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Abstract: Aim: Obesity is associated with metabolic syndrome, hypertension, dyslipidemia,
nonalcoholic fatty liver disease (NAFLD), and type 2 diabetes. In this study, we investigated
whether the dietary supplementation of pomegranate seed oil (PSO) exerted a protective effect on
liver lipid uptake, fibrosis, and mitochondrial function in a mouse model of obesity and insulin resistance.
Method: In this in vivo study, eight-week-old C57BL/6J male mice were fed with a high fat diet (HFD) for
24 weeks and then were divided into three groups as follows: group (1) Lean; group (n = 6) (2) HF diet;
group (n = 6) (3) HF diet treated with PSO (40 mL/kg food) (n = 6) for eight additional weeks starting at
24 weeks. Physiological parameters, lipid droplet accumulation, inflammatory biomarkers, antioxidant
biomarkers, mitochondrial biogenesis, insulin sensitivity, and hepatic fibrosis were determined to examine
whether PSO intervention prevents obesity-associated metabolic syndrome. Results: The PSO group
displayed an increase in oxygen consumption, as well as a decrease in fasting glucose and blood pressure
(p < 0.05) when compared to the HFD-fed mice group. PSO increased both the activity and expression of
hepatic HO-1, downregulated inflammatory adipokines, and decreased hepatic fibrosis. PSO increased the
levels of thermogenic genes, mitochondrial signaling, and lipid metabolism through increases in Mfn2,
OPA-1, PRDM 16, and PGC1α. Furthermore, PSO upregulated obesity-mediated hepatic insulin receptor
phosphorylation Tyr-972, p-IRB tyr1146, and pAMPK, thereby decreasing insulin resistance. Conclusions:
These results indicated that PSO decreased obesity-mediated insulin resistance and the progression
of hepatic fibrosis through an improved liver signaling, as manifested by increased insulin receptor
phosphorylation and thermogenic genes. Furthermore, our findings indicate a potential therapeutic role
for PSO in the prevention of obesity-associated NAFLD, NASH, and other metabolic disorders.
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1. Introduction

According to the World Health Organization (WHO), obesity is defined as an abnormal or
excessive accumulation of body fat that increases the risk of many health problems. In the United States,
obesity affects 33% of the population, and the prevalence is expected to increase to 50% by 2030 [1].
Obesity is associated with an increased risk of metabolic syndrome, type 2 diabetes, hypertension,
and cardiovascular disease [1–3]. The metabolic syndrome causes a spectrum of liver injury resulting in
nonalcoholic fatty liver disease (NAFLD), which can progress to non-alcoholic steatohepatitis (NASH),
fibrosis, and hepatocellular carcinoma [4,5]. Many pathways that are attributable to this complex
pathophysiology are under investigation for drug development, with a focus on treating inflammation,
as well as improving metabolic pathways and slowing or reversing liver fibrosis.

Recent studies have shown that oxidative stress and inflammation have been implicated in the
progression of obesity and metabolic syndrome [6–8]. Oxidative stress is triggered by an imbalance
between pro-oxidants such as reactive oxygen species (ROS), heme, and antioxidants like heme
oxygenase (HO) [5–7]. Obesity produces oxidative stress through the increased generation of ROS,
resulting in cytotoxicity [9–11]. Therefore, the upregulation of heme and ROS due to a decreased HO
activity increases pre-adipocyte differentiation, as well as adipogenesis and the release of inflammatory
adipokines such as nephroblastoma overexpressed gene (NOV), tumor necrosis factor-α (TNFα),
and Interleukin-6 (IL-6) [11–13]. Interestingly, an increased ROS production does not increase HO-1
expression, leading to the resultant development of obesity and metabolic syndrome [10,11,14]. Recently,
a novel adipokine, NOV, a member of the family of the cellular communication network (CCN), has been
shown to be upregulated in HFD-fed mice [15,16]. The deletion of NOV improved glucose tolerance
through an increase in mitochondrial biogenesis [16,17]. Conversely, the upregulation of NOV results
in an increased adiposity, as well as increased plasma levels of cholesterol and triglycerides [15,16].
Obesity releases free fatty acids (FFA) that trigger the Toll-like receptor 4 (TLR4) signaling pathway,
resulting in the activation of the nuclear factor-kappaB (NF-κB), a master transcription regulator in
the production of pro-inflammatory cytokines, TNF-α [18–20]. TNF-α decreases insulin sensitivity,
promotes powerful inflammatory mediators, specifically IL-6, and decreases anti-inflammatory
cytokines such as adiponectin [19,20]. Thus, inflammatory adipokines such as NOV, TNF-α, and IL-6
have emerged as key regulators of obesity and insulin resistance. Matrix Metalloproteinase (MMP)
is a group of enzymes that are zinc- and calcium-dependent endoproteinases that can degrade the
extracellular matrix [21,22]. Obesity-associated liver inflammation and oxidative stress upregulate the
expression of MMP-2 and MMP-9 [21,23]. MMP-2 and MMP-9 are known as gelatinase for their ability
to degrade collagen type II and type IV, the major constituents of the basement membrane [23,24].
The destruction of the basement membrane results in dysfunction in the extracellular matrix, resulting
in hepatic fibrosis [21,23]. Thus, the inhibition of MMP can have a potential therapeutic role in the
progression of liver fibrosis.

Recently, there has been growing interest in examining natural antioxidants found in dietary plants,
which may have beneficial effects on metabolic disease. Previous studies have reported that curcumin,
black seed oil, and resveratrol have beneficial effects on insulin sensitivity and on the inhibition of
inflammation [25–28] Natural substances such as pomegranates may be beneficial towards combating
obesity [29,30]. Pomegranate juice contains antioxidants such as polyphenols (0.2–1%), tannins, punicic
acid, and ascorbic acid [31,32]. Although the essential oil extracted from pomegranate contains a
rich fraction of these antioxidants and is superior to pomegranate juice, it also contains high levels of
fructose (6.83/100 g) and glucose (6.66/100 g) [33]. It has been shown that fructose-induced obesity
results in an inflammatory and oxidative state; therefore, it promotes the development of NAFLD
and metabolic syndrome [34]. The potential adverse effects of high sugar-containing pomegranate
juice was highlighted in a clinical trial that revealed that pomegranate juice administration over one
month did not modify insulin secretion and sensitivity in patients with obesity [35]. PSO may exhibit
higher therapeutic benefits for metabolic syndrome than those of pomegranate juice due to the lack
of sugars and presence of enhanced antioxidants. Dietary PSO was shown to ameliorate high-fat
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diet-induced obesity and insulin resistance in mice, independent of changes in food intake or energy
expenditure [36]. However, more research needs to be conducted in order to determine the beneficial
effects of PSO in obesity-related metabolic syndrome and mitochondrial dysfunction because there
are currently no conclusive studies that establish this association. Hence, the aim of this study was to
determine the effects on mice fed an HFD that a dietary supplementation of 1% of PSO had on: body
weight gain, hypertension, NAFLD, mitochondrial and thermogenic gene levels, and insulin sensitivity.

2. Results

2.1. Effects of PSO on Physiological Parameters

We analyzed the effect of PSO supplementation on physiological parameters in mice fed an HFD.
As shown in Figure 1A, HFD feeding resulted in a significant increase in body weight as compared
to lean mice (p < 0.05), and this increase in body weight was attenuated by PSO supplementation
(50 ± 2 vs. 29 ± 1 vs. 42 ± 2 g: HFD, lean, HFD + PSO). Fasting blood glucose levels were significantly
increased in HFD mice as compared to lean mice, and were significantly (p < 0.05) lowered by PSO
(205 ± 5 vs. 78 ± 4 vs. 111 ± 2 mg/dL: HFD, lean, HFD + PSO) (Figure 1B). The blood pressure was also
significantly (p < 0.05) increased in mice fed an HFD as compared to lean mice and PSO-supplemented
mice (155 ± 2 vs. 120 ± 2 vs. 135 ± 5 mmHg: HFD, lean, HFD + PSO) (Figure 1C). Oxygen consumption
was significantly (p < 0.05) decreased in mice fed an HFD (Figure 1D) and was returned to the levels
observed in lean animals by PSO (45 ± 4 vs. 78 ± 4 vs. 61 ± 7 mL/kg/min: HFD, lean, HFD + PSO)
(Figure 1D).
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Figure 1. Effect of pomegranate seed oil (PSO) treatment on (A) Body weight, (B) Fasting blood
glucose, (C) Systolic blood pressure, and (D) Oxygen consumption (VO2). * = p < 0.05 as compared to
lean. # = p < 0.05 as compared to HFD. n = 6/group.
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2.2. PSO Decreases Hepatic Steatosis and Fibrosis

Histological analyses of livers from lean mice revealed no significant steatosis,
rare ballooning, no inflammatory foci, and no fibrosis (Figure 2A). The livers of HFD mice exhibited
elevated steatosis (green arrows), moderate lobular inflammatory loci (yellow arrowheads), hepatocyte
ballooning, and fibrosis (caret) (Figure 2B), which were all reduced by PSO treatment (Figure 2C).
The morphometric analysis of liver lipid droplets showed that PSO treatment decreased the lipid
droplet diameter when compared to the HFD group (p < 0.05) (Figure 2D). The lipid content was
increased (p < 0.05) in the HFD group when compared to the lean group and was significantly (p < 0.05)
reduced in PSO-treated mice (Figure 2E).
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Figure 2. Histological analysis of livers. In lean mice, (A–C) Representative Haematoxylin-eosin (H&E)
staining and (D,E) quantitation showed (A) a normal hepatic parenchyma with radially arranged
rays of hepatocytes, regularly directed from the central vein of each lobule towards its periphery.
(B) HFD-treated mice exhibited significant morphological alterations with lipid droplets deposition and
inflammatory cells infiltration. (C) Hepatic parenchymal alterations in the HFD group were decreased
in HF animals treated with PSO. (D) Quantitation of lipid droplet diameter. (E) Quantitation of the
lipid droplet area. (F) Hepatic fibrosis by Masson’s staining in lean mice that exhibited very weak
parenchymal fibrosis; (G) HFD mice demonstrating strong perisinusoidal collagen deposition; (H) HFD
+ PSO-treated mice demonstrating reduced perisinusoidal collagen deposition; (I) quantitation of
collagen staining. * indicates a centrolobular vein. Green arrows indicate lipid droplets and yellow
arrowheads indicate areas of lobular inflammatory loci. Bar = 50 µm. * p < 0.05 from corresponding
value in lean mice. # p < 0.05 from corresponding value in HFD mice. n = 6/group.
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2.3. PSO Decreases Fibrotic Markers and Lowers Serum ALT and AST Levels in HFD-Fed Mice

HFD increased hepatic collagen deposition, as measured by Masson’s Trichrome staining,
when compared to lean mice (Figure 2F,G). PSO significantly (p < 0.05) decreased collagen deposition
in mice fed an HFD (Figure 2G–I). Dietary-induced obese mice developed an impaired liver function as
indicated by increased serum levels of AST (p < 0.05) and ALT (p < 0.05). PSO normalized the ALT and
AST levels (p < 0.05) to the levels of the lean group (ALT, 128 ± 7 vs. 33 ± 4 vs. 33 ± 1 U/L: HFD, lean,
HFD + PSO; AST, 99± 2 vs. 81± 2 vs. 87± 3: U/L HFD, lean, HFD + PSO) (Figure 3A,B). Fibrotic protein
signaling was examined by measuring MMP2 and MMP9, which were significantly (p < 0.05) increased
in the HFD group when compared to lean mice and PSO mice (MMP9, 1.1 ± 0.05 vs. 0.3 ± 0.04 vs.
0.6 ± 0.03 AU: HFD, lean, HFD + PSO; MMP2, 0.61 ± 0.04 vs. 0.18 ± 0.03 vs. 0.38 ± 0.04 AU: HFD, lean,
HFD + PSO) (Figure 3C–E).
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2.4. Effect PSO on Hepatic Inflammatory Proteins and Heme Oxygenase (HO) 

Figure 3. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in lean,
HFD-, and HFD + PSO-treated mice. (A) Serum ALT levels. (B) Serum AST levels. (C) Representative
Western blot of hepatic MMP2 and MMP9 as well as β-actin. (D) Quantitation of the levels of hepatic
MMP9 protein. (E) Quantitation of the levels of hepatic MMP2. * = different p < 0.05 from corresponding
value in lean mice. # = different p < 0.05 from corresponding value in HFD mice. n = 6/group.

2.4. Effect PSO on Hepatic Inflammatory Proteins and Heme Oxygenase (HO)

The western blot analysis of the liver tissue of the HFD group displayed a significant increase
(p < 0.05) in pro-inflammatory proteins, NOV, IL-6, and p-P65 levels, which were significantly decreased
in PSO-supplemented mice (NOV, 0.82 ± 0.04 vs. 0.32 ± 0.04 vs. 0.52 ± 0.05 AU: HFD, lean, HFD + PSO;
IL-6, 0.53 ± 0.03 vs. 0.14 ± 0.02 vs. 0.32 ± 0.03 AU: HFD, lean, HFD + PSO; p-P65, 0.43 ± 0.05 vs.
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0.02 ± 0.01 vs. 0.19 ± 0.05 AU: HFD, lean, HFD + PSO) (Figure 4A–E). The levels of HO-1 were
decreased in the livers of HFD mice, and (Figure 4F,G) PSO increased HO-1 protein levels (0.4 ± 0.01 vs.
1.1 ± 0.03 vs. 0.62 ± 0.01 AU: HFD, lean, HFD + PSO) (Figure 4F,G). HO-2 expression was not
significantly affected by the treatments (0.55 ± 0.01 vs. 0.61 ± 0.01 vs. 0.61 ± 0.03 AU: HFD, lean,
HFD + PSO) (Figure 4F–H).
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2.5. Effect PSO on Mitochondrial Function and Lipid Metabolism

We measured the protein expression involved in the mitochondrial function and energy
expenditure, including PRDM16, PGC-1α, MFN2, and Opa1. HFD markedly decreased (p < 0.05) the
levels of these proteins, impairing the mitochondrial biogenesis, while treatment with PSO reversed
these effects (PRDM16, 0.3 ± 0.03 vs. 0.91 ± 0.05 vs. 0.67 ± 0.04 AU: HFD, lean, HFD + PSO; PGC-1α,
0.11± 0.01 vs. 0.37 ± 0.03 vs. 0.78 ± 0.04 AU: HFD, lean, HFD + PSO; MFN2, 0.06 ± 0.01 vs. 0.65 ± 0.05
vs. 0.22 ± 0.01 AU: HFD, lean, HFD + PSO; Opa1, 0.53 ± 0.1 vs. 0.87 ± 0.08 vs. 1.14 ± 0.1 AU: HFD,
lean, HFD + PSO) (Figure 5).
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2.6. Effect PSO on Hepatic Insulin Resistance

HFD mice exhibited lower hepatic levels of proteins regulating glucose homeostasis, e.g.,
the insulin receptors pIR-tyr972, pIR-tyr1146 and pAMPK, pAKT, when compared to lean mice,
which was reversed in PSO-supplemented mice (pIRtyr972, 0.21 ± 0.03 vs. 1.62 ± 0.16 vs. 0.47 ± 0.03
AU: HFD, lean, HFD + PSO; pIRtyr1146, 0.15 ± 0.03 vs. 0.64 ± 0.04 vs. 0.36 ± 0.05 AU: HFD, lean,
HFD + PSO; pAMPK, 0.29 ± 0.04 vs. 0.98 ± 0.07 vs. 0.93 ± 0.07 AU: HFD, lean, HFD + PSO; pAKT,
0.03 ± 0.005 vs. 0.22 ± 0.02 vs. 0.29 ± 0.03 AU: HFD, lean, HFD + PSO (Figure 6).
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Figure 6. Hepatic levels of phosphorylated insulin receptor tyrosine 972 (pIRTyr972), phosphorylated
insulin receptor-β tyrosine 1146 (pIRβTyr1146), total 5’ AMP-activated protein kinase (AMPK),
phosphorylated AMPK, total Akt, and phosphorylated Akt in lean, HFD-, and HFD + PSO-treated mice.
(A) Representative western blots for pIRTyr972, pIRβTyr114, and β-actin. (B) Quantitation of the hepatic
levels of pIRTyr972. (C) Quantitation of the hepatic levels of pIRβTyr114. (D) Representative western
blots for pAMPK, total AMPK, pAkt, total Akt, and β-actin. (E) Quantitation of the hepatic levels of
pAMPK/total AMPK. (F) Quantitation of the hepatic levels of pAkt/total Akt. * = different p < 0.05
from corresponding value in lean mice. # = different p < 0.05 from corresponding value in HFD mice.
n = 6/group.

3. Discussions

In this study, we demonstrate the beneficial effects of PSO supplementation on
physiological parameters such as blood pressure, fasting blood glucose, and body weight.
Additionally, PSO supplementation in mice consuming an HFD increased oxygen consumption to the
levels of the lean animals, indicating an improvement in the mitochondrial burning of fatty acids
(Figure 1).

Supplementation of obese mice with PSO decreased hepatic steatosis and fibrosis. PSO decreased
the lipid droplet diameter when compared with the liver of HFD mice, which showed elevated
steatosis, hepatocyte ballooning, and fibrosis (Figure 2). Overall, the lipid content of the liver in mice
supplemented with PSO was lowered. This resulted in improving the liver function, as indicated
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by decreased serum levels of AST and ALT, which are markers of liver dysfunction (Figure 3A,B).
The degradation of the extracellular matrix is a key factor in the development and progression of
hepatic fibrosis. This process is regulated by matrix metallopeptidases (MMPS) such as MMP2 and 9.
An HFD causes the remodeling of MMP 2 and 9, which are precursors of hepatic fibrosis, followed
by cirrhosis, liver failure, and hepatocellular carcinoma. In the present study, an HFD increased the
hepatic levels of MMPS 2 and 9 and induced hepatic fibrosis (Figure 2). PSO supplementation resulted
in a decrease in both MMP2 and 9, as well as in hepatic collagen staining (Figure 3C–E). These results
highlight the anti-fibrotic potential of PSO and suggest that supplementation of PSO may be an effective
measure against the progression of NAFLD to NASH.

Dietary supplements such as PSO play a significant role in promoting weight loss, as well as having
a direct effect on the liver by decreasing hepatic steatosis. PSO is a highly rich source of polyphenols,
e.g., ellagitannins, anthocyanin, ascorbic acid, and punicic acid, known for their potent antioxidant
capacity. Although pomegranate juice is an excellent source of these antioxidants, it contains fructose
and glucose, which may not be suitable for obese patients, diabetic patients, and patients with NAFLD.
Additionally, a recent human study showed that pomegranate juice supplementation lowered the
level of systolic and diastolic blood pressure in patients with metabolic syndrome, but there was no
significant difference in fasting blood glucose, insulin, and HOMA-IR [37]. These results suggest that
the high levels of sugars found in pomegranate juice may attenuate its protective effects on insulin
resistance. These limitations are not found in PSO, as this extract does not contain the high levels of
sugars found in pomegranate juice.

Non-alcoholic fatty liver disease (NAFLD) affects ~25% of adults and is the most common cause
of chronic liver disease in the western world [38,39]. It is related to metabolic syndrome, i.e., obesity,
hyperlipidemia, type 2 diabetes, hypertension, and associated cardiovascular disease, which serves
as a marker of increased morbidity and mortality [40,41]. Dietary-induced obesity results in hepatic
fat accumulation, fatty liver disease, and deterioration in the liver function. There are currently no
specifically approved drugs for the treatment of NAFLD. The primary treatment of NAFLD consists of
lifestyle modifications designed to result in weight loss [42–44].

One of the pathways most impacted by dietary-induced obesity is the inflammatory pathway.
Hepatic inflammation and oxidative stress result in mitochondrial damage and changes in mitochondrial
dynamics [3,45]. This manifests as hepatocellular oxidative damage, resulting in hepatic inflammation
(non-alcoholic steatohepatitis). An HFD enhances FFA generation and increases mitochondrial
dysfunction and ROS levels [46]. Mitochondrial dysfunction results in decreased beta-oxidation in the
liver, allowing fat to accumulate, resulting in a “Fatty Liver” [47–49]. Peroxisome proliferator-activated
receptor-gamma coactivator (PGC)-1 alpha is a member of the family of transcription coactivators that
plays a central role in the mitochondrial biogenesis adaptive thermogenesis program, including the
stimulation of energy uptake and mitochondrial fatty acid oxidation [9,50,51]. Previous studies have
shown that the downregulation of PGC-1α leads to mitochondrial dysfunction, as manifested by a
simultaneous reduction in mitochondrial fusion protein mitofusin 2 (Mfn-2) and thermogenic genes such
as the PR domain containing 16 (PRDM16). Reductions in these genes are associated with obesity and
insulin resistance [9,51,52]. Mitochondrial network dynamics are tightly linked to energy and metabolic
demands, as well as to mitochondrial quality control (MQC). Mitochondrial network dynamics are
regulated by fission and fusion proteins [53–56]. Mitochondrial fusion is facilitated by Mfn-2 on the
mitochondrial outer membrane and by optic atrophy 1 protein (OPA1), whereas mitochondrial fission
proteins are primarily regulated by GTPase dynamin-related protein 1 (Drp1) [53–56]. Upon stimulation,
mitochondria undergo a consistent interchange to either a more filamentous or more fragmented
state through fission or fusion processes in order to adapt the mitochondrial function to actual
energetic and metabolic demands [53,54]. Previous studies have shown that the deletion of Mfn-2 and
OPA-1 in brown adipose tissue remodels the mitochondrial dysfunction, causing a decrease in insulin
resistance and energy expenditure [9,55,56]. These inflammatory and metabolic pathways are involved
in obesity-related metabolic syndrome and mitochondrial dysfunction [3,57]. Supplementation of
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dietary-induced, obese mice with PSO improved both the mitochondrial function and dynamics in
hepatic steatosis by decreasing the levels of inflammatory markers, NOV, IL-6, and phosphorylated
P65, which is a major regulator of IKKβ/NF-KB signaling (Figure 4A–E). This results in increased
mitochondrial dynamics (fusion/fission), biogenesis, and function, leading to decreased oxidative
stress and inflammation and the activation of anti-apoptotic genes (p65) in obese mice.

PSO is rich in polyphenols that are natural antioxidants and that can further act to decrease
hepatic oxidative stress to improve hepatic lipid metabolism and hepatic insulin resistance. One of the
most important findings of the present study was the induction of HO-1 by PSO supplementation
(Figure 4F–H). The HO-1 pathway plays an important role in the regulation of body weight, adipose
tissue expansion, insulin resistance, and hepatic steatosis [58–62]. HO-1 interacts with various pathways,
such as sirtuin-1 (SIRT1) and PGC1α, to improve cell function in obesity [9,63,64]. PSO supplementation
not only increased the hepatic HO-1 level but also the levels of PGC1α, demonstrating the close
link between these two pathways (Figure 5A–C). Furthermore, HFD mice supplemented with PSO
exhibited an increased expression of the genes regulating mitochondrial dynamics, such as PRDM16,
PGC1α, MFN2, and OPA-1, as compared to HFD alone (Figure 5D–F). PSO supplementation attenuated
the mitochondrial fission potential and improved mitochondrial fusion-associated proteins in mice fed
an HFD.

Our earlier studies demonstrated an increased NOV expression in adipose tissue in obese mice
when compared to lean mice [16], and in the current study the hepatic NOV expression in HFD-obese
mice supplemented with PSO was lower than in mice that were fed HFD alone. Enhanced levels of
NOV are associated with increased hepatic levels of inflammatory cytokines, which deleteriously affect
insulin signaling, resulting in hepatic insulin resistance [15]. In contrast, the downregulation of NOV
results in a decrease in both adipose tissue accumulation and inflammatory cytokines, as well as an
increased insulin sensitivity in PSO-supplemented HFD mice [56]. As a result, PSO supplementation
resulted in the attenuation of several inflammatory mediators in the liver and improved the overall
liver function in HFD-fed mice.

PSO improved hepatic insulin resistance and increased insulin receptor phosphorylation via
increased proteins regulating glucose homeostasis, e.g., p-AMPK, p-AKT, p-IR-tyr972, and p-IR-tyr1146
(Figure 6A–F). All of these pathways play an important role in liver insulin signaling, and all
are affected by dietary-induced obesity [65,66]. Figure 7 shows that an HFD increases lipid
deposit and fibrosis, which is associated with increases in MMP 2, MMP9, NF-KB, NOV/CCN3,
and IL6. PSO supplementation increases antioxidants gene HO-1, which is associated with an
increase in the mitochondrial fusion protein MFn2, OPA1, PGC1α, and the thermogenic proteins
PRMD 16. PSO-mediated increases in mitochondrial biogenesis are associated with increases in oxygen
consumption rates and a lower blood pressure in obese mice.

There are several limitations with the current study, which need to be considered prior to the
results of this study being translated for humans. First, the duration of the PSO supplementation in the
current study was only eight weeks. It is possible that a more beneficial action of PSO supplementation
could be achieved with a longer supplementation time frame. Second, the dose of PSO utilized in
the present study could be increased to provide additional benefits. PSO contains polyphenols and
punicic acid, which are also found in other dietary supplements. Thus, future studies comparing the
effectiveness of PSO to other dietary supplements such as curcumin, black seed oil, and resveratrol are
needed in order to determine the relative efficacy of each of these supplements in attenuating markers
of metabolic syndrome.
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were performed at the New York Medical College and followed the New York Medical College 
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Figure 7. Schematic depiction of PSO effects on fatty liver. PSO attenuates obesity-induced hepatic
steatosis and fibrosis through an increase in the antioxidant gene HO-1 and the mitochondrial signaling
pathways PRDM 16, PGC1α, MFN-2, and OPA1. Additionally, there is a decrease in the fibrotic markers
MMP2, MMP9 and inflammatory adipokines NF-κB, Nov/CCN3, and IL-6, resulting in a healthy liver.

4. Materials and Methods

4.1. Animal Protocols and Measurement of Body Weight

Eight-week-old C57BL/6J male mice were divided into three treatment groups of six animals as
follows: group (1) Lean; group (2) HFD; group (3) HFD treated for the last eight weeks with PSO at a
concentration of 40 mL per kg of food PSO (HFD + PSO group) (Figure 8). This concentration of PSO is
equivalent to 160–200 mg PSO consumed per day, given that the mice consume between 4–5 g of chow
per day. The HFD group and the HFD and PSO group were fed western diets with a 51% fat content,
while lean mice were provided regular diets (Harlan, Teklad Lab animal diets, Indianapolis, IN, USA)
for 24 weeks. For the additional eight weeks, the HFD in the PSO group was supplemented with 1%
PSO (vol/wt). The formulation of PSO used was as follows; 1% PSO, p-Cymene 1.24%, Carvacrol 0.08%,
FFA 1, 29%, Oleic Acid 21.53%, palmitic acid 11.31%, linoleic acid 57.44%, and other fatty acid 1.98%,
(Trinutra Ltd., www.trirnutra.Com, Hamazmera 9, Nes Ziona, Israel).
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Figure 8. Schematic depiction of experimental protocol. C57BL/6J mice were fed a high fat diet (HFD)
for 24 weeks after which time they were randomly assigned to a treatment group in which they were
supplemented to pomegranate seed oil (PSO) for an additional 8 weeks. Mice were then euthanized at
32 weeks on the HFD.

The PSO was mixed into the HFD food, made into pellets using a mixer, and given for eight
weeks, as shown in the scheme. After eight weeks, the mice were euthanized. All animal experiments
were performed at the New York Medical College and followed the New York Medical College IACUC
institutionally approved protocol, in accordance with NIH guidelines (Protocol # 22-2-0415H, 18 April
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2018). Mice were euthanized with ketamine (100 mg/kg)/xylazine (10 mg/kg) injection, followed by
cervical dislocation and tissue collection.

4.2. Determination of Blood Glucose, Blood Pressure, and VO2

Fasting BG was measured from tail blood following a six-hour fast. BP was measured via the
tail-cuff method using the CODA tail-cuff System (Kent Scientific, Torrington, CT, USA). Mice were
acclimated to the oxygen consumption chamber over a three-week period in two-hour increments,
three times a week. The Oxylet gas analyzer and airflow unit (Oxylet, Panlab-Bioseb, Vitrolles, France)
were used to determine mouse VO2. Each mouse was placed individually in the instrument, and VO2

and VCO2 were measured. The observational data for VO2 are expressed as the consumed oxygen
per kilogram BW per minute (ml/kg/min) [3,56]. The respiratory quotient (RQ) was calculated as
VCO2/VO2.

4.3. Western Blot Analysis and Histological Evaluation

For protein expression analyses, liver tissues were lysed in RIPA lysis buffer supplemented
with protease and phosphatase inhibitors (CompleteTM Mini and PhosSTOPTM, Roche Diagnostics,
Indianapolis, IN, USA). Frozen mouse adipose tissue was ground under liquid nitrogen and suspended
in homogenization buffer (comprising mmol/L: 10 phosphate buffer, 250 sucrose, 1.0 EDTA, 0.1 PMSF,
and 0.1% v/v tergitol, pH 7.5). For the western blot analysis, pelleted cells were lysed, and primary
antibodies of MMP9, MMP2, NOV/CCN3, IL-6, pP65, P65, PRDM16, MFN2, OPA1, pAMPK, AMPK,
pAKT, AKT, pIR tyr1146, β-actin (all cell signaling technology, Danvers, MA, USA), HO-1, HO-2 (Enzo
Life Sciences, Farmingdale, NY, USA), PGC-1α (Santa Cruz Biotechnology, Santa Cruz, CA, USA),
and pIR tyr972 (Millipore, Bedford, MA, USA) proteins were incubated. Protein detection was carried
out using a secondary infrared fluorescent dye conjugated antibody absorbing at both 800 nm and
700 nm. The blots were visualized using an Odyssey Infrared Imaging Scanner (Li-Cor Science Tec)
and quantified by densitometric analysis performed after normalization with β-actin. The results were
expressed as arbitrary units (AU).

Liver samples from each experimental group were fixed in 4% paraformaldehyde, dehydrated,
embedded in paraffin wax, and sectioned (6 µm thick). The sections were deparaffinized, rehydrated,
and stained with haematoxylin-eosin (H&E) and Masson’s trichrome staining. The main liver
histopathological features were described, including steatosis, inflammation, and fibrosis. Steatosis was
assessed on hematoxylin-eosin stained sections by counting 200 randomly chosen lipid droplets/groups
and selecting their diameter (µm) and volume density (%) at a final magnification of 400×. Fibrosis
was evaluated and measured as a percentage of Masson’s blue staining at a final magnification of
400× [67,68].

The morphometrical analyses were performed by two different observers blinded to the
experimental group using computer image analysis software and were then analyzed using an
image program (Image Pro Premier 9.1, Media Cybernetics Inc., Rockville, MD, USA), performed as
previously described [67,68].

4.4. Measurement of Serum Aspartate Aminotransferase (AST) and (ALT)

The serum concentrations of aspartate aminotransaminase (AST) and alanine aminotransferase
(ALT) were evaluated by an enzyme-linked immunosorbent assay (ELISA) kit (Abcam, Cambridge,
MA, USA) according to the manufacturer’s instructions. Briefly, 900 µL of reagent was incubated for
3 min at 37 ◦C, followed by adding 45 µL serum or blank (45 µL dd H2O). After incubating for 10 min,
the absorbance at 450 nm was measured using a spectrophotometer (Synergy HT, BioTek Instrument
Inc., Winooski, VT, USA).
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4.5. Statistical Analysis

Data are expressed as means ± S.E.M. Bonferroni’s post-test analysis for multiple comparisons
was used to calculate the significance of mean value differences using a one-way analysis of variance.
The null hypothesis was rejected at p < 0.05.

5. Summary

The obesity epidemic is the major driving force behind the increasing incidence of NAFLD and
its resulting complications, including liver cirrhosis and liver cancers. Currently, there are no FDA
approved drugs for the specific treatment of NAFLD. Lifestyle modification with the specific goal
of weight loss is the first line of treatment for NAFLD. The results of the present study demonstrate
that dietary supplementation with PSO could provide an additional defense against the development
and progression of NAFLD and its associated cardiovascular morbidities. Our current study shows
that obesity-induced hepatic steatosis and fibrosis that end in NAFLD are markedly attenuated by
dietary PSO supplementation. PSO supplementation results in decreased levels of adipokines and
inflammatory markers, e.g., levels of NF-KB, NOV/CCN3, IL-6, MMP2, and MMP9. PSO also contains
antioxidants and increases the levels of HO-1, which has a positive effect on mitochondrial function
and increases mitochondrial signaling by increasing PRDM16, PGC1α, MFN-2, and OPA1. As a
result, mitochondrial biogenesis increases and insulin sensitivity increases, resulting in a healthy liver
(Figure 7).
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PSO pomegranate seed oil
HO-1 heme oxygenase-1
FA fatty acid
FFA free fatty acid
FAS fatty acid synthase
FGF21 fibroblast growth factor 21
HF high fat
HFD high fat diet
IR insulin resistance
DM diabetes mellitus
PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1-α
SIRT3 sirtuin3
DRP1 dynamin-related protein 1
Fis1 mitochondrial fission 1protein
OPA1 optic atrophy 1 protein
Mfn 1 mitochondrial fusion protein mitofusin 1
Mfn 2 mitochondrial fusion protein mitofusin 2
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UCP1 uncoupling protein 1
MnSOD mitochondrial superoxide dismutase
PRDM16 PR domain containing 16
VO2 oxygen consumption
Drp1 dynamin-related protein 1
ROS reactive oxygen species
ALT alanine aminotransferase
AST asparagine aminotransferase
MMP matrix metalloproteinase
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