

Figure S1. ¹H-NMR spectra for heksylene-1,6-bis(dimethyloctylammonium) bromides.

¹**H-NMR** (600 MHz, CDCl₃): 0.88 (t, 6H, *J* = 6.9, 2xCH₃), 1.22-1.26 (m, 12H, 6xCH₂), 1.26-1.31 (m, 8H, 4xCH₂), 1.56-1.61 (m, 4H, 2xCH₂), 1.64-1.68 (m, 4H, 2xCH₂), 1.80-2.05 (m, 4H, 2xCH₂), 3.39 (s, 12H, 4xCH₃N), 3.45-3.55 (m, 4H, 2xCH₂N), 3.65-3.75 (m, 4H, 2xCH₂N).

Figure S2. ¹³C-NMR spectra for heksylene-1,6-bis(dimethyloctylammonium) bromides.

¹³C-NMR (150 MHz, CDCl₃): 14.04 (2xCH₃), 21.81, 22.65, 22.90, 24.63, 26.35, 29.05, 29.21, 31.64 (16xCH₂), 51.06 (4xCH₃N), 64.23 (2xCH₂N), 64.77 (2xCH₂N).

Figure S3. ¹H-NMR spectra for heptylene-1,7-bis(dimethyloctylammonium) bromides.

¹**H-NMR** (600 MHz, CDCl₃): 0.88 (t, 6H, *J* = 6.7, 2xCH₃), 1.22-1.31 (m, 12H, 6xCH₂), 1.31-1.41 (m, 8H, 4xCH₂), 1.47-1.58 (m, 6H, 3xCH₂), 1.70-1.77 (m, 4H, 2xCH₂), 1.82-1.89 (m, 4H, 2xCH₂), 3.35 (s, 12H, 4xCH₃N), 3.48-3.54 (m, 4H, 2xCH₂N), 3.74-3.81 (m, 4H, 2xCH₂N).

Figure S4. ¹³C-NMR spectra for heptylene-1,7-bis(dimethyloctylammonium) bromides.

¹³C-NMR (150 MHz, CDCl₃): 14.08 (2xCH₃), 22.03, 22.60, 22.93, 25.11, 26.39, 27.23, 29.08, 29.22, 31.67 (17xCH₂), 50.98 (4xCH₃N), 64.39 (2xCH₂N), 64.57 (2xCH₂N).

Figure S5. ¹H-NMR spectra for oktylene-1,8-bis(dimethyloctylammonium) bromides

¹**H-NMR** (600 MHz, CDCl₃): 0.88 (t, 6H, *J* = 7.0, 2xCH₃), 1.22-1.32 (m, 12H, 6xCH₂), 1.32-1.42 (m, 8H, 4xCH₂), 1.43-1.50 (m, 8H, 4xCH₂), 1.69-1.75 (m, 4H, 2xCH₂), 1.83-1.89 (m, 4H, 2xCH₂), 3.37 (s, 12H, 4xCH₃N), 3.50-3.56 (m, 4H, 2xCH₂N), 3.66-3.74 (m, 4H, 2xCH₂N).

Figure S6. ¹³C-NMR spectra for oktylene-1,8-bis(dimethyloctylammonium) bromides

¹³C-NMR (150 MHz, CDCl₃): 14.09 (2xCH₃), 22.32, 22.62, 22.95, 25.62, 26.39, 27.85, 29.09, 29.25, 31.70 (18xCH₂), 51.06 (4xCH₃N), 64.52 (2xCH₂N), 64.62 (2xCH₂N).

Figure S7. ¹H-NMR spectra for nonylene-1,9-bis(dimethyloctylammonium) bromides

¹H-NMR (600 MHz, CDCl₃): 0.88 (t, 6H, J = 7.0, 2xCH₃), 1.21-1.32 (m, 12H, 6xCH₂), 1.32-1.48 (m, 18H, 4xCH₂), 1.68-1.75 (m, 4H, 2xCH₂), 1.76-1.85 (m, 4H, 2xCH₂), 3.36 (s, 12H, 4xCH₃N), 3.50-3.57 (m, 4H, 2xCH₂N), 3.64-3.72 (m, 4H, 2xCH₂N)

Figure S8. ¹³C-NMR spectra for nonylene-1,9-bis(dimethyloctylammonium) bromides

¹³C-NMR (150 MHz, CDCl₃): 14.21 (2xCH₃), 22.64, 22.73, 223.05, 25.79, 26.50, 28.22, 29.21, 29.35, 31.80 (18xCH₂), 51.21 (4xCH₃N), 64.62 (2xCH₂N), 64.69 (2xCH₂N).

Figure S9. ¹H-NMR spectra for tretadecylene-1,14-bis(dimethyloctylammonium) bromides

¹**H-NMR** (600 MHz, CDCl₃): 0.81 (t, 6H, *J* = 6.7, 2xCH₃), 1.14-1.25 (m, 24H, 12xCH₂), 1.25-1.37 (m, 16H, 8xCH₂), 1.59-1.71 (m, 8H, 4xCH₂), 3.32 (s, 12H, 4xCH₃N), 3.42-3.49 (m, 4H, 2xCH₂N), 3.49-3.57 (m, 4H, 2xCH₂N).

¹³C-NMR (150 MHz, CDCl₃): 14.16 (2xCH₃), 22.65, 22.89, 26.22, 26.34, 29.06, 29.11, 29.20, 29.25, 31.71 (24xCH₂), 51.22 (4xCH₃N), 64.10 (2xCH₂N), 64.17 (2xCH₂N).

Figure S11. Temperature dependence of counterion binding to micelles, β , determined for aqueous solutions of heksylene-1,6 bis(dimethyloctylammonium) bromides by the slope ratio method conductometrically.

Figure S12. Temperature dependence of counterion binding to micelles, β , determined for aqueous solutions of heptylene -1,7 bis(dimethyloctylammonium) bromides by the slope ratio method conductometrically.

Figure S13. Temperature dependence of counterion binding to micelles, β , determined for aqueous solutions of oktylene -1,8 bis(dimethyloctylammonium) bromides by the slope ratio method conductometrically.

Figure S14. Temperature dependence of counterion binding to micelles, β , determined for aqueous solutions of nonylene -1,9 bis(dimethyloctylammonium) bromides by the slope ratio method conductometrically.

Figure S15. Temperature dependence of counterion binding to micelles, β , determined for aqueous solutions of tetradecylene -1,14 bis(dimethyloctylammonium) bromides by the slope ratio method conductometrically.

Figure S16. Calorimetric titration curve from additions 8-6-8 surfactant to water for temperatures: \circ – 283.15 K, ∇ - 288.15 K, \bullet - 293.15 K, \diamond - 298.15K, \Box – 303.15K, Δ - 308.15K, Δ - 313.15K, \bullet - 318.15K, \bullet - 323.15 K, ∇ - 328.15K, \bullet - 333.15 K, P – 338.15K, ∇ - 343.15 K

Figure S17. Calorimetric titration curve from additions 8-7-8 surfactant to water for temperatures: $\circ - 283.15 \text{ K}$, $\nabla - 288.15 \text{ K}$, $\bullet - 293.15 \text{ K}$, $\Diamond - 298.15 \text{ K}$, $\Box - 303.15 \text{ K}$, $\Delta - 308.15 \text{ K}$, $\Delta - 313.15 \text{ K}$, $\bullet - 318.15 \text{ K}$, $\bullet - 323.15 \text{ K}$, $\nabla - 328.15 \text{ K}$, $\bullet - 333.15 \text{ K}$, P - 338.15 K, $\nabla - 343.15 \text{ K}$

Figure S18. Calorimetric titration curve from additions 8-9-8 surfactant to water for temperatures: $\nabla - 288.15 \text{ K}$, $\bullet - 293.15 \text{ K}$, $\Diamond - 298.15 \text{ K}$, $\Box - 303.15 \text{ K}$, $\Delta - 308.15 \text{ K}$, $\Delta - 313.15 \text{ K}$, $\bullet - 318.15 \text{ K}$, $\bullet - 323.15 \text{ K}$

Figure S19. Pair distance distribution functions derived from SAXS data by indirect Fourier transform for 8-7-8 surfactant system at concentrations: a) 0.150 mol dm⁻³, b) 0.214 mol dm⁻³, c) 0.331 mol dm⁻³, d) 0.342 mol dm⁻³, e) 0.352 mol dm⁻³ at 293.15 K, 298.15 K, 303.15 K, 308.15 K, 313.15 K, 318.15 K.

Figure S20. Pair distance distribution functions derived from SAXS data by indirect Fourier transform for 8-9-8 surfactant system at concentrations a) 0.40 mol dm⁻³,) b) 0.107 mol dm⁻³ at 293.15 K, 298.15 K, 303.15 K.

Table S1. Temperature dependence of micellisation parameters: c.m.c, $C_{m.trans}$ and thermodynamic quantities of the micellisation and transformation process for aqueous surfactant solution 8-6-8 determined on the basis of calorimetric titration. The values for the micelle transformation process are shown in bold.

-	$c.m.c / \text{mol} \cdot \text{dm}^{-3}$ $C_{m-trans} / \text{mol} \cdot \text{dm}^{-3}$	Thermodynamic Functions for 8-6-8				
/к		$\Delta G_m / \Delta \boldsymbol{G}_{m.trans}$ /kJ · mol ⁻¹	$\Delta H_m / \Delta H_{m.trans}$ /kJ · mol ⁻¹	$T\Delta S_m / T\Delta S_{m,trans}$ /kJ · mol ⁻¹	$\Delta S_m / \Delta S_{m.trans}$ /J · mol ⁻¹ · K ⁻¹	
283.15	0.126 ±0.01	-16.57	4.11	20.68	73.04	
288.15	0.106±0.01	-17.17	3.70	20.86	72.41	
293.15	0.077±0.007	-18.12	3.60	21.72	74.10	
298.15	0.070±0.007	-18.59	3.55	22.14	74.25	
303.15	0.063 ±0.005	-19.00	3.03	22.04	72.25	
308.15	0.065 ±0.006	-19.06	2.30	21.35	69.28	
313.15	0.057 ±0.006	-19.55	1.68	21.23	67.80	
	0.107±0.01	-17.76	-1.13	16.63	53.12	
318.15	0.053 ±0.005	-19.87	0.51	20.38	64.07	
	0.114±0.01	-17.69	-0.49	17.20	54.06	
323.15	0.037 ±0.005	-20.94	0.58	21.42	66.29	
	0.113±0.01	-17.89	-2.57	15.28	47.28	
328.15	0.116±0.01	-17.83	-3.90	13.93	42.44	
333.15	0.138±0.01	-17.42	-3.56	13.86	41.60	
338.15	0.136±0.01	-17.54	-4.07	13.46	39.81	
343.15	0.147 ±0.01	-17.39	-4.95	12.43	36.23	

Table S2. Temperature dependence of micellisation parameters: c.m.c, $C_{m.trans}$ and thermodynamic quantities of the micellisation and transformation process for aqueous surfactant solution 8-7-8 determined on the basis of calorimetric titration. The values for the micelle transformation process are shown in bold.

			Thermodynamic Functions for 8-7-8				
	Т /К	$c.m.c / \text{mol} \cdot \text{dm}^{-3}$ $C_{m \cdot trans} / \text{mol} \cdot \text{dm}^{-3}$	$\Delta G_m / \Delta G_{m.trans}$ /kJ · mol ⁻¹	$\Delta H_m / \Delta H_{m.trans}$ /kJ · mol ⁻¹	$T\Delta S_m / T\Delta S_{m.trans}$ /kJ · mol ⁻¹	$\Delta S_m / \Delta S_{m.trans}$ /J · mol ⁻¹ · K ⁻¹	
2	283.15	0.130±0.01	-17.19	3.58	20.77	73.35	
2	288.15	0.116±0.01	-17.53	3.52	21.05	73.05	
2	293.15	0.096±0.01	-18.08	3.28	21.36	72.86	
2	298.15	0.090±0.01	-18.27	2.88	21.15	70.43	
3	303.15	0.081 ± 0.008	-18.55	2.41	20.96	69.14	
3	308.15	0.079±0.008	-18.61	1.34	19.95	64.74	
3	313.15	0.074 ±0.007	-18.77	0.73	19.50	62.27	
3	318.15	0.055±0.005	-19.57	0.43	20.00	62.86	
		0.130±0.01	-17.14	-0.48	16.66	52.37	
3	323.15	0.049 ±0.005	-19.84	0.36	20.20	62.51	
		0.139±0.01	-16.90	-1.14	15.76	48.77	
3	328.15	0.136±0.01	-16.91	-1.90	15.01	45.74	
3	333.15	0.142 ±0.01	-16.72	-1.80	14.92	44.78	
3	338.15	0.147±0.01	-16.55	-1.83	14.72	43.53	
3	343.15	0.160±0.01	-16.23	-1.67	14.56	42.43	

Table S3. Temperature dependence of micellisation parameters: c.m.c, $C_{m.trans}$ and thermodynamic quantities of the micellisation and transformation process for aqueous surfactant solution 8-9-8 determined on the basis of calorimetric titration. The values for the micelle transformation process are shown in bold.

		Thermodynamic Functions for 8-9-8			
Т	$c.m.c / \text{mol} \cdot \text{dm}^{-3}$	$\Delta G_m / \Delta G_{m.trans}$	$\Delta H_m / \Delta H_{m.trans}$	$T\Delta S_m / T\Delta S_{m.trans}$	$\Delta S_m / \Delta S_{m.trans}$
/K	$C_{m \cdot trans} / \mathrm{mol} \cdot \mathrm{dm}^{-3}$	$/kJ \cdot mol^{-1}$	$/kJ \cdot mol^{-1}$	$/kJ \cdot mol^{-1}$	$/J \cdot mol \cdot \cdot K^{-1}$
288.15	0.043 ±0.004	-19.98	7.15	27.13	95.81
293.15	0.039±0.004	-20.09	7.89	27.98	95.44
298.15	0.034 ±0.003	-20.56	6.06	26.62	89.28
303.15	0.032±0.003	-20.80	3.92	24.72	81.54
308.15	0.025 ±0.002	-21.57	2.67	24.24	78.68
	0.065±0.006	-18.88	-1.46	17.42	56.52
313.15	0.024 ±0.002	-21.69	1.80	23.49	75.02
	0.062±0.006	-19.06	-1.49	17.57	56.12
318.15	0.018±0.001	-22.59	1.14	23.73	74.59
	0.060±0.006	-19.21	-2.02	17.19	54.03
323.15	0.015 ± 0.001	-23.08	0.93	24.02	74.32
	0.058 ± 0.005	-19.49	-2.80	16.69	51.65

Table S4. Temperature dependence of micellisation parameters: c.m.c, $C_{m.trans}$ and thermodynamic quantities of the micellisation and transformation process for aqueous surfactant solution 8-14-8 determined on the basis of calorimetric titration. The values for the micelle transformation process are shown in bold.

		Thermodynamic Functions for 8-14-8				
<i>T</i> /K	$c.m.c / \text{mol} \cdot \text{dm}^{-3}$ $C_{m \cdot trans} / \text{mol} \cdot \text{dm}^{-3}$	$\Delta G_m / \Delta \boldsymbol{G}_{m.trans}$ /kJ · mol ⁻¹	$\Delta H_m / \Delta H_{m.trans}$ /kJ · mol ⁻¹	$T\Delta S_m / T\Delta S_{m.trans}$ /kJ · mol ⁻¹	$\Delta S_m / \Delta \boldsymbol{S}_{m.trans}$ /J · mol ⁻¹ · K ⁻¹	
283.15	0.022±0.001	-21.58	10.46	32.04	113.2	
288.15	0.021±0.001	-21.83	8.92	30.75	106.7	
293.15	0.020±0.001	-22.04	6.77	28.81	98.27	
298.15	0.017±0.001	-22.36	5.72	28.08	94.19	
303.15	0.017±0.001	-22.44	3.61	26.05	85.92	
	0.044 ± 0.001	-19.73	-2.33	17.40	57.40	
308.15	0.011 ± 0.001	-23.63	3.39	27.02	87.68	
	0.041 ± 0.001	-19.98	-2.57	17.41	56.51	
313.15	0.007 ± 0.001	-24.86	2.82	27.67	88.37	
	0.028±0.001	-21.02	-4.85	16.17	51.62	
318.15	0.026±0.002	-21.18	-6.02	15.16	47.66	
323.15	0.027±0.003	-21.04	-7.22	13.82	42.76	
328.15	0.028±0.003	-20.88	-8.70	12.18	37.12	
333.15	0.028 ±0.003	-20.81	-10.56	10.24	30.76	
338.15	0.029±0.003	-20.63	-10.57	10.06	29.76	
343.15	0.030±0.003	-20.45	-12.08	8.37	24.40	