in T. repens [26] were found to act as nod genes inducers. The concentration
of flavonoid required for this induction is typically in the nanomolar to low micromolar range, and
mixtures of different flavonoids can be more effective than a single compound [14]. In most α- and β-
proteobacteria rhizobial species, as has been reviewed elsewhere [27,28] (Figure 4), a number of nod
gene products co-operate to synthesize the Nod factors required for nodule formation. These nod genes
are regulated by NodD, a LysR family transcription factor. The binding of an appropriate flavonoid to
NodD is thought to facilitate the access of RNA polymerase and thereby to enhance the transcription
of the nod genes. The NodD-flavonoid complex binds to its target DNA sequences, known as a nod
box. The perception of flavonoids by Rhizobium spp. is associated with a rise in the concentration of
cellular calcium, which acts to induce the expression of NodD [29]. Secreted nod factors are recognized
by plant LysM receptor-like kinases, triggering the characteristic curling of the root hair tip back on
itself, thereby trapping the symbiont cells within a pocket, from which they are taken up into the root
proper via an infection thread [30]. Once they reach the inner root, they are endocytosed into nodule
cells and begin to fix nitrogen. Nod factors also induce cell division, as well as gene expression in the
root cortex and pericycle, which initiates the development of the nodule [31,32].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 19 
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2.2. Flavonoids Regulate the Expression of Genes Acting in the T3SS Strategy

Flavonoids also induce a number of genes responsible for the T3SS process (Figure 4) in some
rhizobial species, such as B. elkanii USDA61 [23,33]. Most of these genes include a tts box cis element in
their promoter region and their expression frequently depends on the presence of the TtsI transcription
factor, which binds to the tts box. Expression of ttsI (as determined by promoter-lacZ reporter gene
fusion constructs) is strongly induced by flavonoids in a NodD-dependent manner, because the
promoter of ttsI, like that of the nod gene, contains the nod box [34]. The secretion of some Rhizobium
spp. T3SS proteins—in particular certain Nops (nodulation outer proteins; also called T3 effectors)—is
induced by flavonoids produced by the host [35,36]. These proteins act to suppress the host’s pathogen
defense response and to promote several processes required to establish a symbiosis. Some Nops
are thought to promote symbiosis more directly by interfering with the host’s nodulation signaling
machinery [34]. Nops are passed from the Rhizobium spp. cells’ cytoplasm through the lumen of
needle-like structures, which appear in electron micrographs as appendages referred to as T3 pili [37].
The capacity to form a viable symbiosis is compromised in mutant Rhizobium spp. strains deficient with
respect to the synthesis of or secretion ability of T3 pili [38–40]. The expression of Nops genes, like that
of most of the genes involved in T3SS, relies on the presence of NodD and particular host-derived
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flavonoids. For example, only when Rhizobium cultures are provided with flavonoids is it possible to
immunologically detect the presence of both NopX and NolT [41] and for long T3 pili to form [42].

2.3. Flavonoids Act as Chemoattractants and Growth Stimulants for Rhizobium spp.

That flavonoids can act as a chemoattractant of Rhizobium spp. has been inferred from the
observation that their abundance is high in the vicinity of the root tip [43,44] and particularly so
near emerging root hairs, at which, Rhizobium spp. infection is initiated [45]. Sinorhizobium meliloti
cells use flavonoids to promote their movement toward its host’s roots [46] and the concentration of
flavonoid involved varies from 1 µM to as little as 0.1 nM, a much lower level than is required to
induce nod genes. Flavonoids can also regulate the growth of Rhizobium spp. For example, the growth
of both Bradyrhizobium japonicum and S. meliloti cells was enhanced by the provision of daidzein,
luteolin-7xO-glucoside or quercetin-3-O-galactoside produced by alfalfa [47,48]. The inclusion of
either host plant exudate or the flavonoids naringenin and apigenin in the medium used to grow
Bradyrhizobium sp. in vitro significantly enhances cell multiplication [7]. A similar effect is exerted
by a number of simple phenolic acids (p-coumaric, caffeic, protocatechuic, p-hydroxybenzoic and
phenyllactic acids) present in the rhizosphere as flavonoid breakdown products [49].

2.4. The Influence of Flavonoids over Nodule Development and Number

Auxin is synthesized locally in the shoot apex, the leaf primordia and the developing seed,
and is subsequently transported away from the site of its synthesis by polar auxin transport [10].
Treating some legume species with a synthetic auxin transport inhibitor has long been known to induce
the formation of pseudo-nodules; these structures contain a peripheral vasculature, which does not
extend into its distal region, a central zone and a diffuse meristem [50]. Flavonoids regulate both
the transport and breakdown of auxin during nodule development (Figure 5). Thus, flavonoids can
potentially act within the root to control nodule development and differentiation [51]. It has been
suggested that Nod factor perception induces certain flavonoids that inhibit auxin transport, thereby
promoting the localized accumulation of auxin at the nodule initiation site, leading to the initiation of
nodule primordia [52]. This notion has been experimentally validated by silencing the gene encoding
chalcone synthase in the Medicago truncatula root [53]. Silencing various branches of the flavonoid
pathway in M. truncatula shows kaempferol to be the flavonoid most likely able to inhibit auxin
transport during nodulation [54]. Whether auxin transport is regulated by the nodulation process,
leading to the determination of nodules in, for example, soybean, remains unclear, but it is likely
that other flavonoids (possibly isoflavonoids) are also involved [55]. Silencing of the isoflavonoid
synthesis pathway in soybean altered auxin-inducible gene expression and auxin transport in the
roots, but this effect can be overcome either by inoculation with a genistein-hypersensitive B. japonicum
strain or by providing purified B. japonicum Nod signals [55]. The nature of how flavonoids affect
auxin transport is not known, but the evidence from experiments using A. thaliana suggests that
flavonoids affect the vesicular cycling of PIN family auxin transporters, possibly through interactions
with other regulatory proteins such as phosphatases and kinases [56,57]. Abolishing the activity of
isoflavone reductase in the common bean reduces the number of nodules formed, while simultaneously
down regulating the gene GH3 [58]. In M. truncatula abolishing the activity of chalcone synthase
however, has no effect on lateral root development [59]. Auxin accumulation can also be influenced
by the rate of its peroxidase-induced breakdown, a process that can be modulated by flavonoids.
The isoflavonoid formononetin, which accumulates in the nodule primordia of white clover, accelerates
auxin breakdown, while 7,4′-dihydroxyflavone (and its glycosides), which accumulate in the vacuoles
of the cortical cells that later form the nodule primordia, inhibit its breakdown [60]. The differential
ability of flavonoids and the availability of a large range of such metabolites give plants a means to
regulate nodule development.
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exogenous supply of either daidzein or coumestrol increases the nodule number and enhances 

Figure 5. A schematic model of the regulation of auxin transport during nodulation in Medicago
truncatula. Before rhizobia infection, auxin is transported in the acropetal direction towards the root
tip. Auxin is also transported in the basipetal direction (from root tip to elongation zone) in the
outer layer(s). Within 3 h after symbiosis induction (lipochitooligosaccharide treatment), cytokinin
biosynthesis is upregulated in the M. truncatula roots [61]. Cytokinin perception at the inner cortex
induces/releases certain flavonoids, which act as inhibitors of acropetal auxin transport at the inner
cortical, endodermal and/or pericycle directly underlying the rhizobia infection site [62]. Flavonoids
are auxin transport inhibitors that are thought to disrupt the complex between ABCB1 (ATP-Binding
Cassette Subfamily B 1) and TWD1 (TWISTED DWARF1) [63,64], affecting transport, and by binding
BIG, a protein required for PIN cycling [65]. The reduction in acropetal auxin transport increases the
auxin concentration at the rhizobia infection site, the location of a future nodule primordium. An
increase in basipetal auxin transport could also contribute to an increased auxin pool at the nodulation
site [62]. Pericycle, endodermal and cortical cell divisions are activated within 48 h. The red arrow
shows the polar auxin transport, and the arrow thickness is proportional to the auxin transport capacity.
The green color shows the auxin gradient, and the darker color denotes a higher auxin content. This
figure was adapted from Ref. [66].

Flavonoids may also participate in the systemic regulation of the nodule number. Split root
experiments have demonstrated that the content of isoflavonoid formononetin (and its glycoside
ononin) is reduced in both Rhizobium spp.-induced and AM-induced symbioses in a systemic manner,
suggesting that a related autoregulation signal affects their synthesis [67]. The exogenous supply of
ononin is able to only partially restore nodulation and mycorrhization, which was taken to imply that
flavonoids actively control symbiosis [67]. Similarly, a comparison of grafts involving a supernodulating
soybean shoot or a wild type soybean shoot with a wild type common bean root has shown that the
accumulation of isoflavonoids in the root is higher in the former case [68]. The exogenous supply of
either daidzein or coumestrol increases the nodule number and enhances bacterial growth in vitro [68].
It is possible that systemically accumulated flavonoids control auxin transport in autoregulated roots,
since in M. truncatula, auxin transport has been shown to be modulated during autoregulation [69].

2.5. The Contribution of Flavonoids to Symbiont Selection

The Rhizobium spp. legume symbiosis is highly host-specific: that is, a given Rhizobium spp. strain
is only able to form a successful symbiotic relationship with a limited set of host plant species and
vice versa [70]. The combination of host flavonoids appears to be a major determinant as to which
Rhizobium spp. are able to successfully establish a symbiotic relationship. The affinity between NodD
and flavonoids in part determines the host range: it has been shown that the NodD protein produced
by a broad host range Rhizobium spp. strain interacts with a greater number of flavonoids than does
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NodD produced by a narrow host range strain [71]. For a given flavonoid to make a significant
contribution to determining whether or not the host and the symbiont will be compatible, it has to be a
strong inducer of nod genes, be represented in the host root exudate and be required for Rhizobium spp.
infection and its synthesis should respond positively to the presence of the symbiont’s Nod protein [72].
In the soybean/Bradyrhizobium spp. symbiosis, genistein has been shown to be a strong and selective
nod gene-inducer, activating NodD from B. japonicum but not B. elkanii [73].

The combination of flavonoids present in the root exudate of legume species acts as a selective
agent for compatible symbiotic organisms. For example, medicarpin, a flavonoid produced by
both Trifolium and Medicago species, exerts an inhibitory effect on incompatible bacterial strains [74].
Methoxychalcone is the strongest nod gene inducer identified in the Medicago root exudate. All four
M. truncatula genes encoding chalcone-O-methyltransferase, the key enzyme required to synthesize
methoxychalcone, are induced in the root hairs of plants inoculated with a compatible Rhizobium spp.
strain [75]. However, in soybean, none of the six genes encoding chalcone-O-methyltransferase are
induced in the root hairs of plants being colonized by Bradyrhizobium sp. [76]. The implication is that
the synthesis of methoxychalcone is not a general response to Rhizobium spp. infection.

A further determinant of the host range of a Rhizobium spp. strain is associated with its
surface polysaccharides and secreted proteins/T3SS [24]. Surface exopolysaccharides required for
establishing a successful symbiosis can be modified by flavonoids either during or after the synthesis
of exopolysaccharides [77]. Exposure of R. fredii cells to 1 µM genistein alters their exopolysaccharides,
both quantitatively and qualitatively [78]. Flavonoids also regulate most of the genes utilized in
the T3SS process. Low concentrations of certain isoflavonoids can induce resistance in compatible
symbiotic bacteria to the potentially bactericidal phytoalexins present in some root exudates [14].

2.6. Flavonoids Act during Nodulation as Phytoalexins

Phytoalexins are low molecular weight antimicrobial compounds that are produced by plants
as a response to biotic and abiotic stresses. Flavonoids can act as suppressors of rhizosphere
micro-organisms competing with Rhizobium spp. for colonization. Some key flavonoids have been
identified in both soybean and M. truncatula as being required for the initiation and progression
of infection, acting as phytoalexins to reinforce specificity [72]. Several studies have shown that
during nodulation, not only is the abundance of nod gene-inducing flavonoids increased, but is that of
flavonoids endowed with antibacterial and/or antifungal activity. While the production of phytoalexins
during nodulation may at first seem to be counter-productive, it appears that these phytoalexins are
not part of a generalized defense response, and many of them are not inducers of nod genes [76].
Indeed medicarpin, for example, even acts to repress nod gene transcription [76]. Methoxychalcone
is a potent antagonist of Gram-positive bacteria [79], while genistein possesses both antifungal and
antibacterial activity [34]. The flavonoid and NodD1dependent secretion of Nops is in a sense a
double-edged sword: on the one hand promoting the establishment of symbiosis with one legume
species and on the other impairing it with a different host species [80]. The direct or indirect recognition
by the host of NopP in Sinorhizobium fredii HH103 [81] can activate a plant defense response inhibiting
the infection by Rhizobium spp. and subsequent nodule formation. This sort of response is likely
similar to the effector-triggered immunity documented in certain plant–pathogen interactions [82].
The apparently universal role of flavonoids as phytoalexinsin plants suggests that, along with their
role in determining the Rhizobium spp. host range, their role in defense has likely been a key driver in
the expansion and diversification of the legumes.

2.7. Flavonoids in Symbiosis Quorum-Sensing

Quorum sensing is a system of stimulus and response correlated to population density.
Many species of bacteria use quorum sensing to coordinate gene expression according to the density of
their local population. The processes of nodulation, symbiosome development, exopolysaccharide
production and nitrogen fixation all depend on the ability of Rhizobium spp. cells to accumulate
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in and around a host plant’s roots and nodules. The symbiont’s global profile of gene expression,
including that of genes encoding the key components of nitrogen fixation [83], is strongly dependent
on quorum sensing. A number of higher plant species are able to synthesize mimics of bacterial
quorum sensing compounds, the best characterized of which are the acyl homoserine lactones (AHLs).
Some of these mimic compounds have proven to be flavonoids [84], of which the most prominent
example is naringenin. This flavonoid acts not just as an inducer of nod gene expression, but also as a
strong inhibitor of quorum sensing in Pseudomonas aeruginosa [85], as well as in both Escherichia coli and
Vibrio fischeri [86]. Experiments conducted in M. truncatula have demonstrated that certain bacterial
AHLs are able to stimulate the production of AHL mimics [87]. The implication is that there may
well be a link between a plant’s perception of AHL and the activation of its flavonoid pathway,
while at the same time there may be a feedback mechanism in the bacterial species. Critical threshold
concentrations in the rhizosphere of flavonoid mimics have yet to be defined. The boost in the synthesis
of AHLs generated by exposure to nod gene-inducing flavonoids reported in three different Rhizobium
spp. [14] suggests that a level of coordination exists between nod gene induction and quorum sensing.
The formation of biofilms relies both on effective quorum sensing and on the presence of certain
bacterial surface components [88]. In Sinorhizobium fredii, the presence of nod gene-inducing flavonoids
and the NodD1 protein is required for the transition of a biofilm monolayer into a microcolony [89].
The possibility that flavonoids mimic quorum sensing compounds and, when present at a relevant
concentration, can activate gene expression in rhizosphere bacteria suggests a means of manipulating
the ability of bacteria to colonize their host plant.

3. Flavonoids in Actinorhizal Plant Nitrogen Fixation

Only a single family of host plants have succeeded in evolving a symbiotic relationship with
Rhizobium spp., whereas the symbiosis between the actinobacterium Frankia spp. involves plants
belonging to eight families: namely the Betulaceae, Myricaceae, Rosaceae, Datiscaceae, Elaeagnaceae,
Coriariaceae, Casuarinaceae and Rhamnaceae [90]. Except for herbaceous species belonging to the
genus Datisca, these so-called “actinorhizal” plants are all woody shrubs or trees, many of which are
adapted to highly marginal environments [91], such as the sandy dunes in Africa where Casuarinaceae
species, through their association with Frankia spp., have been recorded as able to fix an average of
15 kg nitrogen per ha per year. In some temperate environments, the capacity of actinorhizal plants to
fix nitrogen can reach 300 kg nitrogen per ha per year [91]. Analysis of Frankia spp. genome sequences
has failed to reveal any evidence for the presence of nod gene clusters [14], which implies that their
mode of symbiosis differs markedly from that used by Rhizobium spp. On the other hand, it is becoming
clear that flavonoids are central to the process of actinorhizal nitrogen fixation.

3.1. Flavonoids May Act as Signals for Establishing Actinorhizal Symbioses

While the molecular basis of the involvement of flavonoids in actinorhizal symbiosis remains
poorly understood, the general assumption is that a compatible interaction between Frankia spp. and an
actinorhizal plant relies on an exchange of signals between the two partners, with some indication that
flavonoids participate in signaling, at least during the initial stage of the interaction [14]. Flavonoids
accumulate inside the actinorhizal nodule. Nodule formation by Frankia on the roots of red alder
(Alnus rubra) is promoted by irrigation with flavonoid-containing seed washes prepared from the
host species [92], and these results were reinforced by treatment with the quercetin and kaempferol
contained in black alder (Al. glutinosa) root exudates [93]. The curling of root hairs, a key early event in
the establishment of a symbiosis, can be promoted by exposing Frankia spp. cells to a filtrate prepared
from the roots of Al. glutinosa [94]. Direct evidence for the participation of flavonoids during the early
stages of actinorhizal nodulation has been provided by showing that abolishing the activity of chalcone
synthase (the first enzyme of the flavonoid pathway) in Casuarina glauca significantly compromises
nodulation [15]. Exudate from the fruit of Myrica gale influences the transcription of 22 Frankia spp.
genes, while inoculation of M. gale with Frankia spp. alters the level of transcription of several genes
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acting in the flavonoid synthesis pathway [95]. An analysis of a C. glauca root and nodule expressed
sequence tag (EST) database has revealed the identity of eight genes encoding enzymes involved in the
flavonoid synthesis [96].

3.2. Flavonoids May Contribute to the Determination of Host Specificity

Flavonoids extracted from fruit of M. gale enhance both the growth and the efficiency of
nitrogen fixation achieved by a compatible Frankia sp. strain, but has a negative effect on an
incompatible strain [95], which implicates flavonoids in the process of the host’s selection of a symbiont.
Flavonoid-containing extracts of the root of C. cunninghamiana have been found to alter certain surface
components of a compatible Frankia sp. strain in relation to infectivity [97], and some experimental
evidence supports the notion that flavonoids are involved in both the chemoattraction and proliferation
of Frankia spp. cells in the rhizosphere [98].

3.3. Flavonoids May Be Involved in Nodule Development and Function

In the C. glauca/Frankia spp. symbiosis, flavan class flavonoids are accumulated specifically in
the nodule lobes [99]. Although the same compounds can be found in both nodules and non-infected
roots, the amount of each flavan is much higher in the former. The application of in situ hybridization
technology has established that transcripts of the gene encoding chalcone synthase accumulate in
flavan-containing cells present at the apex of the nodule lobe. The significance of this compartmentation
is not understood, but its development clearly requires the exchange of signals between the host
and the symbiont. Similarly, in Elaeagnus umbellata, the abundance of transcript generated from
the gene encoding chalcone isomerase is particularly high in nodules, increasing during nodule
development [100].

The observations that the C. glauca auxin influx carrier gene Aux1 is upregulated during actinorhizal
nodule formation [101] and that auxin is produced by Frankia spp. [102] suggest that auxin influences
the actinorhizal infection process. The accumulation of auxin within the C. glauca actinorhizal nodule
is the result of both the localized expression of auxin transporter-encoding genes and the synthesis
of auxin in planta by the Frankia spp. symbiont [103]. Metabolomic and transcriptomic analyses
of Datisca glomerata have demonstrated an abundance of flavonols, which are particularly powerful
inhibitors of auxin transport [17]. Analysis of nascent nodules formed during the C. glauca/Frankia spp.
interaction has revealed that genes encoding isoflavonoids are prominently transcribed, suggesting
that these compounds too are important for the nodulation process [104] and isoflavonoids also have
the capability to control auxin transport. The possibility is therefore, that as in the legumes, flavonoids
also act as auxin transport inhibitors during actinorhizal symbiosis, thereby promoting the localized
auxin accumulation required for nodule development.

4. The Participation of Flavonoids in the Tripartite (Legume/AM/Rhizobium spp.) Symbiosis

Once the hyphae of AM penetrate a host plant root, they form ecto- or endomycorrhizal
invasion structures [105]. The host root exudate, which is able to stimulate the germination of the
AM’s spores, the branching of its mycelium and its colonization of the host, contains a number of
flavonoids [106,107], at concentrations varying in the range 0.5–20 µM. The isoflavonoid coumestrol
has been identified as a particularly active stimulator of hyphal growth [28], while a M. truncatula
mutant that hyperaccumulates coumestrol is particularly strongly colonized by its AM symbiont [108].
In most herbaceous legume species, a tripartite symbiosis can form between the plant, Rhizobium spp.
and AM [109] The effectiveness of this symbiosis in terms of nitrogen fixation is higher than that of the
bipartite legume/Rhizobium spp. interaction [110,111]. According to FAO estimate, it has been estimated
that 175 Mt nitrogen is fixed annually worldwide in this way, contributing materially to a reduction in
dependence on synthetic fertilizers and to the sustainability of agriculture and agroforestry. Metabolite
profiling of the roots of M. truncatula colonized by AM has revealed that flavonoids accumulate
at various stages of the colonization process [112]. Similarly, an elevated abundance of transcript
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generated from genes encoding phenylalanine ammonia lyase and chalcone synthase can be detected in
the roots of M. trunculata colonized by the AM species Glomus versiforme [113]. In T. repens, the flavonoid
composition of extracts of the shoot and root of plants grown in the presence of AM differs markedly
from that of plants grown in its absence [114]. It is possible that the tripartite symbiosis is effective in
promoting nodulation because flavonoids induced by the AM partner stimulate the synthesis of Nod
factors. Soybean plants respond to the presence of AM by boosting their production of daidzein [115],
a compound that acts as a nod gene inducer [116]. The flavonoids genistein and coumestrol along with
daidzein have been identified as potential signaling compounds regulating the establishment of the
soybean/AM/Bradyrhizobium sp. tripartite symbiosis [117]. The synthesis of coumestrol (a nod gene
inhibitor in S. meliloti) by M. truncatula is induced by the presence of AM symbionts [113]. However,
evidence showed that although the profile of flavonoids produced by soybean plants supported by
both Rhizobium spp. and AM responds to both symbionts: the accumulation of flavonoids (including
those which induce nod genes and hyphal branching) is inhibited by the symbionts, even though
co-inoculated plants enjoy a higher degree of nodulation than those inoculated with Rhizobium spp. [118].
The enhanced degree of symbiosis exhibited by tripartite interactions may, therefore, be more the result
of their superior ability to take up nutrients than to any stimulatory effect of flavonoids.

In summary, it seems likely that changes in the flavonoid profile are responsible for the regulation
of the initial phase of an AM association, and that a tripartite association can enhance the efficacy
of the nitrogen fixation process carried out by legumes. The recent recognition that strigolactones,
which are present in root exudates, can act as host-recognition signals for AM [119] casts some doubt
over the assumption that flavonoids act as signaling molecules [120]. In addition, the colonization
of mutualistic fungus Phomopsis liquidambari increases auxin signaling in Arachis hypogaea as well as
nodulation and nitrogen fixation of the host. It may also be of value to examine the possibility that
flavone compounds act as inhibitors of auxin transport.

5. The Potential of Manipulating Flavonoids to Improve Biological Nitrogen Fixation

Supplementation of inoculants with flavonoids is already in commercial use as a means of
promoting legume–Rhizobium symbiosis [121]. For example, the product SoyaSignalTM includes
added genistein and daidzein, which induce the expression of B. japonicum nod genes. The possibility
of manipulating the root–rhizosphere interaction (and in particular biological nitrogen fixation) by
modifying the plant’s flavonoids composition and/or content has been suggested as a fruitful line of
research. For the moment though, the relevant technology has yet to be developed, awaiting a better
definition of the nature of the interactions involved between the host plants, the various flavonoids and
the relevant soil micro-organisms. Due to the biological complexity of the rhizosphere, it is possible
that altering the content of a particular flavonoid will influence the performance of symbiotic and/or
pathogenic soil micro-organisms, and even that of non-target plants; such unforeseen effects will need
to be borne in mind and explored. While certain flavonoids may indeed enhance nodulation and/or
mycorrhization, they may also have an effect on bacterial quorum sensing, plant–plant interactions
and soil biochemistry. Catechin, as an example, has been suggested to negatively impact the quorum
sensing of desirable micro-organisms, to the extent that it could represent a potent allelopathic signaling
compound, acting to suppress plant growth [86,122]. Similarly, naringenin, a compound recognized
as an inducer of nod gene expression in several Rhizobium spp., may affect the regulation of quorum
sensing of non-target bacteria [123,124]. The isoflavonoids present in soybean root exudate attract
not only the symbiont B. japonicum but also the highly damaging pathogen Phytophthora sojae [125].
Furthermore, the presence in the rhizosphere of flavonoid metabolic breakdown products has the
potential to affect the activity and availability of the flavonoid itself and even to have a harmful effect
on beneficial micro-organisms [126]. Given that flavonoids can modify the structure of the rhizosphere
microbial community, an important direction of future research will be to apply DNA-based approaches,
such as the high throughput sequencing of 16s rRNA, to track changes in species representation in
the rhizosphere in response to the manipulation of flavonoids. At the same time these data could
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improve the level of understanding of the functional role of the various flavonoids in the activity of
both symbiotic and non-symbiotic rhizosphere species.

The restricted host range characteristic of the legume-Rhizobium symbiosis has given rise to a
great diversity of flavonoids and Nod factors, only few of which have been studied in any detail.
Given that the legumes represent the third largest family in the plant kingdom, the potential number
of distinct Nod factor/flavonoid combinations will likely be very large; thus the benefits to be gained
from rhizosphere engineering could well be substantial. The realization of this potential will, however,
require a step increase in research efforts directed at the identification of host determinant factors and a
detailed characterization of the infection process. In contrast to the legume–Rhizobium interaction,
the symbiosis between actinorhizals and Frankia spp. remains rather poorly characterized. Nevertheless,
the overall similarity between these two processes implies that gaining a more profound understanding
of the significance of flavonoids in the process of nitrogen fixation in the legumes will also likely shed
light on the mechanisms underlying actinorhizal nitrogen fixation.

6. Conclusions

From the results above described, it is evident that even if the role of flavonoids have been well
characterized in legumes nodulation with Rhizobium, several question marks still remain for their role
in the legume/Rhizobium/AM tripartite symbiosis and actinorhizal symbioses (Figure 6). The discovery
that actinorhizal species and legumes share a common symbiotic signaling pathway [127] suggests that
a major research challenge will be to identify which flavonoids are in common to both the Rhizobium
spp. and the AM symbiosis, and which are unique [14]. Gaining this understanding could guide
strategies based on manipulating the flavonoid pathway, aiming to either improve the efficacy of the
natural symbiotic systems or even to transfer the ability to fix biologically nitrogen from legumes into
cereals [128].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 12 of 19 
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