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Abstract: Members of the Sphingomonadales are renowned for their ability to degrade polycyclic
aromatic hydrocarbons (PAHs). However, little is known about the regulatory mechanisms of the
degradative pathway. Using cross-feeding bioassay, a functional LuxI/LuxR-type acyl-homoserine
lactone (AHL)-mediated quorum sensing (QS) system was identified from Croceicoccus naphthovorans
PQ-2, a member of the order Sphingomonadales. Inactivation of the QS system resulted in a
significant decrease in PAHs degradation. The QS system positively controlled the expression
of three PAH-degrading genes (ahdA1e, xylE and xylG) and a regulatory gene ardR, which are located
on the large plasmid. Interestingly, the transcription levels of these three PAH-degrading genes were
significantly down-regulated in the ardR mutant. In addition, bacterial cell surface hydrophobicity
and cell morphology were altered in the QS-deficient mutant. Therefore, the QS system in strain PQ-2
positively regulates PAH degradation via two mechanisms: (i) by induction of PAH-degrading genes
directly and/or indirectly; and (ii) by an increase of bacterial cell surface hydrophobicity. The findings
of this study improve our understanding of how the QS system influences the degradation of PAHs,
therefore facilitating the development of new strategies for the bioremediation of PAHs.

Keywords: quorum sensing; polycyclic aromatic hydrocarbons; biodegradation; cell surface
hydrophobicity; Sphingomonadales

1. Introduction

Quorum sensing (QS) is a process of bacterial cell–cell communication that controls many
important population-level behaviors, such as bioluminescence, biofilm formation, antibiotic resistance,
and virulence factor production [1–3]. Bacteria produce and release signal molecules whose
concentration accumulates as bacterial population density increases. When the signal molecules
pass a specific threshold, QS alters global patterns of gene expression. In general, Gram-negative
bacteria communicate using acyl-homoserine lactones (AHLs) as signal molecules [4]. AHLs are
composed of a homoserine-lactone ring and a 4~18 carbon acyl chain that is occasionally modified by
an oxo- or hydroxyl group at the 3-C position. The canonical AHL-mediated QS system was firstly
discovered in Vibrio fischeri and then identified in many other Gram-negative bacteria. This system
consists of two components, LuxI-type and LuxR-type proteins. The LuxI-type proteins are AHL
synthases that catalyze the synthesis of AHLs, while LuxR-type proteins are transcription factors
responsible for the perception of AHLs. LuxR-family proteins possess an N-terminal AHL-binding
domain and a C-terminal DNA-binding domain. In the absence of AHLs, most LuxR proteins are
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unstable and fail to fold. However, the binding of AHLs to LuxR results in the stabilization and
dimerization of LuxR. The LuxR-AHL complex binds to a conserved 20-bp palindrome termed “lux box”
(5′-NNCT-N12-AGNN-3′) and then activates the expression of target genes [4,5].

Polycyclic aromatic hydrocarbons (PAHs) are a large class of hydrophobic organic compounds
composed of two or more fused benzene rings arranged in various configurations, such as naphthalene,
phenanthrene, anthracene, fluorine, and pyrene [6,7]. PAHs are widespread in the environment
and most of them are persistent due to their poor aqueous solubility. Importantly, many PAHs are
known to be toxic, mutagenic, and carcinogenic. Therefore, it is of great concern to develop efficient
methods for removal of PAHs [8,9]. The conventional methods, which involve physical and chemical
processes, have several drawbacks such as higher treatment cost and incomplete degradation of
the pollutants. However, many of these drawbacks can be overcome by the use of bioremediation.
It has been characterized that several microbial organisms can degrade PAHs via catabolism. It is
especially interesting that the members of the order Sphingomonadales are regularly isolated from soils
and marine sediments contaminated with PAHs. They are able to degrade various aromatic and/or
xenobiotic compounds including PAHs [10–12]. Notably, members of the order Sphingomonadales
contain glycosphingolipids rather than lipopolysaccharides in their outer membrane. This change
may increase bacterial cell surface hydrophobicity and thus the degradation efficiency of hydrophobic
PAHs [10].

Although the biochemical pathways for the degradation of PAHs have been widely studied for
many years [9,12], little is known concerning the regulatory mechanism of the degradative pathway.
Recently, a few studies have shown that the AHL-type QS system is involved in the regulation of
PAHs degradation [13–15]. The QS system promotes aromatics degradation in Pseudomonas aeruginosa
CGMCC1.860 but negatively affects phenanthrene removal in Novosphingobium pentaromativorans
US6-1 [13,15]. Therefore, the mechanism underlying QS regulation on PAHs degradation is diverse
and may vary among different species of bacteria.

Several years ago, Croceicoccus naphthovorans PQ-2, a member of the family Erythrobacteraceae
within the order Sphingomonadales, was isolated from marine biofilm [16,17]. The strain PQ-2 can
degrade various PAHs and also produce AHLs [16]. However, the role of the AHL-type QS system in
the degradation of PAHs remains unknown. In this study, we characterized the LuxI/LuxR-type QS
system in C. naphthovorans PQ-2 and explored the involvement of QS regulation in the degradation of
PAHs. We found that the QS system in strain PQ-2 positively regulates not only the transcription of
PAH-degradative genes but also bacterial cell surface hydrophobicity.

2. Results

2.1. Identification of an AHL-Type QS System in C. naphthovorans PQ-2

C. naphthovorans PQ-2 can produce AHL molecules, but genes responsible for the AHL-type QS
systemremain unidentified. According to the genome annotation information from NCBI, we found a
pseudogene with a length of 515 bp (AB433_RS00085) that was annotated to encode an autoinducer
synthase. This pseudogene contains only a partial coding region. In contrast, the full-length sequence
of the gene (locus tag: Ga0111307_123190) can be obtained from the JGI database. This gene has
a length of 657 bp and was designated luxI. Notably, a transposase gene (AB433_RS00065) and an
integrase gene (AB433_RS00100) lie in the flanking sequence of the luxI gene.

To determine whether the gene product of luxI is indeed an AHL synthase, the luxI gene
was expressed in the Escherichia coli BL21 (DE3) strain that cannot produce any AHLs [18].
The Agrobacterium tumefaciens A136 was used as a biosensor strain to detect AHLs with medium
and long acyl chains [19]. As expected, the culture extract of E. coli harboring the empty plasmid did not
affect the biosensor strain. However, the recombinant E. coli sample induced a blue coloration on the
indicator plate, which results from the expression of β-galactosidase in A. tumefaciens A136 (Figure 1A).
TLC analysis showed that the strain PQ-2 produces three AHLs, C6-HSL and C8-HSL with an oxo-
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or hydroxyl group at the 3-C position, and an unknown AHL that needs to be further investigated
(Figure 1B). Similar results were also observed in the crude AHLs extract from the recombinant E. coli
cells (Figure 1B).
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Figure 1. Identification of the LuxI/LuxR QS system. (A) Analysis of AHLs using the biosensor
strain A. tumefaciens A136. AHLs were extracted from culture supernatants of C. naphthovorans PQ-2,
E. coli BL21 harboring pET-28b(+) (BL21/pET28b) or pET-28b(+) expressing luxI (BL21/pET28b-luxI).
C8-HSL and acidified ethyl acetate were used as positive control and negative control (NC), respectively.
(B) Identification of AHLs by TLC. M1~M3, standard AHLs; S1, AHLs extracted from PQ-2; S2,
AHLs extracted from E. coli BL21 expressing luxI. (C) Cross-feeding bioassay for detection of AHLs in
C. naphthovorans strains. ∆luxIC and ∆luxRC represent the complemented version of ∆luxI and ∆luxR,
respectively. (D,E) Relative expression levels of luxI (D) and luxR (E). The transcription level of the
wild type was defined as 1.0. Experiments were performed in three biological replicates, and similar
trends were observed. The representative data from three separate experiments are shown. Statistical
significance of differences was analyzed by t-test; **, p < 0.01; ***, p < 0.001.

To further confirm whether the luxI gene is active in C. naphthovorans PQ-2, an rpsL-based
markerless gene deletion system for Sphingomonads was employed to construct the ∆luxI strain [20].
Cross-feeding bioassay results showed that the ∆luxI strain failed to induce a blue coloration of
A. tumefaciens A136, while expression of the luxI gene under its native promoter regained the ability to
generate a blue coloration (Figure 1C). Therefore, the luxI gene is responsible for the synthesis of AHLs
in C. naphthovorans PQ-2.

Given that the expression of luxI depends on a LuxR-type autoinducer-responsive regulator,
the cognate gene for LuxR was identified from the PQ-2 genome. The locus tag Ga0111307_123182,
which locates 6.3 kb upstream of the luxI gene, was predicted to encode a LuxR homolog. Accordingly,
we renamed this gene luxR. Similar to the strain lacking luxI, the ∆luxR strain no longer induced a blue
coloration of the biosensor strain, which could be restored by genetic complementation (Figure 1C).
In addition, the transcription of luxI was significantly reduced in the ∆luxR strain (Figure 1D), while
the transcription of luxR was down-regulated in the ∆luxI strain (Figure 1E). Both transcription levels
were restored by complementation (Figure 1D,E). Collectively, we can conclude that C. naphthovorans
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PQ-2 possesses a functional AHL-type QS system, which is composed of an AHL synthase LuxI and
an autoinducer-responsive regulator LuxR.

2.2. The AHL-Type QS System Is Crucial for the Degradation of PAHs

To investigate the degradation of PAHs, C. naphthovorans PQ-2 was dropped onto minimal medium
plates containing different PAHs (fluorene, phenanthrene, anthracene, fluoranthene, and pyrene) as the
sole carbon and energy source. As shown by the results in Figure 2A, growth of PQ-2 was observed
on all the plates tested, suggesting that this bacterium can use various PAHs as the sole carbon and
energy source. Notably, PQ-2 had the highest degradation ability for phenanthrene and anthracene,
which forms a halo around bacterial colonies. Phenanthrene was then used in subsequent studies.
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Figure 2. Effects of the QS system on phenanthrene degradation. (A) The degradation of PAHs
by C. naphthovorans PQ-2. (B) Growth of C. naphthovorans strains in minimal medium containing
phenanthrene as the sole carbon and energy source. Colony forming units (CFUs) were determined
for each sample. (C,D) Percentage of residual phenanthrene in the medium after incubation for
72 h. Experiments were performed in three biological replicates, and similar trends were observed.
The representative data from three separate experiments are shown. Statistical significance of differences
was analyzed by t-test: *, p < 0.05; **, p < 0.01; ***, p < 0.001.

To explore the involvement of the AHL-type QS system in the degradation of PAHs, growth of the
∆luxI and ∆luxR strains was measured in liquid culture media. Deletion of luxI and luxR per se did not
affect bacterial growth in nutrient-rich P5Y3 medium (Figure S1). However, in minimal medium with
phenanthrene as the sole carbon and energy source, the colony-forming units (CFUs) of strains lacking
either luxI or luxR were significantly reduced when compared to the wild type (Figure 2B). CFUs of the
∆luxI strain were restored by exogenous addition of AHLs, which were extracted from the wild type
of PQ-2. On the contrary, the addition of AHLs was unable to restore the CFUs of the ∆luxR strain.
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The residual phenanthrene in the supernatants was analyzed by HPLC. Both ∆luxI and ∆luxR strains
displayed an obvious reduction in phenanthrene degradation (Figure 2C,D). The degradation ability of
the ∆luxI strain but not the ∆luxR strain was almost reversed to the wild type when supplemented
with the AHLs extracted from the PQ-2 (Figure 2C). Moreover, the expression of either luxI or luxR in
the corresponding mutants partially recovered the ability of phenanthrene degradation (Figure 2D).
These results collectively indicate that the AHL-mediated QS system plays an important role in the
degradation of phenanthrene in C. naphthovorans PQ-2.

2.3. PQ-2 Degrades Phenanthrene through the Salicylic Acid Pathway

The common microbial pathway for PAHs degradation involves the formation of catechol, which
will then be transformed into the tricarboxylic acid (TCA) cycle [8]. To determine the degradation
pathway of phenanthrene in C. naphthovorans PQ-2, the degradation products were analyzed by GC-MS
(Figure S2). After degradation by strain PQ-2 for 48 h, the samples were separated into neutral and
acidic fractions. Phenanthrene was detected in the neutral fraction, which results from the incomplete
degradation. By contrast, the acidic metabolites of phenanthrene contain salicylic acid and catechol,
suggesting that the strain PQ-2 also transforms phenanthrene to the common intermediate catechol.

2.4. The Large Plasmid Is Responsible for the Degradation of Phenanthrene

The complete genome of C. naphthovorans PQ-2 is composed of a chromosome (3.54 Mb) and two
plasmids, P1 (0.19 Mb) and P2 (0.13 Mb). Sequence analysis demonstrated that the large plasmid P1
possesses a putative PAH-degrading cluster (from AB433_RS17995 to AB433_RS18220), which shares
high identities with several aromatic compound degradation gene clusters in other Sphingomonas
strains (Figure 3A). For example, the nucleotide sequence from AB433_RS18095 to AB433_RS18120
of PQ-2 has 95% identity with the phnIJKN cluster of Sphingomonas sp. 14DN-61, which has been
confirmed to be involved in PAHs degradation [21]. Similar to the aforementioned luxI gene, several
transposase genes are located in the flanking sequence of the putative PAH-degrading cluster.
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Figure 3. The large plasmid P1 is essential for phenanthrene degradation. (A) Analysis of the
PAH-degrading gene clusters in C. naphthovorans PQ-2. The red arrows show the “lux box” site
in the promoter region of several PAH-degrading genes. (B) Effect of plasmid P1 removal on
phenanthrene degradation.

To explore whether the large plasmid P1 is involved in phenanthrene degradation, PQ-2 was treated
with rifampicin to eliminate the plasmid. The strain lacking the P1 (∆P1) was screened in the presence
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of 20 µg/mL rifampicin. Compared to the wild type, the ∆P1 strain was no longer able to degrade
phenanthrene (Figure 3B), indicating that the plasmid P1 is required for phenanthrene degradation.

2.5. The AHL-Type QS System Regulates the Expression of PAH-Degrading Genes

To investigate how the AHL-mediated QS system regulates phenanthrene degradation in
C. naphthovorans PQ-2, we analyzed the transcription levels of genes within the PAH-degrading gene
cluster in the ∆luxI strain. Based on gene annotation and the degradative pathway of phenanthrene
in PQ-2, eight PAH-degrading genes within the cluster were chosen for qRT-PCR analysis, including
ahdA2e, ahdA1e, bphC, xylG, xylE, xylX, xylY and ahdA2c. Among them, the transcription levels of three
PAH-degrading genes (ahdA1e, xylE and xylG) were significantly down-regulated in the ∆luxI strain,
which could be fully (ahdA1e and xylE) or partially (xylG) rescued when supplemented with exogenous
AHLs extracted from PQ-2 broth (Figure 4A). The ahdA1e gene encodes the α subunit of the aromatic
ring-hydroxylating dioxygenase, while the xylE and xylG genes encode a catechol 2, 3 dioxygenase
(C23O) and a 2-hydroxymuconic semialdehyde dehydrogenase, respectively. Notably, the promoter
region of all three PAH-degrading genes possess the conserved “lux box” element.
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observed. The representative data from three separate experiments are shown. Statistical significance
of differences was analyzed by t-test: *, p < 0.05; **, p < 0.01; ***, p < 0.001.

We also determined the expression of AB433_RS18080 gene (now designated as ardR for aromatic
degradation regulator), which is predicted to encode a sigma-54-dependent Fis family transcriptional
regulator. As shown by the results in Figure 4A, the expression of ardR was dramatically reduced in
the absence of luxI, which could be partially restored when exogenous addition of the PQ-2 AHLs
extract. These results indicate that ArdR may be involved in the regulation of PAHs degradation.
To confirm, the ardR gene was deleted from the plasmid P1 and then the resultant mutant (∆ardR)
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was subjected to phenanthrene degradation assay (Figure 4B). Deletion of the ardR gene led to a
significant decrease in the degradation of phenanthrene, which could be relieved by the expression of
the ardR gene in trans. The upstream sequence of ardR also contains a conserved “lux box” sequence.
Interestingly, the transcription levels of these three PAH-degrading genes were sharply reduced in the
∆ardR strain when compared to the wild type (Figure 4C). Relative expression of ahdA1e but not xylE
and xylG was partially restored in the complemented version of ardR (∆ardRC) in trans.

2.6. The AHL-Type QS System Affects Bacterial Cell Surface Hydrophobicity

Bacterial cell surface hydrophobicity is crucial for the degradation of organic pollutants in the
environment [15,22]. To determine whether the AHL-type QS system affects cell surface properties
in C. naphthovorans PQ-2, microbial adherence to hydrocarbons (MATH) assay was performed to
determine cell surface hydrophobicity (Figure 5A). Compared to the wild type, deletion of the luxI gene
led to a ~2-fold decrease in the cell surface hydrophobicity, which could be recovered by expression of
the luxI gene in trans. To further investigate this, we measured the content of glycosphingolipids by
Enzyme-linked immunosorbent assay (ELISA), but no significant change was observed in all tested
strains (Figure S3). We next determined the content of hydrophobic proteins on the cell surface using
the fluorescent probe bis-ANS (Figure 5B). The ∆luxI strain displayed a significant decrease in the
bis-ANS fluorescence when compared to the wild type, while expression of the luxI gene restored the
fluorescence of the complemented strain to the level of the wild type. Therefore, the ∆luxI strain has
lower amount of hydrophobic proteins than the wild type on the cell surface.
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Figure 5. The QS system regulates bacterial cell surface properties. (A) Cell surface hydrophobicity of
the ∆luxI and its complemented version (∆luxIC). (B) Bis-ANS fluorescence intensity. (C) Scanning
electron micrographs. For (A,B), experiments were performed in three biological replicates, and
similar trends were observed. The representative data from three separate experiments are shown.
Statistical significance of differences was analyzed by t-test: **, p < 0.01; ***, p < 0.001.

Cell morphology was also observed by scanning electron microscopy (SEM) (Figure 5C). Results
showed that the cell surface morphology of the ∆luxI strain was quite different from that of the wild
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type. The wild type strain exhibited a rough cell surface with many extracellular matrix components,
whereas the ∆luxI strain had a smooth cell surface without extracellular matrix components.

3. Discussion

The biochemical pathways for the degradation of PAHs by microorganisms have been extensively
studied in the last few decades [9,12]. In comparison, little is known about the regulatory mechanisms
of the degradative pathways. Recently, the AHL-type QS system was reported to be involved in the
regulation of PAHs degradation in some Gram-negative bacteria. The QS system positively controls
the degradation of PAHs in P. aeruginosa strains through either biofilm formation or induction of
key degradative genes [13,14,23]. In this study, we characterized an AHL-type QS system from
C. naphthovorans PQ-2, a member of the order Sphingomonadales. This QS system positively regulates
PAHs degradation not only by the induction of PAH-degrading genes but also by an increase of cell
surface hydrophobicity (Figure 6).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 15 
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Figure 6. Model for QS regulation on phenanthrene degradation in C. naphthovorans PQ-2. The QS
system positively regulates PAH degradation via multiple mechanisms. The LuxR-AHL complex may
bind to the “lux box” and then directly regulate the transcriptional levels of three PAH-degrading genes,
including ahdA1e, xylE and xylG. The LuxR-AHL complex may also indirectly modulate the expression
of these PAH-degrading genes, which is mediated by the transcriptional regulator ArdR. Moreover,
the QS system enhances bacterial cell surface hydrophobicity (CSH), thus affecting the attachment of
cells to PAHs. Similar to other AHL-type QS systems, the LuxR-AHL complex in PQ-2 has a positive
feedback effect on the expression of luxR and luxI. For clarity, the secretion and uptake of AHLs are
omitted in the model.

The Sphingomonadaceae, the largest family within the order Sphingomonadales, are renowned for their
ability to degrade recalcitrant compounds and xenobiotics including PAHs [10,24]. C. naphthovorans
PQ-2 belongs to the family Erythrobacteraceae, which is the second largest family within the order
Sphingomonadales [17]. Our results demonstrate that C. naphthovorans PQ-2 can degrade PAHs
containing three and four rings, such as phenanthrene, anthracene, fluorene, fluoranthene and pyrene.
Among them, PQ-2 has the highest degradation ability for three-ring molecules phenanthrene and
anthracene. These two PAHs are known to be more susceptible to biodegradation, since they are more
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volatile and more soluble in water [25]. It is unclear whether PQ-2 is capable of using PAHs with five
or more than five rings.

The genes involved in PAHs degradation in the Sphingomonadaceae are very often located on
large plasmids (megaplasmids) [10,23,26]. Consistently, our results show that the large plasmid P1
in C. naphthovorans PQ-2 is responsible for the degradation of phenanthrene. This megaplasmid
possesses a PAH-degrading gene cluster which is composed of 32 open reading frames. There
are several transposase genes located in the flanking regions of the gene cluster, implying that
this cluster may be transferred horizontally from other bacteria. The degradative pathway for
phenanthrene in C. naphthovorans PQ-2 is also in agreement with that in the members of the family
Sphingomonadaceae [8,10,27]. Under aerobic conditions, the aromatic ring-hydroxylating dioxygenase
(including theα subunit AhdA1e and β subunit AhdAle2) catalyzes the initial reaction in the degradative
pathway, resulting in the modification of the aromatic ring. After several steps, C. naphthovorans
PQ-2 degrades phenanthrene to the common intermediate catechol. Subsequently, the catechol 2,
3 dioxygenase XylE and 2-hydroxymuconic semialdehyde dehydrogenase XylG convert catechol to
2-hydroxymuconate, which will be further transformed to TCA cycle (Figure 6).

Although the research on regulation of the PAH-degrading pathways is limited, the existing
studies demonstrated that the AHL-type QS system is involved in the regulation of PAHs degradation
process in P. aeruginosa CGMCC1.860 [13]. The AHL-type QS system in this bacterium directly
and indirectly controls the expression of catechol 2,3-dioxygenase gene, resulting in the enhanced
aromatics biodegradation [13]. Similar results were observed in our studies on C. naphthovorans
PQ-2. The AHL-type QS system in C. naphthovorans PQ-2 positively regulates the expression of three
PAH-degrading genes (including ahdA1e, xylE and xylG), as well as the regulatory gene ardR. It is
worth mention that the upstream regions of these genes contain a conserved “lux box” sequence
(5′-NNCT-N12-AGNN-3′). Therefore, the LuxR-AHL complex may bind to the “lux box” site and
then directly regulate the expression of these target genes, thus affecting phenanthrene degradation
(Figure 6).

The transcription of the three PAH-degradative genes is also regulated by the ardR gene, which is
located within the PAH-degrading gene cluster. The transcriptional regulators for PAHs degradation
have been reported in several Pseudomonas and Novosphingobium species [13,28,29]. It is also possible that
the AHL-type QS system in C. naphthovorans PQ-2 indirectly modulates the expression of PAH-degrading
genes, which is mediated by the transcriptional regulator ArdR (Figure 6). The expression of
PAH-degrading genes may be regulated in a hierarchical manner. The AHL-mediated QS system is
at the apex of the regulatory cascade, while the specific transcriptional regulator sets up the second
cascade driving the expression of PAH-degrading genes.

In addition to up-regulation of the degradative enzymes, our results show that the AHL-type
QS system in C. naphthovorans PQ-2 also positively controls bacterial cell surface hydrophobicity.
Many studies have demonstrated that there is a positive correlation between cell surface hydrophobicity
and PAHs degradation [15,22,30,31]. PAH-degrading bacteria normally have high cell surface
hydrophobicity, which stimulates the direct attachment of bacterial cells to hydrophobic surface
including PAHs and the partition of dissolved PAHs to the cell surface [22]. As a result, PAHs enter into
bacterial cell for biodegradation. Thus, the QS system of C. naphthovorans PQ-2 facilitates the attachment
of bacterial cells to PAHs and then enhances the uptake of PAHs. Once PAHs enter into the cytoplasm
of the bacterial cell, they will induce the expression of PAH-degrading genes and then the degradation
of PAHs (Figure 6). Due to the presence of glycosphingolipids, the cell surface of sphingomonads is
more hydrophobic than those of other bacteria [10]. However, the enhanced cell surface hydrophobicity
in C. naphthovorans PQ-2 is not derived from glycosphingolipids, but related to hydrophobic proteins on
the cell surface. There are many factors that can affect cell surface hydrophobicity. For example, it has
been reported that biosurfactants secreted by Bacillus subtilis and P. aeruginosa enhance bacterial cell
surface hydrophobicity, resulting in higher uptake and use of pyrene [22,32]. The detailed mechanism
in C. naphthovorans PQ-2 needs to be further investigated.
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In contrast to our results, a recent study demonstrated that the AHL-type QS system negatively
regulates phenanthrene removal in N. pentaromativorans US6-1, a member belongs to the family
Sphingomonadaceae [15]. Deletion of the AHL-type QS system in US6-1 increases phenanthrene removal
efficiency. This phenomenon is also related to PAH-degrading genes, since the relative expression
levels of 12 PAH-degrading genes are up-regulated in QS-deficient mutants. Interestingly, QS-deficient
mutants have significantly higher cell surface hydrophobicity, which partially results from the increase
of hydrophobic glycosphingolipids. Therefore, the two AHL-type QS systems play an opposite role in
the regulation of PAHs degradation in N. pentaromativorans US6-1 and C. naphthovorans PQ-2. At present,
the underlying mechanism remains unclear. It should be noted that N. pentaromativorans US6-1 was
isolated from muddy sediment [33], while C. naphthovorans PQ-2 was isolated from marine biofilm [17].
Biofilm-based bioremediation is one of the most efficient approaches for the decontamination of
pollutants [14,34]. Thus, C. naphthovorans PQ-2 has a great potential in bioremediation of PAHs.

4. Materials and Methods

4.1. Bacterial Strains, Plasmids, Primers and Culture Conditions

The bacterial strains and plasmids used in this study are listed in Table 1. The primers used
in this study are listed in Table S1. E. coli and A. tumefaciens A136 (pCF218/pCF372) were grown in
Luria-Bertani (LB) medium at 37 ◦C and 30 ◦C, respectively. For cross-feeding bioassay, C. naphthovorans
PQ-2 was cultured in P5Y3 medium at 30 ◦C [17]. For biodegradation assay, C. naphthovorans was
cultivated at 30 ◦C in marine minimal medium supplemented with phenanthrene (200 mg/L) [17]. When
needed, the medium was supplemented with chemicals at the following concentrations: ampicillin
(Amp), 100 µg/mL; gentamycin (Gm), 50 µg/mL; kanamycin (Km), 50 µg/mL; streptomycin (Sm),
100 µg/mL; 2,6-diaminopimelic acid (DAP), 0.3 mmol/L.

Table 1. Strains and plasmids used in this study.

Strain or Plasmid Description Source or Reference

Strains
C. naphthovorans PQ-2 Wild type [16]

A. tumefaciens A136 (pCF218/pCF372) biosensor strain for medium-/long-chain AHLs [19]
E. coli DH5α Host strain for cloning Lab stock

E. coli BL21(DE3) Expression host for pET28b(+) TransGen Biotech
E. coli WM3064 Donor strain for conjugation [35]

∆luxI Mutant of strain PQ-2 with deletion of luxI This study
∆luxR Mutant of strain PQ-2 with deletion of luxR This study
∆ardR Mutant of strain PQ-2 with deletion of ardR This study
∆P1 Mutant of strain PQ-2 with deletion of the large plasmid This study

∆luxIC Complemented strain of ∆luxI This study
∆luxRC Complemented strain of ∆luxR This study
∆ardRC Complemented strain of ∆ardR This study

Plasmids
pBBR1MCS-5 Gmr, broad-host vector [36]

pET-28b(+) T7 expression vector Novagen
pET-28b(+)-luxI pET-28b(+) containing AHL synthase LuxI This study

pAK405 Kmr, sphingomonad suicide vector [20]

4.2. Expression of AHL Synthase of Strain PQ-2 in E. coli

The full-length sequence of luxI encoding AHL synthase was obtained from the JGI database
(locus tag: Ga0111307_123190). PCR amplification was performed with the primers containing
restriction enzyme sites (Table S1). The resulting PCR product was cloned into the expression vector
pET-28b(+), and then the recombinant plasmid pET-28b(+)-luxI was transformed into E. coli BL21
(DE3). Finally, the recombinant vector was verified by sequencing.
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4.3. Extraction and Analysis of AHLs

The AHLs produced by E. coli and C. naphthovorans were extracted from culture supernatants as
previously described [36,37]. 100 mL of overnight bacterial culture was centrifuged at 8000 rpm for
10 min. The supernatant was extracted three times with an equal volume of acidified ethyl acetate.
The combined extract from the organic phase was evaporated on a rotatory evaporator at 50 ◦C.
The dried residue was dissolved into 1 mL of acidified ethyl acetate and stored at −20 ◦C.

The profile of AHLs was determined using thin layer chromatography (TLC) [36]. Briefly,
the separation of AHL extracts was carried out on a TLC plate (TLC aluminum sheets, 20 cm × 20 cm,
Silica gel 60 F254; Merck, Germany) using methanol–ultrapure water (60:40, v/v) as mobile phase.
After chromatography and air-dry, the plate was covered by LB agar containing the reporter strain
A. tumefaciens A136, which is capable of sensing medium-/long-chain AHLs [19]. X-gal was then spread
onto the LB agar. The profile of AHLs was analyzed after incubation for 24 h at 30 ◦C. All standard AHLs
including C6-HSL, C8-HSL, C10-HSL, 3-OH-C6-HSL, 3-oxo-C6-HSL, 3-OH-C8-HSL, and 3-oxo-C8-HSL
were purchased from Sigma (Bejing, China).

4.4. Cross-Feeding Bioassay

The AHLs produced by bacteria were measured by cross-feeding bioassay as described
elsewhere [16,36]. The tested bacteria and the biosensor A. tumefaciens A136 were streaked in
parallel on LB-P5Y3 plate (containing equal amounts of LB and P5Y3) supplemented with X-gal
(40 µg/mL). The cross-feeding plate was then cultivated at 30 ◦C for 12 h before color visualization.

For analysis of AHL extracts, 2 µL of each AHL extract was dropped onto a sterile filter paper on
the indicator plate. The plate was incubated for 12 h at 30 ◦C and then photographed. C8-HSL and
acidified ethyl acetate were used as positive control and negative control, respectively.

4.5. Markerless Gene Deletion Mutagenesis and Complementation

The gene deletion mutant of C. naphthovorans PQ-2 was constructed by an rpsL-based markerless
gene deletion system [20] with a little modification. In brief, two fragments flanking the target gene
were amplified by PCR with primers containing the restriction enzyme sites and then were joined by
fusion PCR (Table S1). The fusion fragment and the suicide plasmid pAK405 were ligated together by
T4 DNA ligase and transformed into E. coli WM3064 (DAP auxotroph) [35]. The resulting plasmid was
transferred into C. naphthovorans PQ-2 via conjugation. Integration of the mutagenesis constructs into the
chromosome was selected by resistance to kanamycin and verified by PCR. The correct transconjugant
was grown in P5Y3 broth for three days and then plated onto the P5Y3 plate supplemented with
streptomycin. Kanamycin-sensitive and streptomycin-resistant colonies were screened by PCR for
deletion of the targeted gene. Finally, the deletion mutations were verified by sequencing.

The broad-host-range plasmid pBBR1MCS-5 was used for the genetic complementation of
mutants [36]. A fragment containing the gene of interest and its native promoter was amplified by
PCR and then cloned into pBBR1MCS-5. The resulting recombinant plasmid was then transferred into
the corresponding mutant via conjugation.

4.6. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR)

Total RNA from C. naphthovorans strains was isolated using the RNAiso Plus Kit (TaKaRa, Dalian,
China) according to the manufacturer’s instructions. The qRT-PCR analysis was performed with a CFX
Connect Real-Time PCR Detection System (BioRad, Hercules, CA, USA) as described previously [36].
The cycle threshold (CT) values for each gene of interest were normalized against the CT values of
the 16S rRNA gene. The relative expression level of each gene of interest was determined from three
replicates in a single experiment.
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4.7. Analysis of Phenanthrene and Its Metabolites

For phenanthrene analysis, the sample was extracted with ethyl acetate and dried under vacuum.
Then it was dissolved in acetonitrile, filtrated, and subjected to HPLC analysis [38]. The column for
the measurement was InertsilODS-3 C18 column (4.6 × 250 mm, 5 µm), and the mobile phase was
methanol/water (90:10) at a flow rate of 1.0 mL/min using a Waters 2487 dual-wavelength detector.

The phenanthrene metabolites were analyzed by gas chromatography–mass spectrometry (GC-MS),
as previously described [39,40]. For brief, phenanthrene was allowed to degrade for 48 h. The culture
was centrifuged, and the supernatant was then acidified to pH 2.3 with HCl and extracted with ethyl
acetate. The organic phase was extracted three times with an equal volume of NaOH (10 mmol/L).
The remaining organic phase was dried over anhydrous sodium sulfated and concentrated to 5mLof
ethyl acetate (neutral fraction). The aqueous phase was acidified to pH 2.3 with HCl and extracted
with ethyl acetate (acidic fraction). The GC-MS analysis of neutral and acidic fractions was carried out
with/without derivatization.

4.8. Microbial Adhesion to Hydrocarbons (MATH) Test

The MATH test was carried out to determine bacterial cell surface hydrophobicity as described
previously [15,41] with some modifications. After incubation, bacterial cultures were resuspended in
phosphate-buffered saline (PBS) and the OD600 values were measured (OD0). Then, 4 mL of xylene
was added to 8 mL of the suspension. The mixtures were vortexed for 15 s, and allowed phase
separation for 20 min at room temperature. Subsequently, the OD600 of the aqueous phase of the
suspension was measured (OD1). The cell surface hydrophobicity values were calculated according to
the following equation:

Cell surface hydrophobicity (%) = [(OD0 − OD1)/OD0] × 100%. (1)

4.9. Determination of Hydrophobic Proteins Using Fluorescent Dye

The fluorescent probe bis (8-anilinonaphthalene-1-sulfonate) (bis-ANS) was used to determine
hydrophobic proteins [42]. Bacterial cultures were resuspended in PBS (pH = 7.4) and the bacterial
cell density was adjusted to 0.15 at OD600. 30 µL bis-ANS was added to 170 µL of these samples to
achieve a final concentration of 5 µmol/L. The fluorescence intensity of bis-ANS was measured by the
UV-Vis spectrophotometer (Molecular Devices SpectraMax M4, Sunnyvale, CA, USA). The excitation
and emission wavelengths were 385 nm and 530 nm, respectively.

4.10. Scanning Electron Microscopy (SEM)

C. naphthovorans strains were cultivated in marine minimal medium supplemented with
phenanthrene. 1 mL of bacterial culture was centrifuged at 4000 rpm for 5 min. The pellet was
fixed with 4% (v/v) glutardialdehyde overnight at 4 ◦C, washed with PBS and dehydrated by passage
through a graded ethanol series (30%, 50%, 70%, 80%, 90%, and 100%, v/v), subsequently dehydrated
with liquid carbon dioxide and coated with platinum powder. The bacterial cell morphology was
observed with SEM (Hitachi SU8010, Tokyo,Japan) [43].

5. Conclusions

Sphingomonads are biotechnologically interesting organisms for their potential in the
bioremediation of PAHs. This study indicates that the AHL-mediated QS system in C. naphthovorans
PQ-2 positively regulates the degradation of PAHs via two mechanisms: (i) by induction of
PAH-degrading genes expression directly and/or indirectly and (ii) by an increase of cell surface
hydrophobicity. The findings of this study improve our understanding of the involvement of QS
regulation in the degradation of PAHs in Sphingomonads, therefore facilitating the development of
new strategies for the bioremediation of PAHs.
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Abbreviations

QS Quorum Sensing
AHL Acylated Homoserine Lactone
PAHs Polycyclic Aromatic Hydrocarbons
CSH Cell Surface Hydrophobicity
DAP 2,6-Daminopimelic Acid
MATH Microbial Adhesion to Hydrocarbons
CFUs Colony-forming Units
OD Optical Denstity
TCA Tricarboxylic Acid
SEM Scanning Electron Microscopy
TLC Thin Layer Chromatography
ArdR Aromatic Degradation Regulator
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