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Abstract: The composition and organization of the plasma membrane play important functional and
regulatory roles in integrin signaling, which direct many physiological and pathological processes,
such as development, wound healing, immunity, thrombosis, and cancer metastasis. Membranes are
comprised of regions that are thick or thin owing to spontaneous partitioning of long-chain saturated
lipids from short-chain polyunsaturated lipids into domains defined as ordered and liquid-disorder
domains, respectively. Liquid-ordered domains are typically 100 nm in diameter and sometimes
referred to as lipid rafts. We posit that integrin β senses membrane thickness and that mechanical force
on the membrane regulates integrin activation through membrane thinning. This review examines
what we know about the nature and mechanism of the interaction of integrins with the plasma
membrane and its effects on regulating integrins and its binding partners.
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1. Introduction

Biomembranes are a key component of life, as they allow the formation of compartments to
provide conditions required for biochemical reactions, and also provide an interaction platform for
a multitude of key cellular processes. The membranes consist of phospholipids, glycolipids, sterols,
and proteins, arranged in a lipid bilayer. The bilayer architecture is a consequence of the amphipathic
character of its constituents, which in an aqueous environment with polar regions oriented towards
the aqueous phase and hydrophobic regions facing each other.

The concept of the bilayer was first postulated in 1935 [1] and then replaced with the fluid mosaic
model in 1972 [2]. The latter model is in large part still accepted and describes biomembranes as fluid
objects where lipids and proteins are in motion and can freely diffuse along the plane of the lipid
bilayer. One main adjustment to the fluid mosaic model of biomembranes is the fact that they have
a very high protein content [3,4]. This molecular crowding is increasingly described to occur also
in soluble states [5] and drives the separation of phases of distinct contents. The non-homogenous
distribution of proteins within the membrane is amplified further through interactions on either side
of the membrane.

Islands with distinct compositions compared to the rest of the fluid mosaic biomembrane are
considered membrane microdomains. Lipid rafts, wherein the spontaneous partitioning of long-chain
saturated lipids from short-chain polyunsaturated lipids results in thicker liquid-ordered and thinner
liquid-disordered domains, respectively [6,7], as noted by Hansen [8], are the best-characterized
membrane microdomain. The fact that lipid rafts do not solubilize in nonionic detergents like triton
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X-100 at 4 ◦C and are thus called detergent-resistant membranes [9–11] makes them especially difficult
to study.

Lipid rafts are rich in cholesterol and sphingolipids as well as in a variety of proteins [12,13],
including lipid-linked proteins such as glycosylphosphatidylinositol-anchored proteins and signaling
molecules. Thus, they provide an essential platform for cell signaling processes [10] and play important
roles in the regulation of cell adhesion to the extracellular matrix and associated cell migration by
providing a scaffold that concentrates adaptor and scaffolding proteins, as well as the actin cytoskeleton,
effectors, kinases, and receptors to trigger cancer signaling events [14] (Figure 1). By concentrating
signaling molecules such as the src family of non-receptor tyrosine kinases as well as the small GTPase
rac1, lipid raft microdomains regulate the extracellular matrix-mediated cell migration and direct
signaling pathways of cell division, cell shape, cell motility, and cell adhesion [10,13,15–25]. Specifically,
lipid rafts organize signaling molecules and provide platforms for cell adhesion signaling. Several
studies show that integrins are associated with lipid rafts [26–28] and this interaction is important for
triggering signaling cascades upon cell attachment to the extracellular matrix.
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organizing and concentrating signaling molecules to more favorably interact with protein receptors 
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more ordered compared to non-raft regions. 

Cell adhesion to the extracellular matrix is mediated by the integrin transmembrane receptor, a 
heterodimer composed of an α and a β subunit. Integrins attach to extracellular matrix components, 
such as collagen or fibronectin, and assemble a large focal adhesion protein complex that links the 
adhesion sites to the actin cytoskeleton. When bound to the extracellular matrix, integrins transmit 
signals within the cell that control cell spreading, retraction, migration, and proliferation. These 
signals drive many physiological and pathological processes, such as development, wound healing, 
immunity, thrombosis, and cancer metastasis.  

In this review we discuss the role of lipid rafts in integrin-mediated cell adhesion and how lipid 
rafts can affect integrin structure and signaling. Although the importance of lipid rafts in cell 
adhesion has long been recognized, the lack of mechanistic insights has prevented a clear view of 
how lipid rafts are linked to integrin function. Here we focus on recent findings that have helped to 

Figure 1. Schematic of lipid raft organization. The asymmetric plasma membrane contains
phospholipids, glycosphingolipids, cholesterol, and protein receptors that are organized in the thicker
lipid microdomains. These lipid rafts compartmentalize cellular processes and signal transduction by
organizing and concentrating signaling molecules to more favorably interact with protein receptors as
well as effectors. Lipid rafts float freely in the plasma membrane while being packed tighter and more
ordered compared to non-raft regions.

Cell adhesion to the extracellular matrix is mediated by the integrin transmembrane receptor,
a heterodimer composed of an α and a β subunit. Integrins attach to extracellular matrix components,
such as collagen or fibronectin, and assemble a large focal adhesion protein complex that links the
adhesion sites to the actin cytoskeleton. When bound to the extracellular matrix, integrins transmit
signals within the cell that control cell spreading, retraction, migration, and proliferation. These signals
drive many physiological and pathological processes, such as development, wound healing, immunity,
thrombosis, and cancer metastasis.
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In this review we discuss the role of lipid rafts in integrin-mediated cell adhesion and how lipid
rafts can affect integrin structure and signaling. Although the importance of lipid rafts in cell adhesion
has long been recognized, the lack of mechanistic insights has prevented a clear view of how lipid
rafts are linked to integrin function. Here we focus on recent findings that have helped to postulate
a detailed mechanistic model that can explain how lipid rafts selectively include activated integrin
receptors and hence provide a platform for active integrin signaling.

2. Cytoskeletal Rearrangements

The F-actin cytoskeleton interacts and controls many structural and functional aspects of the
membrane lipid rafts. For example, integrin α5 translocation and activation were prevented by the
disruption of the F-actin-based cytoskeleton and knockdown of caveolin-1. Lipid rafts play a role in
many cellular processes including cell proliferation [29–31] and act as a sorting platform for proteins,
especially those involved in cancer (ovarian, prostate, and renal cell carcinoma). Their association
with the actin cytoskeleton drives tumor progression. Thus, molecules that interfere with the
assembly of the actin cytoskeleton with lipid rafts might have anticancer activities. In general,
the cytoskeletal rearrangement that stabilizes lipid rafts and the recruitment of cytoskeletal proteins
to the ordered microdomains facilitates increased intermolecular interactions that are crucial during
the development of cancer. Since cholesterol and saturated sphingolipids increase the rigidity of
lipid rafts, their protein compartmentalization might stabilize interactions of raft components [32].
Tumor suppressors that regulate lipid rafts might reduce the attachment of the cytoskeleton to the
membrane [33]. One such tumor suppressor, the protein that is responsible for neurofibromatosis 2,
termed merlin (or schwannomin or neurofibromin 2), disrupts such membrane interactions with the
actin cytoskeleton [34,35]. The inactive closed merlin conformation is found to be associated with
non-raft regions of the plasma membrane, while merlin activation by severing the merlin head-tail
intramolecular interaction seems to be associated with lipid rafts [36] (Figure 2).
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moesin (ERM) family of proteins that are characterized by their N-terminal four point one, ezrin, 
radixin, moesin (FERM) head domain, a central α-helical domain and a C-terminal tail domain that 
binds to the actin cytoskeleton. The FERM domain is comprised of three subdomains, F1, F2, and F3 
that are arranged in a cloverleaf-like structure (depicted spectrally; F1, orange; F2, yellow; F3, green). 
The C-terminal domain of merlin differs from other ERM proteins and does not contain an F-actin 
binding domain. Left, the tumor suppressor protein merlin is inactive in its closed conformer. Right, 
upon binding to the PI(4,5)P2 that is found in lipid rafts, merlin is activated by severing its head-tail 
interaction, thereby resulting in its open conformation and tumor suppressor functions [35]. 

3. Integrin Structure 

Integrins are single-pass αβ heterodimeric transmembrane receptors that are composed of a 
large extracellular ligand-binding domain and short cytoplasmic tail domains (Figure 3A) [36]. Their 
single transmembrane α-helices engage in intermolecular interactions when integrin is in its resting 
state. Upon activation with extracellular ligands (Figure 3B,C), integrins change from their low-
affinity binding to their high-affinity binding state, which modifies cell adhesion [37].  

Structural studies on many integrins showed that this integrin exists in a continuous 
conformational equilibrium ranging from a compact conformation to a fully extended conformer 
with the cytoplasmic tail domains separated upon binding to extracellular ligands [38–59]. High-

Figure 2. Proposed merlin activation mechanism in lipid rafts. Merlin belongs to the
ezrin-radixin-moesin (ERM) family of proteins that are characterized by their N-terminal four point
one, ezrin, radixin, moesin (FERM) head domain, a central α-helical domain and a C-terminal tail
domain that binds to the actin cytoskeleton. The FERM domain is comprised of three subdomains, F1,
F2, and F3 that are arranged in a cloverleaf-like structure (depicted spectrally; F1, orange; F2, yellow;
F3, green). The C-terminal domain of merlin differs from other ERM proteins and does not contain an
F-actin binding domain. Left, the tumor suppressor protein merlin is inactive in its closed conformer.
Right, upon binding to the PI(4,5)P2 that is found in lipid rafts, merlin is activated by severing its
head-tail interaction, thereby resulting in its open conformation and tumor suppressor functions [36].

3. Integrin Structure

Integrins are single-pass αβ heterodimeric transmembrane receptors that are composed of a large
extracellular ligand-binding domain and short cytoplasmic tail domains (Figure 3A) [37]. Their single
transmembrane α-helices engage in intermolecular interactions when integrin is in its resting state.
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Upon activation with extracellular ligands (Figure 3B,C), integrins change from their low-affinity
binding to their high-affinity binding state, which modifies cell adhesion [38].
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at focal adhesions, which regulates integrin activation. (A), inactive integrin localized to non-raft 
regions of the plasma membrane. (B), activated integrin localizes to lipid rafts. (C), integrin clustering 
at focal adhesions in lipid rafts. 

We posit that thicker membranes might force integrin repartitioning. The membrane bilayer 
clearly plays a role in the integrin activation process [66]. For example, the binding of cholesterol to 
glycosylphosphatidylinositol-anchored proteins and lymphocyte function-associated antigen 1 
(LFA-1) integrin (also known as integrin αLβ2 or CD11a/CD18) was visualized by single-molecule 
near-field optical microscopy in immune cells [67]. Additionally, upon binding to lipid raft 
components, the integrin conformation is altered [36,68,69] and thus function. For example, active 
integrin α4 of integrin α4β1 bound cholesterol to then mediate adhesion of T lymphocytes [70].  
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Figure 3. Integrin adhesion and signaling are linked to the recruitment of integrins to lipid rafts.
Several integrins have been found in lipid rafts, whereby the activated form of integrin preferably
localizes to cholesterol-enriched lipid rafts. The cholesterol-rich membrane domains cluster integrin at
focal adhesions, which regulates integrin activation. (A), inactive integrin localized to non-raft regions
of the plasma membrane. (B), activated integrin localizes to lipid rafts. (C), integrin clustering at focal
adhesions in lipid rafts.

Structural studies on many integrins showed that this integrin exists in a continuous conformational
equilibrium ranging from a compact conformation to a fully extended conformer with the cytoplasmic
tail domains separated upon binding to extracellular ligands [39–60]. High-resolution structural data are
perhaps more available for the inactive integrin conformer and for the transmembrane domains, where
we know that the longer transmembrane α-helix of the β subunit is tilted relative to the shorter α-helix
of the α subunit that it binds to [61] (Figure 3A). In the active integrin conformation, it is thought that
the angle of the transmembrane α-helix of the β subunit is distinct from that of its tilt seen in the inactive
when bound to the α subunit [62]. Hinging movements of the integrin transmembrane domains during
integrin activation were speculated over two decades ago [40,41,44,63,64]. For example, movements of
the membrane proximal region in and out of the membrane were suggested to provide a venue for
integrin signaling [65]. The nuclear magnetic resonance (NMR) structure of the transmembrane domain
of integrin β3 in phospholipid bicelles and detergent micelles revealed that it forms a 30-residue
α-helix that is embedded in the hydrophobic bicelle core. The length of this transmembrane α-helix
suggested a pronounced tilt within a typical lipid bilayer, whereby the charged lysine (residue 716)
snorkels out of the lipid core while hydrophobic residues (residues 717 through 721), in particular
leucines, remain immersed in the membrane. This NMR structure of the transmembrane domains
of the non-covalently-associated integrin αIIbβ3 in small bicelles also revealed that a so-called inner
membrane clasp (IMC) stabilizes the integrin heterodimer at the intracellular side, while this role
is performed by the ectodomain and outer membrane clasp (OMC) on the extracellular side [66].
The structure suggested a straight α-helix for integrin α and an α-helix tilt of ~25◦ for integrin β.
The α-helix tilt of integrin β might control bidirectional transmembrane signaling and changes in the
thickness of the membrane seem to affect integrin signaling by modulating the tilt angle.

We posit that thicker membranes might force integrin repartitioning. The membrane bilayer
clearly plays a role in the integrin activation process [67]. For example, the binding of cholesterol
to glycosylphosphatidylinositol-anchored proteins and lymphocyte function-associated antigen 1
(LFA-1) integrin (also known as integrin αLβ2 or CD11a/CD18) was visualized by single-molecule
near-field optical microscopy in immune cells [68]. Additionally, upon binding to lipid raft components,
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the integrin conformation is altered [37,69,70] and thus function. For example, active integrin α4 of
integrin α4β1 bound cholesterol to then mediate adhesion of T lymphocytes [71].

4. Integrin Signaling

Integrins are bidirectional transmembrane signaling and adhesion metalloprotein receptors
involved in cell survival, cell migration, cell proliferation, and cell differentiation [72,73]. Integrins play
key roles in hematopoiesis, vascular development, immune and inflammatory responses, as well as
hemostasis and arterial thrombosis. By binding to the extracellular matrix, integrins regulate cellular
responses to several physical and chemical cues [74] that control a variety of biological processes.
The binding of integrins to extracellular ligands is stabilized by the binding to intracellular scaffolding
proteins such as vinculin or talin, thereby linking integrins to the actin cytoskeleton and mediating
mechano-transduction [75,76].

Integrins signal in both directions with distinct biological outcomes (Figure 4). Inside-out integrin
signaling is initiated by the binding of an intracellular activator. For example, the binding of talin
or kindlins to the integrin β cytoplasmic tail domain leads to conformational changes that activate
integrins by increasing the integrin affinity for extracellular ligands. The resulting strong interactions
between integrins and the extracellular matrix enable integrins to transmit forces for extracellular
matrix remodeling and assembly as well as cell migration.
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5. Lipid Rafts in Integrin Partitioning 

Lipid rafts are involved in integrin-mediated signal transduction pathways initiated by cell 
adhesion [15,77,78], as well as in integrin clustering at focal adhesions, which regulates integrin 
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Figure 4. Integrins signal in both directions with different outcomes. Left, inside-out integrin signaling
is initiated by the binding of an intracellular activator such as talin or kindlin to the integrin β

cytoplasmic tail domain. This leads to conformational changes that activate integrins by increasing
the integrin affinity for extracellular ligands. The resulting strong interactions between integrins and
the extracellular matrix enable integrins to transmit forces for extracellular matrix remodeling and
assembly as well as cell migration. Center, in its inactive, low-affinity state, the integrin is in a bent
conformation. Right, during traditional outside-in signaling, multivalent extracellular ligands bind to
integrins, thereby causing a conformational change and integrin clustering.

In contrast, during traditional outside-in signaling, extracellular ligands bind to integrins,
causing a conformational change and integrin clustering due to the multivalent nature of the ligands.
Both inside-out and outside-in signaling lead to the regulation of cell polarity, cell survival, and cell
proliferation, as well as gene expression and the remodeling of the actin cytoskeleton [77]. There are
several proteins that interact with integrins within lipid rafts and an important question remains,
how mechanistically lipid rafts affect these processes.
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5. Lipid Rafts in Integrin Partitioning

Lipid rafts are involved in integrin-mediated signal transduction pathways initiated by cell
adhesion [16,78,79], as well as in integrin clustering at focal adhesions, which regulates integrin
activation (38). Lipid rafts regulate integrin signaling by partitioning activated integrins in
microdomains where they form specific interactions with upstream and downstream signaling
molecules [80–82]. The recruitment of integrins α4β1 and αLβ2 to lipid raft domains occurs specifically
during inside-out signaling, upon binding to and activation by extracellular matrix ligands [71].
These integrins are excluded from lipid rafts without stimulation but mobilized to the lipid raft
compartment upon stimulation [71]. In oligodendrocytes, activation of integrin α6β1 with manganese
increases integrin α6β1 concentration in lipid rafts [83]. Lipid rafts might sequester activated integrins
by providing a more favorable membrane environment for the distinct conformation of activated
integrins since it is the activated form of integrin that preferentially localizes to the cholesterol-enriched
membrane lipid rafts [83] (Figures 3 and 4). While little is known about the interaction of the integrin
transmembrane α-helices with membrane lipids, an invariant lysine at the C-terminus of both integrin
subunits seems to be important for the lateral mobility of integrins in the membrane [65].

Several integrins have been found in lipid rafts, such as integrins LFA-1 [26,71], αVβ3 [27],
α6β4 [84], and β1 [85,86], also in α6β1 [87]. Platelet integrin αIIbβ3 partitions in the
1,2-dioleoyl-sn-glycero-3-phosphocholine-rich liquid-disordered phase and is excluded from the
cholesterol- and sphingomyelin-rich liquid-ordered phase [88]. Interestingly, activated platelets form
lipid rafts that act as foci and integrate adhesion and signaling molecules [89]. In leukocytes, integrin
activation leads to lipid raft association, which again has a role in cell adhesion [71]. Further, integrin α5
translocates into lipid rafts upon activation [90]. In rat fibroblasts, changes of phospholipids, cholesterol
levels, and membrane fluidity reduced binding of integrin α5β1 to fibronectin at focal adhesions [91].
In T cells, integrins α4β1 and αLβ2 colocalize with the ganglioside lipid raft marker [71]. Cell surface
integrins have also been shown to localize to lipid rafts [16,26,27,71]. Integrins α6β4 and αLβ2 are
enriched in lipid rafts, whereby integrin α6β4 localized in rafts promotes movement of integrin α6β4
to the rafts [92].

Loss of cell adhesion alters the localization and raft partitioning of many non-raft molecules [93],
including integrins [16,26,27,71]. In migrating cells, lipid rafts preferentially localize at the leading edges
where new integrin-mediated adhesion to the extracellular matrix sites is occurring [94]. For example,
during tumor cell migration of melanoma cells, lipid rafts control lamellipodia formation through
the cytoskeleton-mediated recruitment of integrins β1 and β3 to the leading edge [95]. Additionally,
lipid rafts might play a crucial role in platelet-derived growth factor receptor α-mediated regulation of
differentiation based on integrin partitioning. For example, in oligodendrocytes, the platelet-derived
growth factor receptor α binds to integrin αVβ3, thereby promoting proliferation. Upon differentiation,
most of platelet-derived growth factor receptor α localizes to rafts, where it binds to integrin α6β1,
thereby switching to survival [87]. Further, integrin-mediated adhesion signaling appears to be
involved in various causes of neural injury [96]. Integrin αVβ3 is upregulated in astrocytes upon neural
injury and inflammation, leading to astrocyte activation and migration via αVβ3 integrin interactions
with the receptor thymocyte differentiation antigen 1 (Thy-1)/cluster of differentiation 90 (CD90) in
neurons [97]. In this process, αVβ3 integrin restricts Thy-1/CD90 into nanoclusters, which activates
neural signaling via RhoA and Rho-associated protein kinase (ROCK) to induce altered actin dynamics
and neurite retraction [98].

6. Integrins and Lipid Raft Components

Integrin-mediated cell adhesion requires intact membrane domains and is dependent
on the lipid raft components such as cholesterol, phospholipids, sphingolipids,
glycosylphosphatidylinositol-anchored proteins, and the actin cytoskeleton [18,99], as well as
divalent cations such as calcium and manganese [100]. Despite decades of studies on integrin
activation, the roles that the lipids play in the plasma membrane, in integrin inside-out and
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outside-in activation steps, have not been fully studied, probably due to the difficulty of working
with detergent-resistance membranes. Biochemical experiments might be aided by the use of lipid
compositions that more closely resemble the platelet cell membrane by having biomimetic lipid
compositions of the platelet membrane [101,102]. In recent years, some insights into the interactions
between integrins and lipid raft components have been described. The first lipid ligand for integrin,
oxysterol 25-hydrocholesterol, was recently shown to bind to integrins α5β1 and αVβ3, but this ligand
binds to the integrin headpiece, thereby activating integrin and the focal adhesion kinase pathway [103].
Caveolin-1, the major lipid raft marker, was also found in high concentrations in integrin α6β4
fractions, an interaction which contributed to tissue regeneration via the lipid raft-mediated integrin
signaling pathway [104].

7. The Role of Cholesterol

Cholesterol is found in both leaflets of the membrane bilayer [105]. Its concentration directly
influences integrins such as integrins αVβ3 and α5β1 [27,91] by affecting both adhesion and signaling
by integrins. There is a strong correlation between membrane cholesterol and integrin signaling and
adhesion, given that integrin assembly at cellular focal adhesions is dependent on the membrane
cholesterol level [16]. While focal adhesions are highly enriched in cholesterol, cell detachment
internalizes lipid rafts and decreases lipid order and the membrane cholesterol level. Further,
a synthetic bile acid-phospholipid conjugate that inhibits integrin causes integrin internalization via
lipid rafts [106]. Indeed, integrin β1 colocalizes with cholesterol in lipid rafts while ionizing radiation
separates integrin β1 from cholesterol rafts [107]. Clearly, integrin adhesion and signaling correlates
with the recruitment of these membrane proteins to lipid rafts.

Integrin-mediated cell adhesion to the extracellular matrix regulates the localization of
cholesterol-enriched vesicles to the membrane [93], resulting in altered membrane composition.
The high concentration of cholesterol in focal adhesions increases the membrane order, and adhesion
sites in general have a similarly high membrane order as seen in rafts [108] and a higher order
compared to caveolae [108]. Cell detachment triggers the internalization of cholesterol accompanied
by decreased lipid order and plasma membrane cholesterol concentrations, as well as the lipid raft
marker, glycophosphatidylinositol-anchored protein [16]. Further, during heart disease and metabolic
disorders, cholesterol increases in the tissue [109–112] and this likely is affecting integrin signaling
through lipid raft regulation [111].

Integrin sequestration changes are also dependent on cholesterol concentrations in lipid rafts [113].
Ligands and bilayer asymmetry influence the sequestering of integrin into rafts and suggest a role of
lipid packing and bilayer thickness that characterize the liquid-ordered and liquid-disordered domains
in integrin sequestering. For example, integrin αVβ3 is sequestered into the liquid-disorder region
in the absence of ligands but into the liquid-ordered domains upon binding to vitronectin. Despite
the clear significance of cholesterol in integrin sequestering and recruitment during raft-mediated
integrin adhesion and signaling, little is known about this biophysical regulation, probably due to the
challenges attributed to the size and transient nature of raft domains in the plasma membrane [22,114].

Recent data showed that systematic changes in the membrane cholesterol concentration impact the
sequestration of integrin αVβ3 in coexisting liquid-ordered and liquid-disordered domains, thus being
qualitatively distinct in sequestering in the absence and presence of its native ligand vitronectin [113].
Nevertheless, the role of cholesterol in integrin sequestration and recruitment during lipid membrane
raft-mediated integrin signaling and adhesions remains poorly understood, perhaps partly due to the
small size and transient nature of raft domains [22,114].

8. Integrin-Glycosphingolipids Interactions

Mixtures of cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphocholine, and
dipalmitoylphosphatidylcholine form coexisting liquid-ordered and liquid-disordered domains,
whereby molar concentrations influence integrin αVβ3 sequestration regardless of its ligand
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vitronectin and without clustering [113]. Significantly, focal adhesions have high concentrations of
cholesterol [108] and can thus play a role in regulating integrin function [16]. Additionally, focal
adhesions sense force and alter in size upon environmental stimuli during cell spreading and cell
migration, whereby integrins diffuse into and out of focal adhesions [115–117].

Glycosphingolipids that are mainly in the outer leaflet also modulate integrin activity [118],
whereby galacto-gluco-ceramide-mono-N-acetyl neuramic acid directly binds to integrin α5β1.
Clustering of ganglioside-enriched lipid rafts regulate the activity of integrin β1 [119]. Further,
integrin α5 was found to be the protein most elevated from lipid rafts of endothelial cells that was
exposed to oscillatory shear stress, which also increased the level of activated integrin α5 regulated
by membrane cholesterol and fluidity [120,121]. Lipid raft molecules dissociate upon cholesterol
removal [122]. In vivo studies suggested a mechano-transduction mechanism that is integrin- and
raft-dependent [120].

9. Role of Raft Thickness

In addition to native ligands, the bilayer asymmetry also influences the sequestration of integrins
in raft-mimicking liquid mixtures [123,124]. The bilayer asymmetry dependency during integrin
sequestration demonstrates the significance in the different lipid packing and bilayer thickness between
liquid-ordered and liquid-disordered domains. As discussed above, cholesterol might regulate integrin
distribution by changing the bilayer thickness and lipid packing densities in liquid-ordered and
liquid-disordered domains. The cholesterol-mediated integrin sequestration is due to the bilayer
thickness of coexisting liquid-ordered and liquid-disordered domains, whereby cholesterol might
regulate the distribution of integrin αVβ3 by altering the bilayer thickness and lipid packing densities
of the liquid-disordered and liquid-ordered domains [113].

The greater thickness of the ordered lipid structure in the raft domain compared to the non-raft
membrane could be more favorable for the activated integrin transmembrane domain structure.
Thereby, lipid rafts might stabilize the activated integrin conformation. In analogy with the immune
system and the T cell receptor activating components of the signaling complex pre-assembled in the
lipid rafts, these microdomains might provide a favorable environment in integrin clustering and
maintaining downstream signaling [125].

The lipid bilayer separates its components laterally [6] and the domain formation is controlled by
the bilayer thickness mismatch [126,127]. Cholesterol enhances lipid packing and bilayer thickness,
whereby 29 mol% of cholesterol in a 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer increases its
thickness by 2.8 Å [128]. This affects the hydrophobic matching conditions between the thicknesses of
hydrophobic membranes versus the transmembrane region of membrane proteins. The regions of thick
and thin membranes within the plasma membrane result from spontaneous partitioning of long-chain
saturated lipids from short-chain polyunsaturated lipids into liquid-ordered and liquid-disordered
domains [6,7]. While the reorganization of lipid phases and integrins plays a role in cell adhesion [6,71],
it is unclear whether the liquid-ordered or liquid-disordered phases drive integrin reorganization.
Integrin imaging by direct stochastic optical reconstruction microscopy (dSTORM) and stimulated
emission depletion (STED) showed that the active and inactive forms of integrin β1 are localized
to distinct types of clustering, but with which lipid domains the integrins were associated was not
determined [129]. Since the membrane order is decreased by the detachment of integrin-mediated
adhesion from a substrate [93,108], adhesion likely causes the transition from the liquid-ordered or
liquid-disordered phase (Figure 3). In the absence of vitronectin, integrin αVβ3 shows a preference
for liquid-disordered domains [113], which suggests a significance of domain-specific lipid packing
as a biophysical regulator of integrin sequestration. Indeed, incorporation of membrane-spanning
proteins into the cholesterol-enriched microdomains is energetically unfavorable [130] and not due
to the hydrophobic mismatch, since the thickness of the integrin α and β transmembrane α-helices
are 31.6 ± 3.4 and 30.0 ± 3.6 Å, respectively (https://opm.phar.umich.edu/), which is similar to the
hydrophobic thickness of the liquid-disordered phase (33 ± 1 Å). However, upon binding to vitronectin,
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integrin αVβ3 translocates to the liquid-ordered domain, which is not due to the lipid packing
differences, as here the hydrophobic mismatch is significant with the liquid-ordered thickness of
38 ± 1 Å [131] representing the biophysical mechanism of integrin sequestration. Thus, integrins might
adjust their structure to overcome the hydrophobic mismatch as seen, for example, for rhodopsin,
which adjusts its conformation or oligomerizes according to the bilayer thickness [132]. Interestingly,
mutations of integrin αIIbβ3 that affect integrin activation [63] have perturbed transmembrane α-helix
packing with crossing angles of the two integrin transmembrane α-helices 10◦ for the mutant, compared
to 35◦ for the wild type [133].

Integrin α5β1 plays important physiological roles in metabolic syndrome and coronary heart
disease. For example, inflammation activates β1 to cause contraction of endothelial cells and vascular
leakage [134]. Inflammation also causes an influx of cholesterol, which potently alters lipid raft
structures [111] and the thickness of the membrane. The transmembrane interactions of the α and
β subunits keep integrin in its inactive, low affinity conformer [49,63,135,136]. In this inter-subunit
interaction, integrin β is tilted by at least 25◦ [62,66,137,138] (Figures 3 and 4). For integrin β, the thicker
rafts might accommodate activated integrin by decreasing the integrin β transmembrane tilt [139].
However, this mechanism does not seem possible for integrin α, which is already almost completely
straight in its inactive conformer [66,138]. Therefore, integrinαmight instead overcome its hydrophobic
mismatch in the thicker rafts by oligomerization (Figures 3 and 4). Indeed, transmission electron
microscopy of purified integrin αIIbβ3 showed clear dimers and trimer when incubated with activating
manganese, which were not seen when incubated with calcium [140]. An integrin αIIb homodimer
model confirmed this possibility [141] and a peptide of its transmembrane region oligomerizes in
sodium dodecyl sulfate-polyacrylamide gel electrophoresis [142]. Integrin αα and ββ homodimers
were found in zwitterionic or acidic micelles [143] as well as in biological membranes [141,143,144],
which might function in integrin clustering by binding to multivalent ligands [49,145].

In general, the dimerization of transmembrane α-helices is energetically driven by the
hydrophobic mismatch [146]. For example, the thickness of the lipid bilayer influences the
monomer-dimer equilibrium of glycophorin A that dimerizes most efficiently under hydrophobic
matching conditions [147]. That study further showed that cholesterol promoted self-association of
transmembrane α-helices by affecting the order of the lipid acyl chains. Indeed, the lipid acyl chain
order generally determines the strength and stability of transmembrane helix-helix interactions [140].
Alternatively, clustering in itself might drive the ordering of lipids and thus create a lipid raft, given
that areas of higher lipid order would tend to fuse and thereby favoring the clustering of signaling
molecules [83]. While the role of anionic lipids in inside-out signaling is starting to be appreciated,
the molecular mechanisms remain controversial [148–150].

10. Phosphatidylinositol 4,5-Bisphosphate (PI(4,5)P2) Lipid Microdomains

Another form of lipid organization occurs with negatively charged phospholipids, such as
phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which plays key roles in cell adhesion. PI(4,5)P2

is present in the inner leaflet of the plasma membrane at relatively low concentrations overall (~1%
in average), but is enriched at focal adhesion sites by the enzyme phosphatidylinositol 4-phosphate
5-kinase type Iγ (PIP5KIγ) [151,152]. The longer PIP5KIγ668 isoform (human numbering) contains
additional C-terminal residues that target the enzyme to focal adhesions by interacting with the talin
head domain [153,154]. In the presence of bivalent cations or basic peptides, PI(4,5)P2 can cluster into
microdomains with a very high PI(4,5)P2 content [155,156]. Formation of PI(4,5)P2 microdomains was
demonstrated in model membrane systems in the presence of calcium and to a lesser extent with
magnesium [155,157], but has also been observed in cells [158,159]. Using super-resolution stimulated
emission depletion microscopy, PI(4,5)P2 microdomains were observed in pheochromocytoma (PC)
12 cells associated with the SNAP receptor protein syntaxin-1A and were found to have a size of
approximately 70 nm and an estimated PI(4,5)P2 content as high as 82% [159].
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How these PI(4,5)P2 microdomains interact or coexist with cholesterol-rich lipid rafts has been a
matter of debate. Initial studies suggested that PI(4,5)P2 partitions into lipid rafts based on the fact
that depletion of cholesterol lead to delocalization of PI(4,5)P2 microdomains [160]. This view was
supported by the fact that several signaling events are apparently triggered by both lipid rafts and
associated PI(4,5)P2 microdomains [161,162]. However, other studies have refuted the existence of
PI(4,5)P2 inside lipid rafts [163], arguing that the unsaturated acyl chains found in PI(4,5)P2 would
indeed not seem compatible with an ordered lipid raft domain. Nevertheless, multiple studies show that
cholesterol promotes PI(4,5)P2 clustering into microdomains [164–166]. The exact mechanism for this is
unclear, but altering the charge state of PI(4,5)P2, providing hydrogen bonds to the PI(4,5)P2 headgroup,
or altering the lateral mobility of PI(4,5)P2 have been suggested as possible reasons [164,165,167].

Several of the core focal adhesion proteins interact with PI(4,5)P2, including talin, vinculin,
and focal adhesion kinase [148,168–173]. In all these cases, PI(4,5)P2 binding induces conformational
changes, which result in enhanced adhesion strength by talin and vinculin [149,174] or increased
adhesion signaling via focal adhesion kinase [175,176]. As discussed above for lipid rafts, an intriguing
question is whether PI(4,5)P2 microdomains may play a role in integrin clustering and/or assembly
and stabilization of the mature focal adhesion complex. This might occur either via colocalizing
focal adhesion proteins to PI(4,5)P2 membrane domains due to the high local density of PI(4,5)P2,
or by inducing more stable protein assemblies, such as oligomeric states of focal adhesion proteins.
Interestingly, PI(4,5)P2 is found to induce oligomerization and clustering in various systems also outside
focal adhesions, including the adhesion molecule CD44 or the serotonin transporter SERT [177,178].
In focal adhesions, PI(4,5)P2 is shown to promote oligomerization of vinculin and focal adhesion
kinase. In the case of vinculin, PI(4,5)P2 bridges vinculin molecules via different binding sites to
promote higher-order oligomers [170,171,173], whereas for focal adhesion kinase, binding to PI(4,5)P2

induces conformational changes that promote focal adhesion kinase oligomers via protein/protein
interactions [175]. Whether such effects can contribute to integrin clustering is unclear, but based on
observations discussed above, the presence of high density PI(4,5)P2 microdomains can be expected to
have important roles in adhesion stability, maturation, and signaling via a number of mechanisms,
such as promoting colocalization, oligomerization, and conformational changes in a number of focal
adhesion proteins.

11. The Role of Integrin Acylation

In general, acylation (addition of myristol or palmitoyl) but not prenylation (addition of farnesyl
or geranyl-geranyl) targets proteins to lipid rafts [179,180]. Myristoyl or prenyl group attachment
mainly results in higher affinity for membranes and promotes intramolecular and intermolecular
protein-protein interactions [181]. While geranylgeranyl can anchor proteins in the membrane, farnesyl
cannot [181]. For example, integrin β4 is palmitoylated on several cysteines (residues 732, 736, 738,
742) at the membrane-proximal segment of the β4 tail [84,182–184], residues that are not conserved in
platelet integrin β3 [62], which is important for membrane binding and lipid raft localization [181]
and is necessary for integrin α6β4 incorporation into lipid rafts where it interacts with growth factor
receptors and enhances invasiveness of cancer cells [84,185,186]. Further, palmitoylation of integrins
α3, β4, and α6 affects their interaction with tetraspanin [185,187].

Integrins α3β1 and α6β1 are not palmitoylated [84] and might associate with tetraspanins [188]
which are palmitoylated and could promote integrin incorporation into lipid rafts [84]. The concept
that a palmitoylated protein moves between a ganglioside (GM1) raft and PI(4,5)P2 domains was
first described by Hansen [189]. While palmitoylation of integrin β4 is necessary for integrin
α6β4 incorporation into lipid rafts, it is not required for its binding to laminin-5 nor assembly of
hemidesmosomes or adhesion [84]. This again suggests that the membrane plays a role in integrin
activation. More studies are required to better understand the role and mechanism of acylation of
integrins during integrin activation.
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12. Conclusions and Future Directions

Lipid rafts regulate signaling pathways such as integrin signaling by partitioning activated
integrins in these microdomains where they form specific interactions with upstream and downstream
signaling molecules. Lipid rafts might sequester activated integrins by providing a more favorable
membrane environment for the distinct conformation of activated integrins. Two decades ago, tilting of
the transmembrane domain of inactive integrins was predicted and then confirmed experimentally [61].
At the same time, a slight movement of one or both integrin transmembrane domains in and out
of the membrane with interacting proteins to mask exposed integrin transmembrane regions was
already noted as a mechanism for integrin activation [65,190]. However, despite decades of studies
on integrin activation, the roles that the lipids in the plasma membrane play in these inside-out and
outside-in activation steps are still not fully understood. The complex lipid/protein environment
in lipid rafts is challenging to reconstitute in vitro, hence no high-resolution structural information
is currently available that could provide detailed mechanistic insight into lipid-mediated integrin
activation. Future advances that will help to better understand the lipid raft structure and what exactly
stabilizes them together with the recent revolution in cryogenic electron microscopy are likely to
provide such insights at atomic detail. Such studies will be directly relevant to our understanding of
complex diseases in humans.
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