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Abstract: This study aimed to develop polyvinyl alcohol (PVA) -based scaffold enriched with
hyaluronic acid (HA) and hydroxyapatite (HAp) using physical crosslinking by freezing–thawing
method. We accomplished biological evaluation of scaffolds, swelling degree, bioactivity assessment,
and hemolytic test. The results showed that all types of scaffolds should be safe for use in the
human body. The culturing of human osteoblast-like cells MG-63 and their proliferation showed
better adhesion of cells due to the presence of HA and confirmed better proliferation depending
on the amount of HAp. This paper gives the optimal composition of the scaffold and the optimal
amount of the particular components of the scaffold. Based on our results we concluded that the best
PVA/HA/HAp combination is in the ratio 3:1:2.

Keywords: scaffold; polyvinyl alcohol; hyaluronic acid; hydroxyapatite; bone tissue engineering;
biological evaluation

1. Introduction

Bone transplantation is the second most common type of tissue transplantation following blood
transfusion [1]. Bone grafting is considered as a well-described technique of bone defect treatment [2].
Bone grafting refers to the transplantation of an autograph or an allograft. Despite both transplantation
types meeting the requirements of appropriate properties (osteoconductivity, osteoinductivity,
osteointegration), there are many disadvantages, e.g., low availability of grafts, blood loss, longer
surgical time, infection etc. Bone tissue engineering tries to eliminate these problems by the application
of fully biocompatible scaffolds based on natural or synthetic materials serving as matrices for cell
incorporation and cultivation support for renewal of healthy tissue [1,2].

The main objective of tissue engineering is to restore and improve the function of tissues by
preparing porous three-dimensional (3D) scaffolds, and seeding them with cells and growth factors [3].
The term scaffold is used for 3D biomaterial that provides a suitable environment to promote cell
proliferation, osteogenic differentiation, and production of extracellular matrix (ECM) in order to
regenerate tissues and organs. Currently, there is the aim to produce scaffolds able to provide
regenerative signals to cells [4]. For this purpose, efforts are being made to develop scaffolds based
on biomaterials that mimic those found in the natural environment [1]. Attention must be paid to
the design and composition of the desired scaffolds [5]. Different types of materials can be currently
used for bone tissue scaffold fabrication. There are efforts to obtain hybrid scaffolds with proper
characteristics by using combinations of natural and synthetic polymers in combination with inorganic
materials in the form of hydrogel [2]. A hydrogel is a three-dimensional unique, soft, and hydrophilic
biomaterial [6], composed of a polymeric network that is able to tightly bind large quantities of water
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without dissolving [7]. Due to the high content of water, hydrogels show a flexibility similar to natural
tissue. The objective of the presented study was to produce a hydrogel that includes both synthetic and
natural as well as inorganic components and thereby to balance the advantages and disadvantages of
this scaffold for use in bone tissue engineering. Therefore, the hydrogel scaffold based on polyvinyl
alcohol as a synthetic and hyaluronic acid as a natural component, supplemented with hydroxyapatite,
was chosen for this study.

Polyvinyl alcohol (PVA) is an often tested synthetic polymer with a good biocompatibility [8]. It can
be transformed into hydrogel easily through the use of repeated freeze-thaw cycles [9]. This physical
crosslinking, based on the reaction of side hydroxyl groups of PVA [10], is very convenient as there is
no need to use any chemical cross-linker that may cause toxicity [9]. It was found that the number of
freeze-thaw cycles, freezing temperature, time, and the concentration of PVA affect structure and the
resulting physical [11] and mechanical properties [12]. The higher the number of freeze-thaw cycles,
the higher the stiffness of the polymer and the loss of PVA chains orientation was observed [13]. A high
hydrophilicity of PVA hydrogels causes suppression of cell adherence to it. However, its intrinsic
cell-non-adhesion provides poor support to cell growth and integration to peripheral tissues. PVA could
be blended with natural macromolecules, such as chitosan, starch, gelatin, hyaluronic acid, and so
on [10]. Modification of PVA has shown improvements in cell adhesion and growth, for example by
hydroxyapatite (HAp). The incorporation of HAp into PVA hydrogel enhanced cell density with good
cell spreading morphology.

Hydroxyapatite (HAp), Ca10(PO4)6(OH)2, as a major natural inorganic component of bone,
shows excellent bioactivity, biocompatibility, osteoconductivity, non-toxicity, and non-inflammatory
characteristics [1]. Its mechanical properties are essentially influenced by the size of the HAp particles,
porosity, density, etc. [14]. HAp is very hard but brittle, with a very slow degradation rate in vivo,
and that is why it should be joined with natural or synthetic polymers to create scaffolds. On the other
hand, HAp is very beneficial for constructing bones, because it promotes the adhesion and proliferation
of osteoblasts cultured in vitro [15]. It stimulates growth factors (e.g., bone morphogenic protein) and
elevates activity of alkaline phosphatase (ALP) in mesenchymal stem cells (MSCs) [1].

Hyaluronic acid (HA) is abundant throughout the ECM, especially connective tissues, and as
a structural molecule [5] in the human body. It is a natural polysaccharide composed of a linear
glucosaminoglycan, where repeated units of N-acetyl-D-glucosamine and D-glucuronic acid are
linked by alternating β-1,3- and β-1,4- glycosidic bonds [16]. Not only its biocompatibility and
biodegradability but also its viscoelasticity are convenient properties for using HA in biomedicine,
health care, and cosmetics. A very significant advantage of HA is its enzymatic degradability by
hyaluronidase, an enzyme produced by mammalian cells. In view of the very rapid degradation and
water solubility of HA, it is advisable to cross-link it or to blend it with another natural or synthetic
polymer [1].

The aim of our study was to produce a scaffold based on PVA in combination with HA and
enriched with HAp and to examine the effect of scaffold composition on the adhesion and proliferation
of human osteoblast-like cell line MG-63 cultured in static conditions. According to our knowledge,
this combination of all three materials PVA, HA and HAp together was new.

2. Results and Discussion

2.1. Swelling Degree

The swelling degree is one of the basic parameters for scaffold application in tissue engineering.
The composition and the hydrophilic nature influence the swelling degree. The absorption of water is
related to pore size and pore interconnection [17]. The swelling degree was estimated as an average
value (Table 1) and the results confirmed that both HAp and even HA influenced the swelling behavior
of scaffolds. The same types of scaffolds but with different amounts of HAp showed a decrease in
swelling degree with an increase in the amount of HAp. The higher the concentration of HAp in the
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sample, the lower the swelling degree observed due to the lower hydrophilicity, as seen in samples
HB1 and HB3 (p < 0.001), HB2 and HB3 (p = 0.0107), and HB1 and HB2 (p = 0.0306). HAp made the
composites stiffer, decreasing the degree of swelling [18].

Table 1. Results of swelling degree, bioactivity assessment, and the test of hemocompatibility.

Sample Composition Ratio
[PVA/HA/HAp]

Swelling Degree
[%]

Bioactivity Assessment
[%] Hemolysis [%] 1

A 3:1:0 902.06 110.55 0.97 (+++)
B 1:1:0 999.61 118.70 0.68 (+++)

HA1 3:1:1 917.23 102.50 0.39 (+++)
HA2 3:1:2 804.27 97.25 1.46 (+++)
HA3 3:1:3 770.82 113.30 1.55 (+++)
HB1 1:1:1 1020.45 124.80 0.10 (+++)
HB2 1:1:2 797.92 122.70 0.58 (+++)
HB3 1:1:3 404.79 102.70 1.46 (+++)

1 Values of hemolysis < 5% mean high hemocompatibility (+++) of material [19].

Compared to HAp, HA increased the hydrophilicity and so the absorption of water. The samples
containing the higher proportion of HA and the same amount of HAp showed a higher swelling degree,
as evidenced by samples HA3 and HB3 (p = 0.0113). Kaur et al. evaluated the swelling behavior of
scaffolds containing only PVA and HAp, without HA [18]. The degree of swelling also decreased with
the increase of HAp concentration but our total swelling degree was much higher due to adding the
hydrophilic component, namely HA.

2.2. Bioactivity Assessment

The samples of each scaffold type were used for the evaluation of bioactivity and the weight
increase was determined as an average value. It was stated that a necessary requirement for the binding
of the material to the bone tissue is the apatite-like crystal formation on its surface. The formation of
apatite-like crystals in vivo could be reproduced in simulated body fluid (SBF). The material could
be considered bioactive in vivo, if apatite crystals are formed on its surface in SBF [20]. Recently,
the method for in vitro testing the scaffolds immersed into SBF has been standardized, although some
authors disagree with this method. The reason for this is that there are some bioactive materials that do
not form apatite crystals on their surface in SBF [21]. The apatite-like crystal formation in SBF should
be supported by presence of HA [5]. We can confirm the weight increase of all scaffolds after 25 days
(Table 1). The concentration of HA had a direct correlation with the mass increase, as evidenced by
samples A and B (p = 0.0289). The presence of HA influenced the bioactivity of samples due to the
increase of hydrophilicity. It was found that the hydrophilic surface is more bioactive [5]. The crystal
formation is probably enabled due to the interaction between HA in the scaffold and water-soluble
ions [5]. We observed a higher mass in samples containing a higher amount of HA, as evidenced by
samples A and B (p = 0.0289). There was no significant effect of the amount of HAp in the scaffolds on
weight growth, i.e., on scaffold bioactivity. Kaur et al. performed a bioactivity assessment of scaffolds
composed of PVA and HAp [18]. The results showed weight loss dependent on HAp concentration;
the higher the HAp concentration, the lower the weight loss. Nikbakht et al. evaluated the bioactivity
assessment of scaffolds composed of HA on poly (3-hydroxybutyrate) [5]. The results illustrated the
direct correlation of HA concentration and crystal growth.

2.3. Hemolytic Test

It is important to study interaction of scaffold materials and blood components because of a blood
clotting risk. The test was based on the determination of the amount of hemoglobin released from red
blood cells when blood was in contact with scaffolds [19]. All determined results, as average values
(Table 1), had values between 0.1% and 1.55%. All types of samples produced by us were highly
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compatible with human blood in respect of all components of scaffolds, i.e., they are biocompatible.
If we compared the samples that differed only in quantity of HAp, there was a direct dependence.
The hemolysis increased with the higher amount of HAp. It was observed that there was increased
hemolysis of samples with an amount of added HAp in the ratio PVA/HAp 1:1 (1.55%, 1.46%) compared
with samples where no HAp was added (0.97%, 0.68%) and where a lower ratio of PVA/HAp (3:1, 3:2)
(0.39%, 1.46%, 0.10%, 0.58%) was present. The increased hemolysis for samples with a higher amount
of HAp meant a decrease of blood compatibility. This can be caused by the interaction between ionic
groups of HAp and blood which cause higher hemolysis [18]. It is necessary to say that it was only a
preliminary test and an extended examination of the biocompatibility must be done. Compared to
the results of Kaur et al. and Pal et al. [18,19], it can be said that adding HAp did not influence
hemocompatibility and that all types of scaffolds were highly hemocompatible.

2.4. Cell Viability

Cell adhesion and proliferation is an important factor for integration of a scaffold into a biological
environment. The in vitro evaluation was accomplished through the use of human osteoblast-like cells
MG-63. The cell adhesion (24 h after seeding cells) and proliferation (in day 7, 14, and 21 after seeding
cells) were estimated by using Cell Counting Kit-8 (CCK-8) (Figure 1).
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Figure 1. Timeline of adhesion and proliferation monitoring. CCK-8 is Cell Counting Kit-8.

During the cell culturing, the absorption value of formazan increased which suggested cell
proliferation on the scaffolds. The primary adhesion measured 24 h after cell seeding on PVA/HA/HAp
scaffolds increased compared to the primary adhesion on the PVA hydrogel in our preliminary study.
The scaffolds prepared just from PVA indicated insufficient adhesion of cells, which became evident
mostly during the proliferation and during the operation with hydrogels. A higher amount of HA,
meant that higher primary adhesion and proliferation were observed, especially after longer term
culturing. It indicated that HA made it possible for cells to attach more strongly, probably due to the
natural biological functions of HA. These results confirmed the findings of Oh et al. [11], who also
showed the same effect of HA on cell adhesion and proliferation. The addition of HAp improved cell
spreading and cell density on the surface area in comparison with PVA/HA matrix without any Hap;
samples A and HA1 (p = 0.0326), A and HA2 (p < 0.001), A and HA3 (p < 0.001) (Figure 2a), B and HB1
(p < 0.001), B and HB2 (p < 0.001) (Figure 2b).



Int. J. Mol. Sci. 2020, 21, 5719 5 of 11
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 11 

 

 
(a) 

 
(b) 

Figure 2. Graphical representation of cell viability (adhesion—day 1, proliferation—day 7, 14, and 21). 
(a) Samples A, HA1, HA2, and HA3 and (b) samples B, HB1, HB2, and HB3. Error bars represent ±SD. 
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Figure 2. Graphical representation of cell viability (adhesion—day 1, proliferation—day 7, 14, and 21).
(a) Samples A, HA1, HA2, and HA3 and (b) samples B, HB1, HB2, and HB3. Error bars represent ±SD.
A: PVA/HA = 3:1; HA1: PVA/HA/Hap = 3:1:1; HA2: PVA/HA/Hap = 3:1:2; HA3: PVA/HA/Hap = 3:1:3;
B: PVA/HA = 1:1; HB1: PVA/HA/Hap = 1:1:1; HB2: PVA/HA/Hap = 1:1:2; HB3: PVA/HA/Hap = 1:1:3.
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This could be probably due to the higher surface area. The higher the concentration of HAp,
the better the proliferation observed, as per samples HA1 and HA2 (p = 0.0159), but further increasing
the amount of HAp decreased the proliferation, as per samples HB2 and HB3 (p < 0.001). The samples
with the lowest amount of HAp showed the lowest increase of proliferation. The proliferation increased
with increasing amounts of HAp, but the samples with the highest amount of HAp showed a decrease
of proliferation (Figure 2) as Kaur et al. had noted in their results of cell adhesion and proliferation on
PVA/HAp scaffolds [18]. On the other hand, higher amounts of HAp decreased primary adhesion.
The higher the concentration of HAp, the lower was the primary adhesion of cells (Figure 2, samples
HA3 and HB3) as an effect of increasing crystallinity and contact angle [18]. These results show that
an optimal concentration of Hap is needed. Of the three tested concentrations, the mixtures in ratio
HA/HAp 1:2 appeared to be optimal. Visual comparison of proliferation in particular samples was
assessed through histological stained slices (Figure 3), which show different amounts and attachment
of cells.
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Figure 3. Visual comparison of MG-63 cell colonies stained with hematoxylin and eosin. (a) Sample A,
(b) sample B, (c) sample HA1, (d) sample HA2, (e) sample HA3, (f) sample HB1, (g) sample HB2,
(h) sample HB3. A: PVA/HA = 3:1; HA1: PVA/HA/Hap = 3:1:1; HA2: PVA/HA/Hap = 3:1:2; HA3:
PVA/HA/Hap = 3:1:3; B: PVA/HA = 1:1; HB1: PVA/HA/Hap = 1:1:1; HB2: PVA/HA/Hap = 1:1:2; HB3:
PVA/HA/Hap = 1:1:3. Scale bar = 50 µm.
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3. Materials and Methods

3.1. Materials

Polyvinyl alcohol (PVA, Mw 145,000, fully hydrolyzed), Ca(NO3)2·4H2O, NaCl, NaHCO3, KCl,
K2HPO4·3H2O, MgCl2·6H2O (Merck, Prague, Czech Republic). Hyaluronic acid (HA, MW 1,800,000,
ZVC Dr. Hoffmann, Citov pod Ripem, Czech Republic). KH2PO4 (Lach-Ner, Neratovice,
Czech Republic). HCl, CaCl2, Na2SO4, Tris (Lachema, Brno, Czech Republic).

3.2. Synthesis of Hydroxyapatite

Hydroxyapatite (HAp, Ca10(PO4)6(OH)2, Ca/p = 1.67) was synthesized by the sol-gel method
described elsewhere [22]. Briefly, KH2PO4 (0.6M) was dissolved in deionized water with stirring at
room temperature. Ca(NO3)2 was added in amounts to keep the ratio Ca/p = 1.67. NH3 was used for
retaining pH 10. The mixture was stirred for one hour and then it was left to mature for 24 h at room
temperature. NH3 was removed by washing (up to neutral pH). The slurry of hydroxyapatite was
dried for 48 h at 70 ◦C in the oven.

3.3. Preparation of Scaffolds

Aqueous solution of PVA (5%) was prepared by dissolving PVA powder in deionized water
with stirring at 90 ◦C until a homogenous solution was obtained. Aqueous solution of HA (1%),
was prepared by dissolving HA in deionized water with stirring at 50 ◦C until a homogenous solution
was obtained. The mixtures of PVA and HA were prepared in a ratio of 75/25 (labelled as A), and 50/50
(labelled as B), stirred and slightly heated (around 40 ◦C). Aqueous solution of HAp (5%) was added to
these two types of mixtures in ratio HA/HAp 1:1, 1:2, 1:3 (labelled HA1, HA2, HA3, HB1, HB2, HB3)
and mixed properly. The mixtures were poured into 24-well plates and immediately frozen at −20 ◦C
overnight. The final hydrogel was obtained by thawing a frozen solution at room temperature for
12 h (1 cycle) and this procedure was repeated for another 6 times, giving 7 cycles in total. Cylindrical
hydrogel samples with a diameter of 1.5 cm were cut to a thickness about 5 mm. Samples were
sterilized by immersion into 70% ethanol for 2 h. After the sterilization, scaffolds were washed in
phosphate buffered saline (PBS) and treated in culture medium at 37 ◦C under 5% CO2 in a humidified
incubator overnight to promote protein adsorption [13].

3.4. In Vitro Biological Evaluation of Scaffíolds

3.4.1. Swelling Degree

The degree of swelling was estimated by soaking of freeze-dried samples into 10 mL of PBS
solution at 37 ◦C and weighted up to invariable weight. Three samples of each scaffold type were used
for determination of swelling degree (SW).

SW [%] = [(mi −mf)/mi] × 100 (1)

where mi is the initial weight of the sample and mf is the final invariable weight of the sample.

3.4.2. Bioactivity Assessment

The bioactivity assessment of scaffolds was estimated as their ability to form calcium phosphate
crystals on their surface during the incubation in SBF. According to prior research, HA supports the
formation of calcium phosphate crystals [5]. The formation of apatite-like crystals was evaluated as a
mass increase of scaffolds. SBF was prepared according to Kokubo protocol [5] (Appendix A).

The freeze-dried and weighed samples were immersed into the tubes with 10 mL of SBF, sealed
and incubated in 37 ◦C for 25 days. After that, scaffolds were washed with deionized water and dried
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in a laboratory oven at 50 ◦C for 4 days. All samples were weighed and the weight increase was
calculated using the following equation.

Weight increase [%] = [(ma −mb)/mb] × 100 (2)

where mb is the weight of the freeze-dried sample and ma is the weight of the sample after incubation
and drying.

3.4.3. Hemolytic Test

Estimation of hemocompatibility of the composites by hemolytic test was performed according
to Pal [19]. Fresh human blood (8 mL; in a test tube with sodium citrate) was diluted with 10 mL
of physiological solution (0.9% NaCl). Tubes with 10 mL of physiological solution were pre-heated
to 37 ◦C for 30 min. One sample was added to each tube, 0.2 mL of diluted blood was added to
each sample and heated to 37 ◦C for 60 min. Three discoid replicates of each type of the scaffold
were measured. As a negative control, a solution of 0.2 mL diluted blood in 10 mL of physiological
solution was used. As a positive control, a solution of 0.2 mL of diluted blood in 10 mL of distilled
water was used. All test tubes were heated to 37 ◦C for 60 min. After that all tubes were centrifuged
for 5 min at 3000 rpm and 1 mL of supernatant was measured in cuvettes photometrically (UV/VIS
Spectrophotometer Optizen POP Nano Bio, Mecasys Co., Daejeon, Korea) at 545 nm wavelength.
The percentage of hemolysis was calculated for the estimation of hemocompatibility.

Hemolysis [%] = [(AS − ANC)/(APC − ANC)] × 100 (3)

where AS is the absorbance of the sample, ANC is the absorbance of negative control and APC is the
absorbance of positive control.

3.5. Cell Viability Tests

3.5.1. Cell Cultures

Human osteoblast-like MG-63 cell line (ECACC 86051601, Sigma Aldrich, St. Louis, MO, USA),
obtained from an osteosarcoma of a 14 year old male, was cultivated in Dulbecco’s Modified Eagle’s
Medium (DMEM, Biosera Europe, Nuaille, France) supplemented with 10% (v/v) fetal bovine serum
(FBS, Biosera Europe, Nuaille, France), 100 U/mL penicillin, 100 mg/mL streptomycin (PAA Laboratories
GmbH, Pasching, Austria), and 2.5 mM stable glutamine (Diagnovum GmbH, Ebsdorfergrund,
Germany), at 37 ◦C under 5% CO2 in a humidified incubator. Culture medium was refreshed as
needed [23,24].

3.5.2. Tests of Cell Adhesion and Proliferation

The samples were placed into 6-well plates (TPP Techno Plastic Products, Trasadingen,
Switzerland), and 1 mL of the suspension with 4 × 105 cells was seeded onto the scaffold using
a syringe with a needle of 0.6 mm diameter. After 24 h, an initial adhesion was determined by
using Cell Counting Kit-8 (CCK-8, Sigma Aldrich, Darmstadt, Germany) according to the protocol.
The CCK-8 assay is based on the conversion of light purple highly water-soluble tetrazolium salt WST-8
[2-2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium
salt] to orange water-soluble formazan dye, which can be spectrophotometrically quantified.
The amount of the formazan dye generated by the activity of dehydrogenases in cells is directly
proportional to the number of living cells. Briefly, the samples were moved to a 24-well plate and
550 µL of premix (CCK-8 + DMEM) was added to each sample. After incubation (60 min, 37 ◦C,
5% CO2) samples were removed and the amount of formazan was determined photometrically at
450 nm (microplate reader SYNERGY H1, BioTek, Winooski, VT, USA). The number of viable cells
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was estimated based on a calibration curve. The primary adhesion was calculated according to the
following formula.

Adhesion [%] = (N/N0) × 100 (4)

where N is the number of viable cells after 24 h post seeding and N0 is the number of seeded cells
(400 × 103). Cell proliferation was quantified as the number of viable cells based on a calibration curve
by using CCK-8, on time points day 7, 14, and 21 post-seeding (Figure 1).

3.6. Histological Preparation

The samples were fixed and stored in 10% neutral-buffered formalin after day 21 of cell culturing.
Standard dehydration in ethanol was performed followed by immersion in xylene, paraffin saturated
xylene, and finally molten paraffin. Tissue blocks were cut at 5 µm (Microtom Leica RM2255,
Leica Biosystems, Wetzlar, Germany) and stained by hematoxylin and eosin solutions (H&E) for cell
visualization [25]. The stained slices were observed under an inverted optic microscope with a digital
camera (Olympus CKX41, Olympus, Tokyo, Japan).

4. Conclusions

We reported fabrication of hydrogel based on mixtures of PVA and HA enriched by HAp using a
freezing-thawing method of physical crosslinking. All samples showed the high hemocompatibility
and the high swelling degree that is important for hydrogels intended to be used in tissue engineering.
In summary, HA significantly increased the primary adhesion of cells and HAp improved the cell
spreading and proliferation but only to a certain extent. A further increase in HAp content caused a
decrease in cell proliferation. Based on our results we can conclude that the optimal composition of
PVA/HA/HAp hydrogel was in the ratio 3:1:2 (sample HA2).
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Appendix A

SBF was prepared according to a recipe described elsewhere [20]. Briefly, powder reagents were
dissolved in deionized water. The concentrations of several ions are shown in Table A1. Deionized water
in the amount of 350 mL in a plastic beaker was heated to 36.5 ± 1.5 ◦C under continuous stirring.
Reagents 1 to 8 were added successively in a given order. In case the total volume of the solution was
under 450 mL, deionized water was added up to 450 mL volume in total. The pH of the solution before
adding Tris had to be 2.0 ± 1. Tris was added into the solution little by little and pH was measured
again and then HCl was added at temperature 36.5 ◦C until the pH was 7.40.
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Table A1. Order, amount, and formula of reagents for preparing 500 mL of SBF.

Order Reagent Amount

1 NaCl 4.018 g
2 NaHCO3 0.178 g
3 KCl 0.114 g
4 K2HPO4 3H2O 0.116 g
5 MgCl2 6H2O 0.159 g
6 1M HCl 19.5 mL
7 CaCl2 0.146 g
8 Na2SO4 0.036 g
9 Tris 3.059 g
10 1M HCl 1.84 mL
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