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Abstract: Cartilage is an avascular tissue with limited ability of self-repair. The use of autologous 

chondrocyte transplants represent an effective strategy for cell regeneration; however, preserving 

the differentiated state, which ensures the ability to regenerate damaged cartilage, represents the 

main challenge during in vitro culturing. For this purpose, we produced an injectable marine 

collagen-based hydrogel, by mixing native collagen from the jellyfish Rhizostoma pulmo with 

hydroxy-phenyl-propionic acid (HPA)-functionalized marine gelatin. This biocompatible hydrogel 

formulation, due to the ability of enzymatically reticulate using horseradish peroxidase (HPR) and 

H2O2, gives the possibility of trap cells inside, in the absence of cytotoxic effects, during the cross-

linking process. Moreover, it enables the modulation of the hydrogel stiffness merely varying the 

concentration of H2O2 without changes in the concentration of polymer precursors. The 

maintenance of differentiated chondrocytes in culture was then evaluated via morphological 

analysis of cell phenotype, GAG production and cytoskeleton organization. Additionally, gene 

expression profiling of differentiation/dedifferentiation markers provided evidence for the 

promotion of the chondrogenic gene expression program. This, combined with the biochemical 

properties of marine collagen, represents a promising strategy for maintaining in vitro the cellular 

phenotype in the aim of the use of autologous chondrocytes in regenerative medicine practices. 

Keywords: jellyfish collagen; composite injectable hydrogel; enzymatic cross-linking; cartilage; 

chondrocytes; differentiation; gene expression 

 

1. Introduction 

It is known that cartilage self-repair is hampered by several factors mainly related to the limited 

tissue vascularization which results in a poor replicative potential of chondrocytes, as well the 

reduced chondrocytes propensity to migrate into the damaged site [1,2]. However, chondrocytes are 

recognized to be among the most versatile cell types due to their renewal/differentiation ability, 

which makes them suitable for various applications [3]. Regenerative medicine techniques based on 

the use of autologous chondrocytes transplantations via tissue engineering approaches provide 

promising evidence for the effectiveness of cell-based regeneration strategies, which lead to the 

regeneration of the damaged cartilage. Adult nasal chondrocytes (NC) are considered particularly 
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worthy of attention due to their unique features [4]. They derive from the neural crest and have been 

recently shown to be able to respond and adapt to heterotopic transplantation sites. In particular, 

chondrocytes from the nasal septum allowed enhanced reproducibility in generating hyaline-like 

cartilage tissues, with superior plasticity to adapt to a joint environment, resulting in improved 

performances in tissue regeneration and repair [5,6]. In vitro isolation and expansion of NC are 

required to obtain an adequate quantity of cells. However, preserving the differentiated state, which 

ensures the ability to regenerate damaged cartilage, represents the main challenge during in vitro 

culturing. Therefore, several efforts are usually made to avoid dedifferentiation into fibroblast-like 

cells occurring via the reduction in collagen type II production and increased deposition of collagen 

type I. They include the addition of growth and differentiation factors, such as TGF-β [7] and the 

development of substrates as three-dimensional (3D) scaffolds that mimic the physiological 

environment ensuring adequate mechanical stimulation [8]. A lot of synthetic polymers are used to 

produce three-dimensional and highly porous scaffolds [9,10]; however, these polymers often require 

structural modifications or surface functionalization which increase their biocompatibility. To do this, 

it is possible to combine collagen with other bioactive molecules to obtain various modifications of 

the original polymer [11,12]. Nevertheless, hydrogels containing highly hydrated 3D networks 

mimicking the extracellular matrix (ECM) are highly recommended because of the similarity to native 

cartilage [13]. There is extensive evidence on the key role of the ECM, of which collagen type I is 

among the main components, to tune morphogenesis, development, cell growth, migration and 

tumorigenesis [14,15]. To date, natural biomaterials, including agarose, alginate and Matrigel [13], 

are often used for 3D scaffolding systems in biomedical applications. The combination of natural and 

synthetic polymers has been proven to provide greater mechanical stability and improve 

biocompatibility, acquiring from the synergistic properties of both materials. Interestingly, various 

combinations of collagen with other natural polymers such as inulin [16], or combination of alginate, 

gelatin and fibrin [17] have been transformed into formulations of injectable hydrogel enabling in 

situ formation [18]. Due to their ease of encapsulation of cells/biomolecules and subsequent 

administration in the absence of significant toxic effects, the use of injectable hydrogels represents an 

interesting strategy for tissue engineering and cell therapy [19]. This technology also enables the use 

of combined hydrogels as a drug release system thus replacing synthetic polymers such as poly(N-

vinyl pyrrolidone) (PVP), currently used for this purpose [20–22]. The excellent biocompatibility and 

safety due to its biological characteristics, such as biodegradability and weak antigenicity, made 

collagen a preferred resource in biotechnological applications [23] both for the tissue engineering [8] 

and cosmetic and pharmaceutical industry [24]. 

Although collagen and ECM remodeling repertoire appeared within cnidarians in the first phase 

of evolution [25,26], the main sources for industrial and biomedical applications are from mammals 

including bovine and porcine [27]. However, several limitations occur in the use of these collagens. 

They include allergic responses, the possibility of transmitting zoonosis to humans as bovine 

spongiform encephalopathy (BSE) and foot-and-mouth disease (FMD) [28] and also restriction based 

on religion [29]. To overcome these issues nonmammalian collagen sources have also been evaluated. 

Among them, marine invertebrates as jellyfish possess high protein content, especially in collagen 

that accounts for up to 40–60% of dry weight [30]. In particular, collagen derived from Rhizostoma 

pulmo has been shown to have a high degree of similarity to mammalian type I collagen [31] and it 

has been also referenced to possess collagen type II-“like” properties [32,33]. Jellyfish collagen (JFC) 

shares several characteristics with the vertebrate counterpart including biocompatibility [31] and the 

possibility of supporting 2D and 3D cell cultures. Hence, it has been used for the production of 

microparticles enabling the controlled release of therapeutic proteins [34] and 3D highly porous 

scaffolds [35–37] or sponges [38] also supporting the chondrogenic phenotype and the 

redifferentiation of cells previously grown in a monolayer [33], thus enabling its application in 

cartilage tissue engineering [39]. Unfortunately, procedures allowing the polymerization of marine 

collagen in sponges or microparticles generally rely on a chemical cross-linking [27,32], which is 

incompatible with the simultaneous mixing of the cells in the solution, due to the potentially toxic 

residues remaining trapped within the material. Indeed, despite the biocompatibility of the material, 
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these 3D supports require abundant washes, which allow the elimination of potentially toxic 

residues, before they are able to come into contact with the cells. Generally, cells are seeded on their 

surface and from there they can migrate inside until they colonize the entire volume of the matrix [8]. 

In order to overcome this limitation, herein we used R. pulmo collagen for the production of a 

highly biocompatible composite and injectable hydrogel, capable of enzymatic cross-linking, through 

oxidative coupling catalyzed by hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). This 

formulation enabled the tuning of the hydrogel stiffness merely varying the concentration of H2O2 

without changes in the concentration of the polymer precursor. Moreover, it allowed the trapping of 

cells inside it during the cross-linking process, in the absence of any cytotoxic effects. The efficiency 

of the described hydrogel in terms of biocompatibility and in the maintenance of differentiated state 

was evaluated morphologically, phenotypically and for the transcriptional expression of 

chondrogenic markers. The absence of negligible effects together with the injectability of the 

composite hydrogel suggests the possibility of its use in a preclinical step and cartilage treatment in 

clinical applications. 

2. Results and Discussion 

2.1. Purification and Characterization of R. pulmo Native Collagen 

Natural biomaterial represents an interesting tool for the production of highly biocompatible 

injectable hydrogels. Because limitations in the use of mammalian collagen are well known, 

alternative sources of safe collagen have been sought especially in the marine environment. Marine 

collagen (MC) extraction can be usually carried out both in acidic and basic solutions or by enzymatic 

digestion, mainly through the use of pepsin [27,38]. 

However, to obtain jellyfish collagen in native form, we herein optimized the extraction of acid-

soluble collagen avoiding pepsin digestion step. The R. pulmo acid-soluble proteins were purified as 

described in the experimental section and characterized by SDS-PAGE (Figure 1A). 

 

Figure 1. Acid-soluble proteins extracted from R. pulmo and comparison of the mammalian collagen 

from rat tail (RTC) and jellyfish collagen from R. pulmo (jellyfish collagen (JFC)). (A) SDS-PAGE 

analyses of rat tail type I collagen (20 μg; Line 1); R. pulmo oral arms collagen (20 μg; Line 2); R. pulmo 

umbrella collagen (20 μg; Line 3). STD represents molecular weight markers in kDa. (B) Analysis of 

cross-linking degree. Bars represent mean ± SD (n = 3), and asterisk denotes p < 0.05. (C) JFC was not 

able to gelify, unlike the RTC which forms a very stable hydrogel in a few minutes. The arrows 

indicate the different positions of the collagen in each sample. 

Under reducing conditions, the acid-soluble proteins showed a pattern mainly consisting in α1 

and α2 chains (approximately 180 kDa), and the β and γ chains located on a high molecular mass 

region (above 240 kDa), with a pattern likely resembling type I and type II collagen. This results in 

accordance with data on collagen isolated from several marine sources [36,38]. Additionally, the 

highly resolved protein pattern indicates that the used protocol allows the extraction of jellyfish 

collagen in native form. Although it is usually indicated a high correspondence between the collagen 
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of mammalian and marine species [36], the apparent molecular weight of R. pulmo α and β chains 

was higher than the vertebrate counterparts. This could indicate variations in protein length and 

structural differences, probably due to their different amino acid composition. In this line, it has been 

observed that R. pulmo collagen contains less hydroxyproline, proline, glycine and glutamic acid 

residues than rat and bovine type I collagen [36]. Whilst these amino acids are involved in the 

formation and stability of the quaternary structure (triple helix) and thermal stability of type I 

collagen, the reduced content of these amino acids did not appear to affect the structure of R. pulmo 

collagen [40]. 

However, the analysis of cross-linking degree (Figure 1B,C) showed that a simple variation of 

pH, which is known to induce mammalian collagen polymerization [41], does not allow a stable gel 

formation on JFC at 37 °C. 

Thus, it is reasonable to suppose that these residues on R. pulmo collagen are probably not 

available for cross-linking due to the lower percentage, or because they are structurally located in not 

accessible sites. This is consistent with the lower melting temperature (28.9 °C) which has been 

measured for R. pulmo collagen [31]. 

2.2. Functionalization Strategy for a Stable and Injectable Marine Hydrogel Formulation 

In order to overcome limitations in the use of native R. pulmo collagen on the formation of a 

stable hydrogel, denatured marine collagen (gelatin) was functionalized and used for the creation of 

a combined marine hydrogel. Enzymatic cross-linking agents are recognized to promote gel 

formation [42] eliminating the risk of cytotoxic effects. Based on this, we functionalized fish gelatin, 

through the binding of hydroxy-phenyl-propionic acid (HPA) from its reactive group COOH, 

making gelatin rich in potentially reactive OH groups (Figure 2A). These groups, in the presence of 

H2O2 and horseradish peroxidase (HRP), are known to react so as to obtain a hydrogel [43] with a 

stable cross-linking (Figure 2B) and increasing stiffness. This depends on the concentration of used 

H2O2, (from 0.5 mM to 1 mM) as indicated by transmittance analysis (Figure 2C) and, as well, increase 

of opacity of each hydrogel (Figure 3D). As regards the gelation time, it resulted independently of 

the concentration of H2O2 herein used, as the hydrogel always forms in less than 2 min at 37 °C. 

Moreover, a further increase in the H2O2 amount failed in gel formation probably due to the inhibition 

of HRP for an H2O2 excess [43]. 

 

Figure 2. Functionalization of fish gelatin. (A) Analysis of the absorption spectra of fish gelatin (Gtn) 

after conjugation with hydroxy-phenyl-propionic acid (HPA; green curve), compared to the 

unconjugated Gtn used as a control (blue curve). Bars represent mean ± SD (n = 3). (B) Hydrogel of 

functionalized Gtn-HPA cross-linked by HPR and H2O2 enzymatic reaction. (C) Determination of 

hydrogel stiffness degree by transmittance analysis. The higher density of the gel, due to a higher 

cross-linking number, is inversely proportional to the percentage (%) of transmittance. The solution 

of Gtn-HPA uncross-linked was used as control. Transmittance was read at 700 nm. In 

correspondence with the histogram, the relative images of the hydrogel. Bars represent mean ± SD (n 

= 3). (D) show the increase in H2O2 concentrations, from 0.5 to 1 mM, augmented by the number of 

cross-linking and the opacity of the gel. 
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In order to obtain high gelation yield, alongside with the absence of harmful effects on cells, it is 

mandatory the identification of a proper ratio between HPR and H2O2. Therefore, to establish that 

MC3T3-E1 cell culture, which is known to be impaired by H2O2 exposure [44], was mixed with Gtn-

HPA separately at 0.5 and 0.8 mM H2O2. Hydrogels with increasing density were obtained and the 

cells were monitored for five days. Microscopic analysis revealed that both tested H2O2 

concentrations do not modify cell morphology (Figure 3A) compared to MC3T3-E1 grown in 

monolayer and herein used as control (Figure 3A). Interestingly, the different gel stiffnesses appeared 

to influence cell proliferation because an evident reduction occurred at 0.8 mM H2O2 (Figure 3A). 

 

Figure 3. The use of 0.5 mM H2O2 for enzymatic cross-linking does not impair cell viability. (A) 

Different and nontoxic H2O2 concentrations do not modify cell morphology. MC3T3-E1 cells were 

grown, respectively, on cover glass as 2D control, in the Gtn-HPA hydrogel cross-linked with 2 U/mL 

HPR and 0.5 mM H2O2 and in the Gtn-HPA hydrogel cross-linked with 2 U/mL HPR and 0.8 mM 

H2O2 for 5 days. Cell cytoskeleton was stained with Phalloidin FITC (Green). Nuclei were stained 

with DAPI (Blue). Magnification was 10×. Scale bar was 50 μm. (B) Proliferation assay of MC3T3-E1 

cell growth within the Gtn-HPA hydrogel cross-linked with HPR and 0.5 mM H2O2. Bars represent 

mean ± SD (n = 3) (C) proliferation assay of MC3T3-E1 cells recovered after 5 days in the Gtn-HPA 
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hydrogel and then seeded on 2D; (D) contrast microscopy images of MC3T3-E1 cells after hydrogel 

recovery and seeded on 2D for 3 days and (E) for 8 days. Cells have been stained with Coomassie 

Brilliant Blue G. The magnification was 5×; scale bar was 25 μm. 

However, as measured in cell proliferation assays (Figure 3B), both the cells inside the hydrogel 

and those recovered from this and seeded in 2D (Figure 3C), showed a linear proliferation rate over 

time, although slower in 3D than in 2D. The cell’s ability to continue to proliferate once extracted 

from the gel was also monitored for eight days (Figure 3C–E) indicating the absence of any cytotoxic 

effect experienced during the enzymatic polymerization. 

In order to obtain a fully marine and stable 3D hydrogel (Marine Collagen hydrogel (MCh)), we 

created an injectable collagen-based hydrogel, by mixing in equal proportions the R. pulmo native 

collagen and the Gtn-HPA (Figure 4A). This formulation enables the possibility of tuning the stiffness 

of the hydrogels varying the concentration of H2O2 (Figure 4B,C) without changing the concentration 

of the polymer precursor. Moreover, it allows the trapping of cells inside the gel during the cross-

linking process, in the absence of cytotoxic effects. In addition to the advantages related to the used 

biomaterial [33], such combined formulation also exhibits a sol–gel phase transition which enables 

injection and in situ gelation through a 23 G needle with a perfect flow. 

 

Figure 4. Stable and injectable combined marine hydrogel. (A) Production of injectable hydrogel 

totally from marine source (Marine Collagen hydrogel (MCh)) by mixing (1:1) JFC in native form and 

functionalized denatured collagen (Gtn-HPA) obtained by the reaction of HPR 2 U/mL and 0.5 mM 

H2O2. The use of the lower concentration of H2O2 minimizes the possible toxicity of the system. The 

hydrogel formulation has shown perfect flow from 23 G and thicker-sized syringes. (B) Determination 

of hydrogel stiffness degree by transmittance analysis. The higher density of the gel, due to a higher 

cross-linking number, is inversely proportional to the percentage (%) of transmittance. The solution 

of MC uncross-linked was used as control. Transmittance was read at 700 nm. Bars represent mean ± 
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SD (n = 3). In correspondence with the histogram, the relative images of the hydrogel (C) show how 

the increase in H2O2 concentrations, from 0.5 to 1 mM, augmented the number of cross-linking and 

the opacity of the gel. 

2.3. Comparing Rat Tail Collagen Hydrogel (RTCh) and MCh for the Maintenance of Differentiated 

Chondrocytes 

Many pieces of evidence support the biochemical properties of marine collagen on chondrocyte 

differentiation [33,39,45], thus suggesting its use in cartilage engineering and tissue repair. 

The effectiveness of MCh in the maintenance of a differentiated chondrocyte phenotype was 

then evaluated and compared with a canonical hydrogel of type I collagen (Rat Tail Collagen 

hydrogel (RTCh)). NCs were seeded, respectively, within the RTCh and MCh and their behavior was 

monitored over time. It is known that NCs possess the ability to remodel RTCh [46]. 

As shown in Figure 5, the fast NC proliferation rate (Figure 5A) was responsible for the 

progressive contraction of the RTCh (Figure 5B,C). In particular, herein we reported that the process 

begins at Day 1 (Figure 5C) and measurements in the variation of the RTCh diameter indicated a 

gradual gel contraction that reaches 61% after eight days (Figure 5B). 

Differently, the NCs within MCh (Figure 5D) do not possess the same remodeling ability; the 

measurements of the variation of the MCh dimensions showed that the 3D matrix diameter was 

maintained over time (Figure 5E,F). Previous data indicated that the inability to contract the gel is 

closely related to the maintenance of the chondrogenic phenotype [46]. Interestingly, NCs grown in 

RTCh showed a high proliferation rate associated with a transition from a rounded to a spread 

morphology (Figure 5A). Conversely, NCs maintained a rounded morphology over time in MCh 

(Figure 5E). 
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Figure 5. Performance of Rat Tail Collagen hydrogel (RTCh) and MCh in the maintenance of 

chondrocytes. (A) Growth of bovine nasal chondrocytes (NCs), time 0 control (0) and growth within 

RTCh, respectively, for 1 (1d), 2 (2d), 4 (4d) and 8 days (8d). Magnification was 20×; scale bar was 25 

μm. NCs remodeled RTCh (type I collagen) from the first day of culture; this was indicated both by 
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the histogram of the reduction of the RTCh diameter over time (B), in which 61% of contraction with 

respect to time 0 was observed, after 8 days of culture, and from direct images of the hydrogel (C) 

that show how the NCs growth rate was responsible for the progressive and evident remodeling of 

the hydrogel. (D) Growth of bovine nasal chondrocytes (NCs), time 0 control (0) and growth within 

MCh, respectively, for 1 (1d), 2 (2d), 4 (4d) and 8 days (8d). Magnification was 20×; scale bar was 25 

μm. (E) NCs do not significantly remodel the MCh. After the first day of culture about 7% of the gel 

contraction was observed; the same value has been maintained over time. (F) Images of MCh during 

the NCs culturing, no evident reduction in gel diameter occurred. Bars represent mean ± SD (n = 3) 

and * denotes p < 0.05. 

Additionally, a reduced cell proliferation rate compared to NCs grown in 2D, herein used as a 

control, was measured in MCh (Figure 6A). 

Given the low proliferative rate within the MCh, we wondered to evaluate the degree of cell 

viability. As indicated in Figure 6B the cells grown in MCh for 14 days showed 90% of viability thus 

ensuring that MCh does not exert any toxic effect. 

To evaluate the use of such hydrogels for chondrogenic differentiation, the production of a 

matrix rich in glycosaminoglycan (GAG), as a proxy of chondrogenic activity [47], was analyzed. NCs 

grown in MCh were able to deposit the GAG-rich matrix as revealed via the Alcian blue staining of 

the electrophoretic pattern of GAGs extracted from MCh after 14 days of NCs culturing (Figure 6C). 

Similarly, the direct MCh staining (Figure 6D) also showed GAGs produced by the chondrocytes 

within the MCh. Thus, GAGs accumulated in the hydrogels, reflecting the feasibility of using MCh 

for active chondrocytes maintenance. 

As further evidence of cell viability, the chondrocytes were recovered after hydrogel digestion 

by collagenases treatment and seeded in 2D conditions; the slow proliferation rate within MCh, 

changed after NCs seeding in monolayer. Cells began to proliferate with a physiological rate and 

reached confluence in a few days (Figure 6E). 

Based on the round morphology (chondros) observed in MCh, the low degree of proliferation 

and the GAG production therein, it is likely to hypothesize the maintenance of the differentiated 

phenotype in MCh. 
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Figure 6. Chondrocytes in MCh are viable and produce glycosaminoglycan (GAG). (A) Proliferation 

assay of chondrocytes in 3D within MCh (blue curve) and in monolayer (red curve). (B) Viability 

evaluation by Trypan Blue staining the cells grown within the MCh for 14 days. NCs showed 90% of 

viability Bars represent mean ± SD (n = 3). (C) Electrophoretic analysis of the matrix extracted from 

MCh after 14 days of NCs culturing. SDS-PAGE were stained with Alcian Blue (STD: molecular 

weight marker); T: Digested Bovine cartilage; CS: Chondroitin Sulfate control; MCh: Digested MCh 

after 14 days of NCs culturing. (D) Light micrograph of NCs growth within MCh for 14 days, stained 

with Alcian Blue. Magnification was 20×. Scale bar was 25 μm. (E) Chondrocytes resumed after 

hydrogel digestion and seeded in 2D conditions on a plate. Cell proliferation was very slow inside 

MCh; after, seeding cells started to proliferate and reached confluence after a few days. 

2.4. Cytoskeleton Organization and Gene Expression Analyses 

The dedifferentiation of chondrocytes is usually associated with changes in cell morphology, 

from rounded to spread. However, cell morphology is not always linked to phenotype. It has been 

shown that the loss of hallmarks for differentiated chondrocytes, including high expression of 

collagen type II, low expression of collagen type I [48] and a low proliferation rate [49], is also 

associated with an increase in the presence of F-actin cables within the cytoplasm of dedifferentiated 

cells [33,50]. In addition, because proteoglycan and collagen synthesis are correlated with the actin 

localization and cytoskeleton organization [50], efforts were made to examine the presence and the 

status of F-actin in the cytoskeleton of chondrocytes after culturing in 2D, MCh or RTCh. Therefore, 

cells were stained with phalloidin and the cytoskeletal organization was observed. As shown in 

Figure 7, the NCs staining after eight days of culturing in 2D showed the characteristic cytoskeletal 

localization of F-actin indicating the existence of conditions leading to dedifferentiation (Figure 7C). 

A more widespread distribution was observed in RTCh (Figure 7A). Evidence for an F-actin 

localization was negligible in NCs from MCh (Figure 7B), which once again maintained the round 

morphology over time. 
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Thus, it is reasonable to suppose that the chondrogenic phenotype was better maintained in 

MCh rather than the canonical 3D collagen type I hydrogel. 

 

Figure 7. Culturing in MCh does not alter cytoskeleton organization and NCs express markers of the 

differentiated state. Staining of NCs after 8 days of culture, respectively, within RTCh (A), MCh (B) 

and 2D (C). It is possible to observe the characteristic cytoskeletal localization of F-actin in NCs grown 

under 2D conditions (C); a more widespread distribution has been observed in RTCh (A). The 

localization of F-actin is almost not observed in NCs grown in MCh (B), which maintains the 

morphology round over time. The F-actin cytoskeleton was stained with Phalloidin FITC (green); the 

nuclei were stained with DAPI (blue). Magnification was 10×; scale bar was 50 μm. (D) Gene 

expression analyses of Sox9, Col2A1, Col1A2 and Acan by qRT-PCR. The gene expression levels were 

analyzed using the −Ct method using 18S rRNA and GAPDH as the internal controls. The data 

represent the mean ± SD of three independent culture experiments. Statistical analysis by one-way 

ANOVA. The symbol * indicates p < 0.05. 

In order to confirm such assumption and evaluate the differentiated state after culturing in 

different conditions, the expression pattern of some cartilage-specific genes, including Sox9, Col2A1 

and aggrecan (Acan) as well as Col1A2 as a proxy of fibrous differentiation [51] was evaluated and 

compared with that observed from cells grown in monolayer (Figure 7D). Sox9, Col2A1 and Acan 

were overexpressed (3.3-fold, 4.9-fold and 7.2-fold, respectively) in chondrocytes from MCh. The 

expression of a proxy of dedifferentiation, namely, Col1A2, was hugely reduced when compared with 

chondrocytes from 2D culture. Cultured cells from type I collagen hydrogel (RTCh) showed a 

different pattern of gene expression. No significant changes in the Sox9 and Col2A1 transcript levels 

occurred in such samples, which remained similar to those observed in control 2D cells. Interestingly, 

chondrocytes in RTC showed reduced Col1A2 mRNA levels and increased Acan expression up to 2.3-

fold then the control. It is recognized that the chondrogenic differentiation mainly relies on the 

activating role of Sox9 in the expression of chondrocyte-specific genes including Col2A1 and Acan 

[52,53]. This suggests that MCh provides an adequate 3D environment supporting the activation of 
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specific patterns of gene expression. These, in turn, act to maintain the chondrocyte-specific 

phenotype including the native spherical morphology as well the production of accumulation of 

proteoglycans and type II collagen. Although the use of type I collagen is common practice in cell 

culturing, especially for practical reasons, several pieces of evidence suggest the use of composite 

hydrogels including other compounds as type II collagen [49]. It has been shown that type II collagen 

provides a suitable environment for preserving the chondrocyte-specific phenotype [54,55]. The RT-

qPCR analysis herein revealed that chondrocytes cultured in RTC do not express the gene 

characteristic of the dedifferentiated chondrocyte phenotype (Col1A2); however, the lack of Sox9 and 

Col2A1 overexpression appear to not fully sustain a chondrogenic gene expression pattern ensuring 

the maintenance of a differentiated state. It is noteworthy that the activity of Sox9 is also regulated 

by post-transcriptional modification and mechanical stimuli [56]. Additionally, it has been shown 

that Acan expression was achieved also after Sox9 knockdown [57]. Therefore, it is unsurprising that 

qPCR analyses showed significant Acan upregulation in the absence of increased Sox9 expression as 

occurred in RTC 3D chondrocytes cultures. 

3. Materials and Methods 

3.1. R. pulmo Collagen Extraction 

Two large jellyfishes, of the genus R. pulmo, were caught and immediately sectioned to separate 

the umbrella from the oral arms, the samples were placed in an ice bath until processing (about 2 h). 

Samples were kept in dH2O for 10 days in at 5 °C ensuring dH2O changes every 8 h. 

From the 6th to 10th day, water conductivity was measured to monitor the amount of salt 

dissolved. Changes of clean dH2O water were done until complete desalination was obtained as 

compared to dH2O used as control. Acid-soluble proteins, mainly collagen, were extracted in the 

presence of acetic acid at a final concentration of (0.5 N; Tables S1 and S2, Supporting Information). 

The protein extraction process was carried out at 4 °C for a total of 20 days (Figure S1, Supporting 

Information) in the presence of increasing acetic acid amount as follows: Days 1–6 acetic acid at a 

final concentration of (0.05 N), Days 7–16 acetic acid at a final concentration of (0.1 N) and Days 17–

20 acetic acid at a final concentration of (0.5 N). Then samples were passed by pipetting up and down 

through a 25 mL pipette in order to obtain a homogeneous solution, which was maintained in acetic 

acid (0.5 N) for a further 10 days under stirring, at 4 °C. Samples were then centrifuged at 10,000× g 

for 15 min at 7 °C; insoluble fraction was discarded; the collagen, acid-soluble protein, was collected 

and dialyzed in acetic acid solution, final concentration (0.02 N). The dialysis was carried out in 5 L 

of acid solution, in static conditions; the solution was changed 2 times a day, for a total of 5 days. 

3.2. Characterization of R. pulmo Extracted Proteins 

Samples obtained after the dialysis process were resuspended in Sample Buffer (Tris Base 2M 

pH 6.8; 2.5% SDS; 5% β-mercaptoethanol; 10% glycerol; 0.002% bromophenol blue) and heated to 100 

°C for 3 min. Insoluble material was removed by centrifugation (2 min at 10.000× g). An amount of 

20 μg of each sample was resolved on SDS-PAGE. The protein bands were visualized by Coomassie 

Blue staining (0.8% Coomassie Brilliant Blue G-250 in Methanol/distilled water/acetic acid 5:5:1). The 

protein’s molecular weight was estimated using a prestained molecular weight marker (Sigma 

Aldrich, Milan, Italy). 

3.3. Natural Cross-Linking Degree Determination 

The degree of natural R. pulmo collagen cross-linking was determined by ninhydrin assay which 

could measure the percentage of free amino groups remaining in the collagen before and after cross-

linking [38]. In the ninhydrin assay, 1 mg/mL of collagen type I from rat tail (RTC; Corning, Turin, 

Italy), was used as control because of its ability to form a gel stable at 37 °C, pH 7.0. The same gelling 

protocol has been used for 1 mg/mL of jellyfish collagen (JFC). A 150 μL volume of each sample was 

mixed with 600 μL of ninhydrin solution and 30 μL TIN(II) chloride; the reaction was developed at 

100 °C for 15 min in thermomixer at 20 g, then cooled in an ice-water bath. An equal volume (200 μL) 
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of each solution was added into 1 mL 50% isopropanol and the optical absorbance at 570 nm (Abs 

570) was measured by a spectrophotometer (SPECTROstar Nano, BMG Labtech, Ortenberg, 

Germany). The amount of free amino groups is related to the value of Abs 570; glycine at various 

known concentrations was used to create a standard curve (glycine concentration vs. absorbance). 

The degree of cross-linking of the sample was then calculated using the following equation: 

���� − ����

����
× 100 (1) 

where NH20 is the free NH2 concentration in non-cross-linked samples and NH2c is the free NH2 

concentration in cross-linked samples. 

3.4. Synthesis of Gelatin (Gtn)-HPA Conjugate 

3,4-hydroxyphenylpropionic acid (HPA) was used to synthesize Gtn–HPA conjugates by a 

general carbodiimide/active ester-mediated coupling reaction in MES buffer [43]. In this case, the 

carboxyl groups of HPA react with the amino groups present along the respective amino acid chain 

of Gtn. HPA (20 Mm) was dissolved in a mixture of MES buffer (0.5 M) pH 4.7 and N,N-

dimethylformamide (DMF; 3:2). To this, 10 mM NHS (N-hydroxysuccinimide) and 20 mM EDC (1-

ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride) were added. The reaction was stirred 

at room temperature for 1 h at pH 4.7. Then, the same volume of Gtn solution 5% (w/v), dissolved in 

0.5 M MES buffer pH 4.7 was added to the reaction mixture and stirred overnight at room 

temperature. The solution was transferred to dialysis tubes with a molecular cut-off of 14 kDa. The 

tubes were dialyzed against 100 mM sodium chloride solution for 2 changes and distilled water for a 

further 4 changes. The purified solution was preserved at 20 °C until use. 

3.5. Enzyme-Mediated Injectable Hydrogels. 

MC3T3-E1 (osteoblastic cell line from mouse calvaria; ECACC) culture was resuspended in Gtn-

HPA solution. Then, HPR (2 U/mL) and 0.5 mM or 0.8 mM H2O2 were added. The samples were 

immediately incubated at 37 °C with 5% of CO2; the hydrogels were formed after a few minutes and 

fresh complete medium was added to each gel. Dulbecco’s modified Eagle’s medium (Sigma Aldrich, 

Milan, Italy) supplemented with 10% fetal calf serum (Sigma Aldrich, Milan, Italy), 1% glutamine 

(Euroclone, Milan, Italy), 1% antibiotics (streptomycin and penicillin; Euroclone, Milan, Italy) was 

used. 

3.6. Marine Collagen Hydrogel (MCh) Preparation and Qualitative Evaluation of Injectability 

JFC (5 mg/mL) and Gtn-HPA solutions were mixed (1:1) v/v and buffered with 1 N NaOH until 

pH 7. In order to restore a proper saline concentration in the sample, Hank’s salt solution was added 

to the marine collagen mix (MC) together with 2 U/mL HPR. Then the MC was split into 2 sterile 

tubes, respectively, containing 0.5 mM and 0.8 mM H2O2 and NCs were resuspended at a 

concentration of 5 × 105 cells/gel. The solutions were gently mixed together and 500 μL/well were 

seeded in a 24 well plate. Samples were incubated at 37 °C with 5% of CO2 and MCh was formed in 

about 2 min; fresh complete medium was added to each well. Dulbecco’s Modified Eagle’s 

Medium/Nutrient Mixture F-12 Ham (Sigma Aldrich, Milan, Italy) supplemented with 10% fetal calf 

serum (Sigma Aldrich, Milan, Italy), 1% glutamine (Euroclone, Milan, Italy), 1% antibiotics 

(streptomycin and penicillin; Euroclone, Milan, Italy) was used for the maintenance of chondrocytes 

in culture. MCh was prepared as described above, then, HPR and H2O2 were added for testing 

injectability of the resulting hydrogel. The hydrogel formulation was injected in situ through a 23 G 

needle. The gelation occurs about after 2 min from the addition of H2O2. 
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3.7. Isolation of Nasal Septal Chondrocytes from Bovine Tissue 

Chondrocytes from bovine nasal septa were isolated using recombinant collagenase as described 

elsewhere [51,58,59]. One gram of minced tissue was incubated with a mixture of 300 units of 

Collagenase H (Abiel, Palermo, Italy) plus Thermolysin (Promega, Milano, Italy) 250 μg in 10 mL of 

Dulbecco’s Modified Eagle’s medium (Sigma, Milan, Italy) containing 1% Pen–Strep and 1% 

Fungizone (Euroclone, Milan, Italy). The sample was digested for 18 h at 37 °C in 5% CO2. 

After digestion, the collagenase/chips solution was filtered through a 20 μm nylon filter 

membrane. 

After centrifugation for 10 min at 250 g, the pellet containing chondrocytes was washed twice in 

DMEM. The cells were then suspended by adding 20 mL of medium, and cell viability was assessed 

using Trypan Blue exclusion test. Cells were seeded at an initial density of 5 × 103 cells/cm2 in T-175 

flasks in DMEM supplemented with 10% fetal bovine serum (FBS Sigma, Milan, Italy) + 1% Pen–Strep 

+ 1% Fungizone and 50 μg/mL acid ascorbic (Sigma, Milan, Italy). Cell cultures were expanded in an 

incubator humidified at atmospheric pressure at 37 °C and 5% CO2. 

3.8. Immunofluorescence Assay 

MC3T3-E1 cells grown in 2D conditions on the cover glass and NCs 3D cultures within RTCh 

and MCh, were fixed with 3.7% paraformaldehyde for 12 min. Subsequently, the samples were 

washed thoroughly with phosphate buffer saline (PBS 1×). Cells were stained with DAPI (1:20,000 

Sigma, Milan, Italy; blue nuclei) and Phalloidin FITC (1:500 Sigma, Milan, Italy; green cytoskeleton) 

for 20 min at 37 °C. The cover glass was mounted with a mounting solution (glycerol 80%; NaN3 

0.01% on 0.2 M Tris HCl pH 7.5). The samples were analyzed by an epifluorescence microscope 

(Leica, Mannheim, Germany). 

3.9. Cell Viability and Proliferation Assays 

Cells from 3D hydrogels (Gtn-HPA or MCh) were recovered via hydrogels digestion in the 

presence of 1 mg/mL collagenase G/H mix (1:10; Abiel, Palermo, Italy) for 60 min at 37 °C. Viability 

assay from 3D hydrogel or from 2D condition cells was assessed using Trypan Blue exclusion test. 

The cells were washed with PBS and counted in the Burker chamber. The cells recovered after gel 

digestion were seeded on a plate and their proliferative capability was monitored over time using the 

Alamar-Blue colorimetric assay (Thermo Scientific, Foster City, CA, USA) according to the 

manufacturer’s recommendations. Cells were incubated at different times, with an Alamar-Blue 

reagent solution (1:10) in their complete medium for 2 h in a humidified incubator (37 °C; 5% CO2). 

The increase in fluorescence was evaluated by a microplate reader (Synergy HT, Biotek, Winooski, 

VT, USA) using excitation/emission wavelengths of 530/590 nm. The standard curve was obtained 

through the use of known cell concentrations. Cells were stained with Coomassie Brilliant Blue G 

(0.8% Coomassie Brilliant Blue G-250 in Methanol/distilled water/acetic acid 5:5:1) for 10 min, then 

their morphology was assessed by phase-contrast microscopy (Leica). 

3.10. RTCh Preparation 

3D RTC hydrogels were produced from high concentration type I collagen (BD Biosciences, San 

Jose, CA, USA), using the protocol described from Salamone et al, 2010 with some modifications [41]. 

Type I collagen was diluted to a concentration of 1 mg/mL with Hank’s salt solution 1×, then it was 

buffered with NaOH 1 N until pH 7.0. NCs (5 × 105), suspended in growth media and added to the 

collagen solution. Then, 500 μL/well of RTC solution was immediately seeded into 3 wells of a 24-

well plate and the samples were incubated at 37 °C with 5% CO2. Cells grown in the 3D matrices were 

visualized using both a phase-contrast microscopy and epifluorescence microscope (Leica). 

3.11. Gel Contraction Assay 

Nasal chondrocytes (5 × 105/gel) seeded, respectively, within RTCh and MCh were placed in 24-

well plates and incubated in the chondrocyte maintenance medium for 1, 2, 4 and 8 days. At different 
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culture times, the diameter of each gel was evaluated with a ruler. The extent of contraction of the 

gels was expressed as the percentage of the initial area. Each experiment was performed in triplicate. 

3.12. Glycosaminoglycans Identification of Electrophoretic Gel 

The polyacrylamide gel electrophoretic technique (SDS-PAGE 10%) was used to identify and 

analyze the glycosaminoglycans (GAG) [60] produced by NCs grown in MCh. The MCh samples 

were dissolved using a mixture of 1 mg/mL G/H collagenase with a ratio of (1:10); samples were 

incubated for 60 min at 37 °C. After centrifugation at 15,000× g for 10 min, the supernatant was 

recovered, mixed with sample buffer (Tris Base 2M pH 6.8; 2.5% SDS; 5% β-mercaptoethanol; 10% 

glycerol; 0.002% bromophenol blue) and heated for 10 min; then 25 μL of each sample was loaded 

into the gel wells. Digested cartilage and purified chondroitin sulfate (CS) were used as a control. The 

electrophoretic gel was stained with Alcian Blue for 30 min at room temperature under gentle stirring 

(0.1% Alcian Blue on Ethanol/CH3COOH: (60%/40%)). Alcian Blue staining was also used to identify 

the GAG-rich matrix directly in MCh with NCs in culture for 14 days. 

3.13. Statistical Analysis 

All the experiments were performed in triplicate and data were expressed as mean ± SD. The 

differences between different samples were evaluated using a one-way ANOVA test and p < 0.05 was 

considered of statistical significance. 

3.14. RNA Isolation and cDNA Synthesis 

Total RNA was extracted using Trizol reagent (Invitrogen, CA, USA) according to the 

manufacturer’s instructions from 10 d chondrocytes cultured in the 2D system, in 3D collagen type I 

hydrogel and in the composite marine hydrogel. RNA concentrations and quality were verified by 

spectrophotometry via optical density (OD) at 260 nm, while the RNA integrity was checked on 1.5% 

agarose gel. The RNA was stored at −80 °C for future use. The extracted RNA (1 μg) was treated with 

RNA qualified 1 (RQ1) RNase-Free DNase (Promega, Madison, WI, USA) to remove any residual 

genomic DNA contamination, and the DNase was inactivated by adding 25 mM EDTA. First-strand 

cDNA was synthesized from 500 ng DNase-treated total RNA samples using random primers and 

High Capacity cDNA Reverse Transcription Kit (Life Technologies Corporation, Carlsbad, CA, USA), 

following the manufacturer’s instructions. The cDNA mixtures were stored at −20 °C. 

3.15. RT-qPCR 

RT-qPCR was performed using the BIO-RAD CFX96 System with Power Sybr Green as detection 

chemistry (Applied Biosystems, Foster City, CA, USA). Real-time PCRs were carried out in 20 μL 

mixture containing 1 μL of a 1:10 dilution of the cDNA preparations, using the following PCR 

parameters: 95 °C for 10 min, followed by 40 cycles of 95 °C for 10 s, and 60 °C for 60 s. Primer pairs 

used for qPCR are reported in Table 1. Amplifications were run in triplicate. The absence of 

nonspecific products was confirmed by both melting curves analysis and electrophoresis in 2% 

agarose gels. The 18S rRNA, and GAPDH were chosen as reference genes. A normalization factor 

was calculated based on geometric averaging of the expression level of these reference genes and was 

used to quantify the expression levels of the target genes using the −Ct method. All data 

represented relative mRNA expressed as the mean ± S.D. (n = 3). Significant differences between the 

values of the different treated groups and the reference control groups were determined by one-way 

ANOVA using Statistica 6.0 (StatSoft, Tulsa, OK, USA). 
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Table 1. Oligonucleotide primers used in this study. 

Primers Sequences (5′–3′) Accession Number 

GAPDH 
ATCTCGCTCCTGGAAGATG a 

TCGGAGTGAACGGATTCG b 
NM_001034034 

18S 
TTCGATGGTAGTCGCTGTGC a 

TTGGATGTGGTAGCCGTTTC b 
NR 036642 

Acan 
CATCCCCTGCTACTTCATCG a 

CCTTCTCCTTGGAAATGCG b 
NM_173981 

Col1A2 
GGATGGTCACCCTGGAAAAC a 

CCCCTAATGCCCTTGAAGC b 
NM_174520 

Col2A1 
TGATCGTGGTGACAAAGGTG a 

ATCTGGGCAGCAAAGTTTCC b 
NM_001001135 

Sox9 
ACGCAGATTCCCAAGACAC a 

GGTTTCCAGTCCAGTTTCG b 
XM_014478986 

a Forward primer; b reverse primer. 

4. Conclusions 

Herein we report the formulation of a collagen-based marine hydrogel able to cross-link with 

the cells trapped inside, by in situ injection in the presence of H2O2 and HPR, without any cytotoxic 

effect. The round morphology associated with the absence of a marked localization of cytoskeletal F-

actin, the low degree of proliferation within the MCh and the inability of the NCs to contract the 

MCh, GAG deposition and the transcriptional expression of chondrogenic markers (namely Sox9, 

Col2A1 and Acan) strongly suggest the maintenance of the chondrogenic phenotype. 

All these features lead us to suppose that MCh has a greater potential to maintain the 

chondrocyte phenotype, compared to other 3D collagen hydrogels. Because chondrocyte 

dedifferentiation during expansion in monolayer culture of autologous chondrocytes represents the 

main limitation in tissue engineering and cartilage repair; it is reasonable to propose the use of MCh 

so as to overcome this obstacle. Additionally, results herein presented suggested the possible use of 

MCh hydrogel as an injectable cell delivery system for cell-based cartilage repair in preclinical studies 

as well as its possible application in clinical settings. 
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