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Abstract: Small extracellular vesicles (sEVs) are nanoparticles responsible for cell-to-cell 

communication released by healthy and cancer cells. Different roles have been described for sEVs 

in physiological and pathological contexts, including acceleration of tissue regeneration, 

modulation of tumor microenvironment, or premetastatic niche formation, and they are discussed 

as promising biomarkers for diagnosis and prognosis in body fluids. Although efforts have been 

made to standardize techniques for isolation and characterization of sEVs, current protocols often 

result in co-isolation of soluble protein or lipid complexes and of other extracellular vesicles. The 

risk of contaminated preparations is particularly high when isolating sEVs from tissues. As a 

consequence, the interpretation of data aiming at understanding the functional role of sEVs 

remains challenging and inconsistent. Here, we report an optimized protocol for isolation of sEVs 

from human and murine lymphoid tissues. sEVs from freshly resected human lymph nodes and 

murine spleens were isolated comparing two different approaches—(1) ultracentrifugation on a 

sucrose density cushion and (2) combined ultracentrifugation with size-exclusion chromatography. 

The purity of sEV preparations was analyzed using state-of-the-art techniques, including 

immunoblots, nanoparticle tracking analysis, and electron microscopy. Our results clearly 

demonstrate the superiority of size-exclusion chromatography, which resulted in a higher yield 

and purity of sEVs, and we show that their functionality alters significantly between the two 

isolation protocols.  

Keywords: extracellular vesicles; exosomes; small extracellular vesicles; isolation; purification; 

size-exclusion chromatography; ultracentrifugation; sucrose density cushion; lymph node; spleen; 

solid tissue  
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1. Introduction 

Extracellular vesicles (EVs) are lipid bilayer-enveloped nanovesicles secreted by both 

eukaryotic and prokaryotic cells and carrying cargos of proteins, lipids, and nucleic acids [1,2]. EVs 

contain both surface and luminal factors which can be used as markers for specific EV populations 

representing the different biogenesis pathways [3,4]. Although the definition of EVs is continuously 

being refined, currently three main subtypes of eukaryotic cell-derived EVs can be distinguished 

based on their size, composition, and cellular origin—small EVs (sEVs or exosomes, 30–150 nm), 

microvesicles (MVs, 100 nm–1 µm), and apoptotic bodies (1–5 µm) [5,6]. Unlike MVs, which originate 

from direct budding of the plasma membrane, sEVs stem from the endocytic compartment and are 

released after fusion of multivesicular bodies with the plasma membrane [5,7]. Due to the secretory 

release mechanism of MVs, it is well recognized that their cargo mirrors the cytoplasmic and surface 

composition of the parental cell. In contrast, several studies on sEV loading reported a specific 

enrichment or depletion of cellular proteins or RNAs in their cargoes, and several sorting 

mechanisms have been suggested [8–12].  

sEVs have been shown to be taken up by various recipient cell types such as myeloid, stromal, 

and neuronal cells, among many others [13]. The delivery of sEV cargoes into recipient cells can lead 

to both transcriptional and proteomic changes as a result [1,14,15]. Depending on the origin of the 

sEVs and the recipient cells, sEV uptake can affect diverse biologic processes, e.g., inflammation, 

angiogenesis, immune response, or composition of the extracellular matrix [1]. Besides their 

functional properties, sEVs and their content, in particular microRNAs, are also discussed for their 

potential as diagnostic and prognostic biomarkers in pathological conditions [1,16]. More recently, 

researchers explored sEVs as a new therapeutic tool for targeted drug delivery [17,18].  

Due to their large spectrum of action, the interest of the scientific community for sEVs has 

increased exponentially over the last few years. However, many technical limitations are 

encountered during isolation and purification of sEVs. In particular, the isolation of sEVs from solid 

tissues remains challenging, limiting studies with primary patient material and causing a biased use 

of cell line-derived sEVs. To overcome this limitation, we aimed to improve the isolation and 

purification of sEVs from lymphoid tissues of human and murine specimens by comparing two 

different isolation protocols. The first protocol is based on differential centrifugation combined with 

ultracentrifugation on a sucrose density cushion as previously described [19], whereas the second 

protocol combines differential centrifugation with size-exclusion chromatography (SEC) using the 

commercially available single qEV 35 nm columns from IZON (Izon, Christchurch, New Zealand) 

[20]. Previous studies have already compared the efficiency of qEV IZON columns with other 

accepted sEV isolation techniques and reported higher yields and quality of the final product, in 

particular for isolation of sEVs from plasma samples [21,22]. 

As starting material, we used three biopsies of lymph nodes (LNs) collected from patients with 

B-cell lymphoma and three spleens from a B-cell lymphoma mouse model [23,24]. By directly 

comparing the amount, purity, and functionality of sEVs obtained for both sample types with the 

two protocols, we demonstrate the superiority of the SEC-based isolation technique for lymphoid 

tissues.  

2. Results 

2.1.  Isolation and Purification of sEVs from Human Lymph Nodes 

Two protocols for sEV isolation from lymphoid tissues were performed in parallel on the same 

starting material to compare their efficiency in terms of (1) total amount of recovered sEVs, (2) purity 

of sEV preparation, and (3) reproducibility. After manual dissociation of LN biopsies of three B-cell 

lymphoma patients, the supernatants of the cell suspensions were collected and processed by 

differential centrifugation. The resulting pellets (100 K pellet) containing sEVs and soluble proteins 

and lipids was resuspended and split into two equal parts each, which were then combined either 

with SEC on IZON columns or differential centrifugation combined with ultracentrifugation on a 
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40% sucrose density cushion as illustrated in Figure 1. An identical volume of PBS (250 µL) was used 

for the final resuspension of sEVs isolated from IZON columns and the sucrose density cushions 

(“cushion”). Nanoparticle tracking analysis (NTA) revealed that the resuspended pellet from the 

“cushion” preparation as well as fractions 1 and 2 collected from the IZON column were enriched in 

the characteristic sEV size profile, with IZON fraction 2 accounting for the peak fraction (Figure 2A, 

left). SEV size profiles were also detected in the IZON fraction 3, although in lower concentrations. 

The absolute number of particles yielded from IZON peak fractions as assessed by NTA was 3.9- to 

10.3-fold higher than the sEV particle number recovered using the sucrose density cushion (Figure 

2A, right). We then performed protein quantification using a bicinchoninic acid (BCA) assay (Figure 

2B, left). Due to their smaller size, protein complexes are able to enter the pores of the IZON column, 

and their elution is delayed, which can be observed as a second protein peak in the fraction F7 

collected later [20,25]. The absolute amount of proteins recovered from IZON peak fractions was 

lower than the one obtained in the respective “cushion” preparation (1.4- to 2.2-fold lower; Figure 

2B, right) which was less than the fold change detected by NTA for particle numbers. Calculation of 

the particle/protein ratios revealed lower values for “cushion” preparations compared to IZON 

fractions in two of the three samples (Figure 2D). Therefore, we hypothesized that the sucrose 

density cushion approach led to a larger amount of protein complexes co-isolated with the sEVs. The 

mean particle size and size distribution of sEVs were similar in IZON fractions 1 and 2 and the 

“cushion” preparation with 153, 157, and 148 nm for the peak IZON fractions, and 155, 163, and 152 

nm for the corresponding “cushion” preparations (Figures 2C,E). In line with our hypothesis, 

immunoblot analysis revealed a lower signal for exosomal surface markers FLOTILLIN-1, CD81, 

CD9, and the luminal marker TSG101 in the “cushion” preparations compared to IZON fractions 1 

and 2 for the same amount of protein loaded (Figure 2F and S1). As our study is one of the first to 

focus on solid tissues, we thoroughly validated the presence of contaminant proteins as 

recommended by the MISEV guidelines [26]. We neither detected the Golgi marker GM130 nor the 

mitochondrial marker CYTOCHROME C in both preparations. Surprisingly, we detected the 

endoplasmic reticulum (ER) protein CALNEXIN in sEVs isolated with both protocols. However, the 

amount of CALNEXIN in the sEV preparations was lower in comparison to the parental cell lysate 

(Figure 2F and S1). Although partial contamination of the samples with cellular debris cannot be 

excluded, the presence of CALNEXIN but no markers from other cell organelles might be indicative 

for a specific sEV biogenesis pathway involving the ER in lymphoma cells. In addition, the IZON 

fraction F2 and “cushion” samples were analyzed by transmission electron microscopy (TEM). The 

results illustrate that the SEC isolated samples allow a clear identification of sEVs for all of the three 

samples. However, we observed a higher heterogeneity in the “cushion” preparations, with sEVs 

barely detected in two out of three samples (Figure 2G). Employing immuno-electron microscopy, 

we confirmed the presence of the immune receptor MHC Class II (HLA-DR) on the surface of sEVs 

isolated by both approaches and thereby validate their immune cell origin (Figure 2H).  
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Figure 1. Experimental outline of the comparison of size-exclusion column-based (SEC) versus 

density-based small extracellular vesicle (sEV) isolations. Supernatant of dissociated lymphatic 

tissues was separated by differential ultracentrifugation and the resulting 100 K pellet was 

resuspended and split into two equal parts for direct method comparison. Equal volumes were 

loaded on either SEC columns or on a sucrose density cushion. Resulting sEV fractions were 

compared for yield, purity and functionality. 
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Figure 2. Comparative isolation and characterization of sEVs from human lymph nodes (LN). 

Size-exclusion column (SEC) fractions (F0 = void volume, 1 mL; F1, F2, F3, F4, F5, F6, F7 = serial 

fractions, 250 µL) and cushion fraction (pellet resuspended in 250 µL) were analyzed by nanosight 

tracking analysis (NTA), bicinchoninic acid (BCA) protein quantification, immunoblotting, and 

transmission electron microscopy (TEM). (A) Left: particle concentrations in IZON fractions F0–F7 
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and “cushion” fraction for three different human LN samples measured by NTA. Right: Absolute 

number of detected particles as sum of fraction 1 and fraction 2. For each sample, the particle 

concentration was normalized to the final volume of elution. (B) Left: BCA protein quantification for 

IZON fraction F0–F7 and the “cushion” fraction. Right: Absolute amount of protein in fraction 1 and 

fraction 2 (the protein concentration was normalized to the final volume of elution). (C) Mean 

particle size for IZON fraction F0–F7 and the “cushion” fraction analyzed by NTA. (D) Ratios of 

particles per protein amount are plotted for IZON and “cushion” fraction. (E) Representative particle 

distribution profile for IZON fraction 2 sample (left) and “cushion” sample analyzed by NTA 

(Sample LN221). (F) Immunoblotting analysis of FLOTILLIN-1, CD81, CD9, TSG101, CALNEXIN, 

CYTOCHROME C, and GM130 for indicated IZON fractions, the “cushion” fraction and parental cell 

lysates for one LN sample. (G) TEM images of IZON fraction 2 and the “cushion” fraction for the 

three indicated samples. (H) Immunogold electron microscopy for HLA-DR of one human LN 

sample (sample LN221). Scale bar: 200 µm.  

2.2. Isolation and Purification of sEVs from Murine Spleen  

Spleens from three mice with B-cell lymphoma were dissociated and processed as outlined in 

Figure 1. Similar to human LN samples, NTA results revealed an enriched particle concentration in 

IZON fractions 1 and 2, with fraction 2 being the peak fraction (Figure 3A, left). For one of the 

samples, sEVs were mainly detected in fractions 2 and 3, a difference we attribute to manual loading 

and elution of the IZON column. The absolute number of particles isolated was 4.8- to 27.7-fold 

higher in the IZON peak fractions in comparison to the respective cushion preparations (Figure 3A, 

right). The protein concentrations measured by BCA were more similar between IZON fractions and 

“cushion” and might be attributed to protein complexes co-isolated with the sEVs in the “cushion” 

preparation (Figure 3B, left). The absolute amount of proteins recovered was 1.4- to 2.6-fold higher 

in the IZON preparations in comparison to the respective cushion preparations (Figure 3B, right). In 

line with these results, the particle/protein ratios were drastically reduced for “cushion” 

preparations in comparison to IZON fractions (Figure 3D). The mean particle sizes were 154, 142, 

and 157 nm in the IZON peak fractions, and 114, 143, and 155 nm for the corresponding “cushion” 

preparations (Figure 3C). Those results imply that, for one preparation at least, the obtained product 

was different when using the SEC or the sucrose density cushion approach. Additionally, we 

observed a difference in the size distribution profile depending on the isolation protocol used, which 

might be explained by different EV subpopulations isolated by the different approaches (Figure 3E). 

Immunoblot results confirmed the exosomal identity of the particles in fractions 1, 2, and 3 and the 

cushion fraction by positive bands for the surface marker FLOTILLIN-1 but also the luminal markers 

ALIX and TSG101 in the IZON fractions 1–3 and in the “cushion” preparations (Figure 3F and S2). 

FLOTILLIN-1 was only detected in IZON fractions, and TSG101 showed varying intensities being 

highly present in the “cushion” fraction while only weakly detected in the IZON fractions. Together 

with the variance in NTA size profiles, the immunoblotting results further suggested that different 

sEV subpopulations were isolated. Irrespective, we could exclude mitochondrial contaminations by 

ATP5A being absent from all sEV fractions (Figure 3F and S2). In concordance with the human LN 

data, CALNEXIN could again be detected in sEV fractions from both protocols. The quality and 

purity of the sEV isolations was further assessed by TEM (Figure 3G). We noted a high heterogeneity 

among the samples for the “cushion” preparations, with one sample highly enriched in lipidic 

structures (Figure 3G). Interestingly, we noticed the recurrent presence of small dark structures of an 

approximate size of 10 nm exclusively in “cushion” preparations (Black arrows, Figure 3G). A closer 

look at the particles revealed a specific geometrical shape, typical for ferritin (Figure 3H) [27,28]. We 

further observed a red color of the sEV pellets and suspensions which is typical for a contamination 

with erythrocyte-derived protein, strengthening our hypothesis (Figure 3I).  
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Figure 3. Isolation and characterization of murine spleen sEVs. (A) Left: SEV concentration in the 

different IZON Fractions and “cushion” preparations for three samples analyzed by NTA. Right: 

Absolute number of particles in indicated preparations. For each sample, the particle concentration 

in the two peak fractions or in the cushion product was normalized to the final volume of elution. (B) 

Left: protein quantification in the indicated preparations assessed by BCA assay. Right: absolute 

A

B

C D

G

CushionIZON

C
u

sh
io

n

H

I

Ultracentri-
fugation #1

Resuspen-
sion

Density cushion
Ultracentrifu-

gations #2 and #3

IZON

IZ
O

N

Spleen 221 Spleen 224 Spleen 42704

FE

F
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

C
u

sh
io

n

0

10

20

30

 

Spleen 221

C
u
sh

io
n

IZON

F
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

C
u

s
h

io
n

0

50

100

150

200

 

C
u

sh
io

n

F
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

C
u
s
h
io

n

0

50

100

150

200

 

 

C
u
sh

io
n

F
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

C
u

s
h

io
n

0

10

20

30

40

Spleen 224

 

C
u
sh

io
n

F
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

C
u
s
h
io

n

0

50

100

150

200

 
C

u
sh

io
n

F
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

C
u

s
h

io
n

0

50

100

150

200

 

C
u

sh
io

n

F
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

C
u

sh
io

n

0

20

40

60

80

 

Spleen 42704

C
u
s
h
io

n

F
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

C
u

s
h

io
n

0

50

100

150

200

 

C
u

sh
io

n

F
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

C
u

s
h

io
n

0

50

100

150

200

250

 

C
u

sh
io

n

1 2

0

10

20

30

 

Absolute amount 

of particles (x1010)

1 2

0
20
40
60
80

100

 

Absolute amount 
of proteins (µg)

M
e
a
n

 p
a
rt

ic
le

 
s
iz

e
 (

n
m

)
P

ro
te

in
 µ

g
/m

L
P

a
rt

ic
le

s
 /
 m

L
 

( x
1

0
1
0
)

IZ
O

N
 

c
u

0.0

0.1

0.2

0.3

0.4

  C
u
s
h
io

n

Ratio 
Particles/Proteins



Int. J. Mol. Sci. 2020, 21, 5586 8 of 16 

 

amount of protein in indicated preparations (the protein concentration was normalized to the final 

volume of elution). (C) Mean particle size of all fractions and the “cushion” preparations analyzed by 

NTA. (D) Ratios of particles per protein amount are plotted for IZON and “cushion” fraction. (E) 

One representative particle distribution profile for an IZON fraction 2 (left) and a “cushion” 

preparation analyzed by NTA (Spleen 42704). (F) Immunoblotting analysis of FLOTILLIN-1, ALIX, 

TSG101, CALNEXIN, and ATP5A for the different IZON fractions, the “cushion” preparation and 

parental cells for one spleen sample (spleen 224). (G) Transmission electron microscopy (TEM) 

images of IZON peak fraction and “cushion” preparation for the three indicated samples. (H) TEM 

image of ferritin-like structures found in “cushion” preparations. (I) Pictures of the sEV pellet, 

resuspended sEVs prior to application on the sucrose density cushion, and final pellet in PBS before 

resuspension. 

2.3. Functional Analysis of sEVs Isolated by the Two Different Protocols 

We and others have previously reported that tumor-derived sEVs (TEX) are able to induce an 

immunosuppressive phenotype in monocytes in vitro, with a typical upregulation of surface PD-L1 

and HLA-DR [29–31]. We compared the potential of murine TEX isolated from three spleen samples 

using the two different approaches regarding their ability to induce such a phenotype. Both TEX 

preparations (IZON and “cushion”) induced PD-L1 upregulation in monocytes, although to various 

degrees (Figure 4A and S3 for gating strategy). However, for two of the three samples, “cushion” 

preparations did not induce an upregulation of HLA-DR (Figure 4B). These results indicate that both 

protocols resulted in sEV samples that induce a different immunosuppressive phenotype in 

monocytes. We also analyzed the expression of the activation marker ICAM-1 (CD54) in monocytes 

treated with TEX, which showed a much more drastic upregulation with the “cushion” preparations 

compared to the SEC-isolated TEX in all 3 analyzed samples (Figure 4C).  

 

Figure 4. Response of murine monocytes upon tumor-derived sEVs (TEX) treatment. Bone 

marrow-derived monocytes were treated with 5 µg of the indicated sEV preparations for 8 h and 

analyzed by flow cytometry gating on CD11b+F4/80++CX3CR1+Ly6C+ cells (n = 3 mice per sEV 

preparation). (A) Top: percentage of PD-L1 positive cells among CD11b+F4/80+CX3CR1+Ly6C+ 

monocytes. Bottom: representative histogram including isotype antibody staining as negative control 

(IgG). (B) Percentage of MHC-II/HLA-DR positive cells among CD11b+F4/80+CX3CR1+Ly6C+ 

monocytes. Bottom: representative histogram including fluorescence-minus-one (FMO) staining as 

negative control. (C) Top: ICAM-1/CD54 expression presented as normalized mean fluorescence 

intensity (nMFI). Bottom: representative histogram. p-values were determined by one-way ANOVA 

with Tukey’s multiple comparisons test. *p < 0.05; **p < 0.0021; ***p < 0.0002; ****p < 0.0001.  
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3. Discussion 

Multiple isolation approaches have been proposed for sEV preparations, including 

commercially available kits, ultrafiltration, polymer precipitation, immune-affinity capture, 

size-exclusion chromatography, ultracentrifugation, and ultracentrifugation combined with density 

cushion [32,33]. The selection of the isolation technique must consider the subsequent usage of the 

sEV preparations. Yield is generally prioritized when performing RNA or DNA sequencing. 

However, contamination with protein or lipid complexes must be avoided for proteomic analysis or 

functional assays. The sources and risk of protein contamination are even higher when isolation of 

sEVs is performed from solid tissues that require mechanical or enzymatic dissociation. Here, we 

compared two different protocols to isolate sEVs from solid lymphoid tissues: differential 

centrifugation combined to SEC using commercially available IZON columns and differential 

centrifugation combined to ultracentrifugation on sucrose density cushions. Although a total of 

three human LN and three mouse spleens are shown in our manuscript, our results are 

representative of larger cohorts of samples regularly analyzed in our laboratory. Both approaches 

led to efficient isolation of sEVs as shown by size characterization based on NTA analysis and the 

presence of exosomal markers by immunoblotting. However, further characterization of the 

preparations using BCA assay, TEM, and functional assay led us to conclude that the SEC approach 

is superior in terms of purity, quantity, and reproducibility.  

In particular, our results strongly suggest that isolation of sEVs by the sucrose density cushion 

isolation protocol results in a more severe co-isolation of protein complexes with the sEVs. Using 

immunoblotting, we excluded contamination by mitochondrial and Golgi-derived proteins. We 

speculate that the presence of cellular debris in the supernatant of the dissociated tissues, which 

would lead to the sample contamination, was efficiently avoided by the rapid isolation of sEVs 

following organs’ resection. However, the ER-derived protein CALNEXIN was found in sEV 

preparations using both isolation approaches. Such contamination likely results from the tissue 

dissociation. However, further investigations are required to verify that the presence of ER-proteins 

but not of proteins of other organelles could be the result of a specific packaging mechanism of 

tumor-derived sEVs. Furthermore, we also observed the presence of ferritin-like proteins in spleen 

sEVs isolated by the sucrose density cushion but not the SEC approach. The presence of ferritin 

seems to indicate an erythrocyte contamination. However, addition of erythrocyte lysis buffer to the 

supernatant would result in an increased release of hemoglobin. As erythrocytes are easier to 

separate from sEVs than hemoglobin, we do not recommend the usage of such buffer. 

Previous studies focusing on plasma-derived sEVs reported lipoproteins as the main 

contaminants of sEV preparations [34–37]. Unfortunately, lipoproteins cannot be efficiently 

discriminated from sEVs when performing NTA analysis. However, contamination by lipoproteins 

of low and high density in sEV preparations seem less important when using the SEC-isolation 

approach [34–36]. In our study, we noticed the presence of large lipidic structures in one of the three 

murine samples isolated with the sucrose density cushion but not with SEC. Additional 

immunoblots are required to conclude on lipoprotein contamination in sEVs isolated with both 

approaches. A solution to limit lipoprotein contamination would be the combination of both SEC 

and sucrose density cushion. However, combination of isolation methods often results in a drastic 

loss of material. Other possible sources of contamination include secreted proteins, and extracellular 

matrix proteins. Investigations on such contaminants remain challenging, as these proteins could be 

considered as well as of exosomal origin. 

We also would like to emphasize that ultracentrifugation combined with density cushion and 

differential centrifugation combined with SEC are isolation techniques that are based on the density 

or the size of EVs, respectively. Thus, it is possible that the use of a unique isolation protocol may 

impact on the distribution of sEV subpopulations in the preparations. In line with this hypothesis, 

different sEV marker proteins were enriched in sEVs isolated from spleens by the two different 

methods: sEV preparations obtained using the SEC approach were enriched in FLOTILIN-1 and 

ALIX but not TSG101, whereas the “cushion” preparations did show an enrichment in ALIX and 

TSG101 but not in FLOTILIN-1.  
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We previously reported that treatment of monocytes with TEX induces the upregulation of 

surface PD-L1 and major histocompatibility complex (MHC) II/HLA-DR. We compared the 

capability of TEX preparations of both isolation protocols to induce such a phenotype, using an 

identical amount of sEVs based on protein quantification. Treatment of monocytes with “cushion” 

preparations resulted in a more heterogeneous response of those two markers in comparison to SEC 

preparations, indicating different amounts of contaminant proteins from one “cushion” preparation 

to another. In particular, MHC II surface expression was increased when monocytes were treated 

with IZON preparations but not with “cushion” preparations, for two of three preparations. Yet, it is 

known that sEVs secreted by antigen-presenting cells are enriched in MHC II molecules, and that 

sEVs can promote the transfer of functional MHC II/antigen complexes to recipient cells [38,39]. On 

the contrary, we observed a higher upregulation of the monocyte activation marker ICAM-1 upon 

treatment with “cushion” preparations. These results highlight that contaminant proteins can 

interfere with biological results and lead to an incorrect conclusion of sEV-induced phenotypes. 

ICAM-1 expression on monocytes is a general activation marker and its upregulation can be induced 

by cytokines, lipoproteins, LPS etc. [40,41]. Given these results, we suspect that the PD-L1 

upregulation observed in monocytes treated either with the IZON preparations or the “cushion” 

preparations is the consequence of monocytes’ activation mainly by sEVs, whereas induced 

expression of ICAM-1 results from both sEVs and non-sEV contaminants. These results raise the 

hypothesis that soluble pro-inflammatory cytokines, secreted in B-cell lymphoma 

microenvironments, might contribute to the contamination in the “cushion” preparations, although 

further investigations would be required for firm conclusion.  

As a conclusion, we strongly recommend the usage of SEC for sEV isolation from solid tissue 

represented here by lymphoid tissues. Multiple controls should be performed to validate the purity 

of the samples. Such controls include extensive immunoblotting of positive and negative exosomal 

markers. Reaching a complete purity of sEVs from biofluids or solid tissue seems unrealistic. 

Nevertheless, immunoblotting results in parallel to NTA analysis can provide a reliable estimation 

of preparations’ contamination by protein complexes. TEM remains an indispensable tool to validate 

the presence and integrity of sEVs and to assess the amount of contamination by lipid complexes.  

4. Materials and Methods  

4.1. Animals 

Eµ-TCL1 mice on C57BL/6 background were kindly provided by Carlo Croce (Ohio State 

University). C57BL/6 wild-type (WT) mice were purchased from Charles River Laboratories 

(Sulzfeld, Germany). Adoptive transfer of Eµ-TCL1 tumors was performed as previously described 

[42,43]. Briefly, 1–2 × 107 B-cells enriched from Eµ-TCL1 splenocytes were transplanted 

intraperitoneally (i.p.) into C57BL/6N WT animals. B-cell enrichment was performed using 

EasySep™ Mouse Pan-B Cell Isolation Kit (Stemcell Technologies, Vancouver, BC, Canada), yielding 

a purity above 95% of CD5+ CD19+ cells. Tumor load was assessed in the blood every week using 

flow cytometry as the proportion of CD5+ CD19+ cells among CD45+ cells. Animals with a tumor 

load >90% in peripheral blood were sacrificed; spleen was isolated and mechanically dissociated in 

PBS. All animal experiments were carried out according to institutional and governmental 

guidelines approved by the local authorities (Regierungspräsidium Karlsruhe, permit number 

G98/16, approved on 13 July 2016). 

4.2. SEV-free RPMI Medium 

Fetal calf serum (FCS) (Gibco, Carlsbad, CA, USA) was ultra-centrifuged at 100,000× g for 18 h 

at 4 °C. FCS supernatant was filtered through a 0.22 µm filter. RPMI 1640 medium (Thermo Fisher 

Scientific Inc., Waltham, MA, USA) was supplemented with 10% sEV-free FCS and 1% 

penicillin/streptomycin (Gibco, Carlsbad, CA, USA). The medium was filtered through a 0.22 µm 

filter prior to use.  
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4.3. Isolation of Lymph Node Supernatants 

Patient lymph node (LN) samples were obtained after the study protocols’ approval by local 

ethics’ committees from the Department of Medicine V of the University Clinic Heidelberg 

according to the declaration of Helsinki, and with patients’ informed consent. LN samples were 

collected directly after biopsies from patients with diverse B-cell lymphomas. LNs were placed in 

0.9% NaCl solution and processed immediately. Each LN was cut in small pieces with a maximum 

size of 2 mm. Cells were released in 50 mL of RPMI medium supplemented with sEV-free FCS (10%), 

Penicillin-Streptomycin (1%) and L-Glutamine (1%). 

4.4. Isolation of Murine Spleen Supernatants 

Entire spleens from three adoptively transferred Eµ-TCL1 mice were collected in 7 mL of 0.22 

µm-filtered PBS each. Spleens were mechanically dissociated using MACS dissociator (Miltenyi 

Biotec, Bergisch Gladbach, Germany), using the program “m_spleen_01”. 

4.5. Differential Centrifugation 

Collected supernatants of human LN and mouse spleen were centrifuged at 300× g for 10 min at 

4 °C in a swing-out centrifuge to remove cellular debris. Resulting supernatants were transferred 

into new collection tubes and centrifuged at 2000× g for 20 min at 4 °C to remove larger apoptotic 

bodies. Resulting 2000× g supernatants were transferred into new collection tubes and centrifuged at 

10,000× g for 40 min at 4 °C to remove MVs. Resulting 10,000× g supernatants were transferred into 

ultracentrifugation tubes (#5031, Seton Sci., Petaluma, CA, USA), and centrifuged at 100,000× g for 2 

h at 4 °C on a Beckman Optima L-70 ultracentrifuge (Beckman Coulter GmbH, Krefeld, Germany) 

using a 40 Ti Swinging-Bucket Rotor. Resulting 100,000× g pellets were resuspended in 400 µL of 

0.22-µm-filtered PBS and split in half for direct method comparison described below. 

4.6. SEV Isolation on Sucrose Density Cushion 

This protocol was adapted from a previous protocol established in our lab [19]. The half volume 

of the resuspended 100,000× g pellet was filled up with 0.22-µm-filtered PBS to 7 mL. The diluted 

pellet fraction was carefully applied onto 4 mL of a 40% sucrose cushion with a density of 1.12 g/mL 

without disturbing the cushion and centrifuged at 100,000× g for 2 h at 4 °C. The most upper PBS 

phase of around 6.5 mL was discarded. The following 3.5 mL high-density sucrose fraction 

containing the sEVs was recovered. The pellet was left untouched to avoid contaminating the sEV 

fraction with high molecular weight protein complexes. The sEVs were recovered by washing in 

0.22-µm-filtered PBS by adding 7 mL of 0.22-µm-filtered PBS and centrifugation at 100,000× g for 2 h 

at 4 °C. The resulting sEV pellet was resuspended in 250 µL of 0.22-µm-filtered PBS. 

4.7. SEV Isolation on Single qEV 35nm Columns, IZON 

Single qEV 35 nm columns (Izon, Christchurch, New Zealand) were allowed to reach room 

temperature for 30 min. The resuspended pellet fraction (200 µL) was added onto the column. As 

soon as the sample volume was taken up by the column, 0.22-µm-filtered PBS was added to the top 

of the column tube. The following fractions were collected: F0 (1 mL = void volume of the column) 

and F1 to F7 (250 µL each), according to the manufacturer’s instructions. 

4.8. Bicinchonic Acid (BCA) Assay and Nanoparticle Tracking Analyzis (NTA) 

Protein concentration of sEV samples was assessed employing Pierce™ BCA Protein Assay Kit 

(Thermo Fisher Scientific Inc., Waltham, MA, USA). 9 µL of each sEV sample was lysed with 1 µL of 

10× RIPA buffer (Abcam, Cambridge, UK) and incubated for 30 min on a rotating wheel at 4 °C. 

Samples were then centrifuged at 17,000× g for 20 min at 4 °C. Resulting supernatants were subjected 

to the BCA assay according to the manufacturer’s instructions. Absorbance was assessed with the 

use of a MITHRAS LB 940 plate reader (Berthold Technologies, Bad Wildbad, Germany). Particle 



Int. J. Mol. Sci. 2020, 21, 5586 12 of 16 

 

quantification of sEV samples was performed via NTA using NanoSight LM10 equipped with a 405 

nm laser (Malvern Instruments, Malvern, UK). For the NTA analysis, samples were diluted 1:500 to 

1:1000 in 0.22-µm-filtered PBS. Camera level and detection threshold were set up at 13 and 5, 

respectively. The absence of background was verified using 0.2-µm-filtered PBS. For each sample, 

four videos of 60 s each were recorded and analyzed using the NTA 3.0 software version (Malvern 

Instruments, Malvern, UK). 

4.9. Immunoblotting 

SEVs and respective parental cells were lysed in RIPA buffer (Abcam, Cambridge, UK), and 

whole protein lysates were quantified via BCA™ Protein Assay Kit (Thermo Fisher Scientific Inc., 

Waltham, MA, USA). Per lane, 2.8 µg (human samples) or 3.4 µg (mouse samples) of protein were 

loaded onto 10% polyacrylamide gels. Following SDS-PAGE and protein transfer, membranes were 

blocked in 5% bovine serum albumin in Tris-buffered saline (TBS)-Tween 0.1%, and primary 

antibodies against FLOTILLIN-1 (1:1,000, Cell Signaling Technology, Danvers, MA, USA, #18634), 

CD81 (1:400, ProSci Inc., San Diego, CA, USA, #5195), CD9 (1:1000, Cell Signalling Technology, 

Danvers, MA, USA, #13174), TSG101 (1:1000, BD Bioscience, San Jose, CA, USA, #612697), ALIX 

(1:1000, Cell Signalling Technology, Danvers, MA, USA, #2171) CALNEXIN (1:500, GeneScript, 

Piscataway, NJ, USA, #A0124040), CYTOCHROME C (1:750, GeneScript, Piscataway, NJ, USA, 

#A0150740), GM130 (1:1000, Cell Signaling Technology, Danvers, MA, USA, #12480), ATP5A 

(1:1,000, Abcam, Cambridge, UK, #ab14748) were used in indicated dilutions in 5% bovine serum 

albumin in TBS-Tween 0.1%. Signals were visualized after secondary antibody hybridization by 

chemiluminescence detection reagent (Bio-Rad Lab, Hercules, CA, USA, #1705061) with GE 

Healthcare Amersham Imager 600 (GE Healthcare, Chicago, IL, USA). 

4.10. Electron Microscopy (EM) 

SEV fractions were adsorbed onto glow discharged carbon coated grids, washed in aqua bidest 

and negatively stained with 2% aqueous uranyl acetate. For immuno-EM, carbon-coated formvar 

grids were used and the immune reaction was performed after buffer wash including incubation 

with blocking agent (Aurion, Wageningen, The Netherlands), dilution series of primary antibody 

HLA-DR (Santa Cruz, Dallas, TX, USA #sc-51618) and Protein A-Au reporter (CMC, UMC Utrecht, 

The Netherlands). Micrographs were taken with a Zeiss EM 910 or EM 912 at 100 kV (Carl Zeiss, 

Oberkochen, Germany) using a slow scan CCD camera (TRS, Moorenweis, Germany). 

4.11. Functional Assay 

Murine monocytes were isolated from the bone marrow of C57BL/6 mice by magnetic depletion 

(EasySep™ Mouse Monocyte Isolation Kit, STEMCELL Technologies Inc., Vancouver, BC, Canada). 

5 × 104 cells were cultured in 48-well plates in sEV-free RPMI medium and treated for 8 h with 5 µg 

of the respective sEV fractions referred above, as determined by BCA assay. Changes in PD-L1, 

HLA-DR and ICAM-1 expression were evaluated by flow cytometry (BD LSR Fortessa, BD 

Biosciences, San Jose, CA, USA). The following antibodies were used: PD-L1-PerCP (Biolegend, San 

Diego, CA, USA, #46-5982-82), HLA-DR-AlexaFluor700 (eBiosciences, San Diego, CA, USA, 

#56-5321-82), CD54-PE (Biolegend, San Diego, CA, USA, #116108), CX3CR1-BV711 (Biolegend, San 

Diego, CA, USA, #149031), Ly6C-APC-Cy7 (Biolegend, San Diego, CA, USA, #128015), 

CD11b-PeCy7 (Biolegend, San Diego, CA, USA, #101216), F4/80-FITC (Biolegend, San Diego, CA, 

USA, #123107), and the viability dye eFluorTM 506 (eBiosciences, San Diego, CA, USA, #65-0866). 

4.12. Statistical Analysis 

Results of the functional analysis were analyzed for statistical significance with GraphPad 

PRISM 8.0 software (GraphPad Software, San Diego, CA, USA), using one-way analysis of variance 

(ANOVA), followed by Tukey’s multiple comparisons. The differences between means were 

considered significant if p ≤ 0.05. The results are expressed as the means ± standard deviation. 
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4.13. EV Track 

We have submitted all relevant data of our experiments to the EV-TRACK knowledgebase 

(EV-TRACK ID: EV200073) (Van Deun J, et al. EV-TRACK: transparent reporting and centralizing 

knowledge in extracellular vesicle research. Nature methods. 2017;14(3):228–32). 

You may access and check the submission of experimental parameters to the EV-TRACK 

knowledgebase via the following URL: http://evtrack.org/review.php. Please use the EV-TRACK ID 

(EV200073) and the last name of the first author (Bordas) to access our submission. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/21/15/5586/s1. 
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Abbreviations 

BCA Bicinchoninic acid 

ER Endoplasmatic reticulum 

EVs Extracellular vesicles 

FCS Fetal calf serum 

i.p. Intraperitoneal 

LN Lymph node 

MHC Major histocompatibility complex 

MVs Microvesicles 

NTA Nanoparticle Tracking Analysis 

SEC Size-exclusion chromatography 

sEVs Small extracellular vesicles 

TEM Transmission electron microscopy 

TEX Tumor-derived sEVs 

WT Wild-type 
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