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Abstract: To control the COVID-19 pandemic and prevent its resurgence in areas preparing for a
return of economic activities, a method for a rapid, simple, and inexpensive point-of-care diagnosis
and mass screening is urgently needed. We developed and evaluated a one-step colorimetric
reverse-transcriptional loop-mediated isothermal amplification assay (COVID-19-LAMP) for detection
of SARS-CoV-2, using SARS-CoV-2 isolate and respiratory samples from patients with COVID-19
(n = 223) and other respiratory virus infections (n = 143). The assay involves simple equipment and
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techniques and low cost, without the need for expensive qPCR machines, and the result, indicated by
color change, is easily interpreted by naked eyes. COVID-19-LAMP can detect SARS-CoV-2 RNA
with detection limit of 42 copies/reaction. Of 223 respiratory samples positive for SARS-CoV-2 by
qRT-PCR, 212 and 219 were positive by COVID-19-LAMP at 60 and 90 min (sensitivities of 95.07%
and 98.21%) respectively, with the highest sensitivities among nasopharyngeal swabs (96.88% and
98.96%), compared to sputum/deep throat saliva samples (94.03% and 97.02%), and throat swab
samples (93.33% and 98.33%). None of the 143 samples with other respiratory viruses were positive by
COVID-19-LAMP, showing 100% specificity. Samples with higher viral load showed shorter detection
time, some as early as 30 min. This inexpensive, highly sensitive and specific COVID-19-LAMP
assay can be useful for rapid deployment as mobile diagnostic units to resource-limiting areas for
point-of-care diagnosis, and for unlimited high-throughput mass screening at borders to reduce
cross-regional transmission.

Keywords: COVID-19; RT-LAMP; SARS-CoV-2; mass screening; on-site screening; diagnosis;
mobile Diagnostic

1. Introduction

The novel coronavirus disease 2019 (COVID-19), caused by the novel human severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic with enormous
economic impact [1,2]. SARS-CoV-2 is a member of subgenus Sarbecovirus under genus Betacoronavirus
of the family Coronaviridae, being closely related to human and bat severe acute respiratory syndrome
coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus [3–6].
In contrast to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), which were
rapidly traced to civet and dromedaries, respectively, as the source of the epidemics [7], the origin of
SARS-CoV-2 remains obscure [8]. Rapid and accurate identification and segregation of SARS-CoV-2
infected patients including asymptomatic viral shedders are critical to reduce human-to-human
transmission and disease impact [9].

The current gold standard for molecular diagnosis of COVID-19 is based on the detection
of SARS-CoV-2 RNA by real-time quantitative reverse transcription-polymerase chain reaction
(qRT-PCR) [10–15]. Although qRT-PCR is highly sensitive and specific, it requires expensive qPCR
instruments and experienced laboratory technologists to perform the assay and interpret test results.
As such, clinical samples often need to be transported to a qualified laboratory at a distance. Therefore,
the resulting cost and turn-around-time of qRT-PCR renders its application infeasible for mass detection
of SARS-CoV-2 within a short time, especially for low-income countries or in remote areas where
hospitals may not be equipped with molecular diagnostic laboratories. Although portable assays or
qPCR machines are also potentially useful for rapid detection of SARS-CoV-2, they are very expensive
and only a few samples can be processed at a time [16,17]. For example, only one sample can be tested
by the Abbott ID NOW which costs US$ > 10,000 for the machine and US$ > 100 for each sample
(Table 1). As for enzyme-linked immunosorbent assays for antigen/antibody detection, they are often
insensitive and non-specific. Moreover, positive antibodies are only detected after 7–14 days and
cannot differentiate between acute and past infection. Therefore, they are not useful for identifying
actively infected COVID-19 patients.
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Table 1. Comparison of existing COVID-19 molecular diagnostic tests with COVID-19-LAMP.

qRT-PCR Portable
qRT-PCR

Automated
Platform

Point-of-Care
Diagnostic
Machine

COVID-19-LAMP

Timing 75–90 min 75–90 min 60–120 min 15–20 min 30–90 min
User requirement Experienced lab technologist Junior lab technologist or healthcare worker with short training
Reagent cost/test

(USD) $20–60 $20–60 >$110 >$100 $2–4

Equipment cost >$45,000 >$4500 >$32,000 >$10,000 $100–1000

Apparatus qRT-PCR
machine

Portable
qRT-PCR
machine

GeneXpert/Filmarray Abbott ID NOW Heat block

RNA Extraction Required Not required Required

Capacity 96 samples per
run

16 samples per
run

Up to 16 samples
per run 1 sample per run

Unrestricted
(48–96 samples per

block)
Point-of-care testing Not feasible Not feasible Feasible Feasible Feasible

Mass on-site
screening

Partially
feasible Not feasible Not feasible Not feasible Feasible

Result readout
Not easy Not easy Easy Easy Easy

(Ct value may require
interpretation (report by machine) (naked eye)

Here, we report the development and evaluation of a rapid and simple one-step colorimetric
reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) assay, COVID-19-LAMP,
for detection of SARS-CoV-2. RT-LAMP combines reverse transcriptase, DNA polymerase, pH indictor,
and six primers to amplify RNA templates [18–24], causing a drop in pH and, thus, a color change from
pink to yellow. Since RT-LAMP involves both reverse transcription and DNA amplification at a constant
temperature without the need for a PCR thermal cycler [25], it only requires simple equipment, namely
benchtop centrifuges, heat blocks, and micropipettes. The skills involved are easy to master by junior
laboratory technologists or healthcare workers with same-day training within hours. Evaluation using
clinical samples from COVID-19 patients and patients with other respiratory virus infections showed
that this COVID-19-LAMP assay is highly sensitive and specific. The result can be unambiguously
visualized by the naked eye and interpreted by any person, with short turn-around-time (including
sample extraction) of 45–105 min depending on the viral load (Figure 1).
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layout of a van-sized mobile COVID-19-LAMP diagnostic unit, with sample processing and LAMP 

Figure 1. Illustration of a small van-sized mobile COVID-19-LAMP diagnostic unit. A drawn-to-scale
layout of a van-sized mobile COVID-19-LAMP diagnostic unit, with sample processing and LAMP
reactions compartments have been illustrated. A cargo van/lorry can be modified quickly to become a
mobile diagnostic unit for rapid deployment in any region.
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2. Results

2.1. COVID-19-LAMP Assay Can Detect SARS-CoV-2 with a Low Detection Limit

LAMP primer set targeting a region across orf3a and E gene of SARS-CoV-2 was able to amplify
the targeting region, as confirmed by Sanger sequencing, and color changes were observed within
reaction tubes. The optimal reaction temperature and primer concentrations were determined at 60 ◦C,
outer primer (F3, B3: 0.18 µM), inner primer (FIP, BIP: 0.73 µM), and loop primer (LoopF, LoopB:
0.36 µM) (Supplementary Table S1). Using RNA extracted from SARS-CoV-2 isolate, the assay had
a limit of detection of 42.0 copies per reaction. The results indicate that this COVID-19-LAMP is
potentially sensitive for detection of SARS-CoV-2.

2.2. COVID-19-LAMP Assay Is Highly Sensitive and Specific for Detection of SARS-CoV-2 in
Clinical Samples

Of all 223 respiratory samples positive for SARS-CoV-2 by qRT-PCR, 212 and 219 samples were
tested positive by COVID-19-LAMP assay at 60 and 90 min, showing sensitivities of 95.07% (95% CI:
0.92–0.98) and 98.21% (95% CI: 0.96–1.00) respectively (Table 2). The highest sensitivity was observed
among nasopharyngeal swabs, with 93 and 95 of 96 samples positive by RT-LAMP at 60 and 90 min,
showing sensitivities of 96.88% and 98.96%, respectively. For sputum/deep throat saliva samples, 63
and 65 of 67 samples were positive at 60 and 90 min, showing sensitivities of 94.03% and 97.02%,
respectively. For throat swab samples, 56 and 59 of 60 samples were positive at 60 and 90 min, showing
sensitivities of 93.33% and 98.33%, respectively. None of the 143 samples with other respiratory viruses
were positive by RT-LAMP at 90 min, showing 100% specificity for all sample types (Table 3).

Table 2. Evaluation of COVID-19-LAMP using respiratory samples confirmed positive for SARS-CoV-2
by qRT-PCR (n = 223).

Reaction Time Number of Positives Number of Negatives Sensitivity (95% CI)

Total Respiratory Samples Positive for SARS-CoV-2 by qRT-PCR (n = 223)
60 min 212 11 95.07% (0.92–0.98)
90 min 219 4 98.21% (0.96–1.00)

Nasopharyngeal Swabs Positive for SARS-CoV-2 by qRT-PCR (n = 96)
60 min 93 3 96.88% (0.93–1.00)
90 min 95 1 98.96% (0.97–1.00)

Sputum/Deep Throat Saliva Positive for SARS-CoV-2 by qRT-PCR (n = 67)
60 min 63 4 94.03% (0.88–1.00)
90 min 65 2 97.02% (0.93–1.00)

Throat Swabs Positive for SARS-CoV-2 by qRT-PCR (n = 60)
60 min 56 4 93.33% (0.87–1.00)
90 min 59 1 98.33% (0.95–1.00)
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Table 3. Absence of cross-reactivity of COVID-19-LAMP with other human respiratory viruses.

Respiratory Samples with Other
Respiratory Viruses Number Tested COVID-19-LAMP

Parainfluenza virus 1 10 Negative
Parainfluenza virus 2 10 Negative
Parainfluenza virus 3 10 Negative

Influenza A virus 20 Negative
Influenza B virus 6 Negative

Adenovirus 18 Negative
Respiratory syncytial virus 20 Negative
Human metapneumovirus 2 Negative

Human rhinovirus A 3 Negative
Human rhinovirus B 3 Negative
Human rhinovirus C 3 Negative

Human enterovirus A71 7 Negative
Human enterovirus D68 10 Negative

Coxsackievirus A6 10 Negative
Human coronavirus HKU1 5 Negative
Human coronavirus NL63 1 Negative
Human coronavirus 229E 1 Negative
Human coronavirus OC43 5 Negative

Samples positive by COVID-19-LAMP assays showed Ct values between 15.88 to 35.00 by qRT-PCR.
There was positive correlation between time to positivity by COVID-19-LAMP (four levels: 30 min,
60 min, 90 min, >90 min), and qRT-PCR Ct values, with Spearman’s rank order correlation coefficient
of 0.63 (p < 0.0001), suggesting that samples with higher viral loads turned positive at an earlier time
(Figure 2).
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(B): 60 min, (C): 90 min with corresponding qRT-PCR Ct values of samples.



Int. J. Mol. Sci. 2020, 21, 5380 6 of 10

3. Discussion

This simple, highly sensitive and specific COVID-19-LAMP assay would be very useful for
implementation into ad hoc diagnostic units for rapid deployment in any locations, allowing
point-of-care diagnosis on one hand and mass screening for guiding public health measures on
the other. The assay showed high sensitivities for detection of SARS-CoV-2 among tested respiratory
samples, especially for nasopharyngeal swabs with 96.88% and 98.96% sensitivity at 60 and 90 min,
respectively, compared to qRT-PCR assay as gold standard. COVID-19-LAMP failed to detect four
qRT-PCR-positive samples; it could be due to the carryover of inhibitors from the extraction process.
Moreover, the specificity was 100%, with no false positive even among samples with other human
coronaviruses. Samples with higher viral loads took shorter time to turn positive. Positive results
were recorded as early as 30 min for samples with higher viral loads (mean ± SD Ct value 23.47 ± 3.19)
(Figure 2), although the highest sensitivity was observed at 90 min. This assay is also highly
cost-effective, with reagents for each reaction costing only US$2–4, compared to US$20–60 for qRT-PCR
assay (excluding the cost for sample extraction of US$5–8 and one heat block for 48–96 samples
of US$100–1000) (Table 1). Moreover, it is a portable assay requiring only simple equipment and
techniques, without the need for installing expensive qPCR machines or employing experienced
molecular biologists. It also saves the cost, time, and risks of transporting samples to laboratories
especially during the lockdown of cities.

This COVID-19-LAMP assay can be deployed as mobile diagnostic units such as in vehicles
to communities with limited access to major hospitals or laboratories, allowing rapid point-of-care
diagnosis at private or regional clinics or hospitals with suspected COVID-19 cases. An example
of a small van-sized unit is depicted in Figure 1. This is particularly useful to high-incidence
or less developed countries, where the capacity for qRT-PCR assays cannot meet the test demand.
These RT-LAMP units can also be mobilized to quarantine camps or facilities to test residents developing
COVID-19 symptoms and upon release to document viral clearance. It is estimated that two to three
workers will be enough in a diagnostic unit to handle about hundreds of samples per day. Widespread
application of this RT-LAMP assay can help speed up diagnosis and treatment to reduce mortality and
facilitate infection control measures to reduce disease transmission of this pandemic virus in badly
affected countries.

Since this assay only involves simple laboratory procedures and can be scaled up easily, hundreds
or thousands of samples can be processed at the same time, allowing high-throughput rapid on-site mass
screening at quarantined areas and borders with results available in less than two hours. For example,
travelers departing or arriving by air can be screened at airport COVID-19-LAMP diagnostic centers
and those tested positive can be immediately sent to hospitals or isolation facilities. Diagnostic
units can also be set up easily at cruise terminals, train stations, or highway control points. Such a
mass-screening strategy can help minimize disease import/export between high- and low-incidence
areas. This is of particular benefit to areas where community outbreaks are relatively under control,
such as Hong Kong, Taiwan, Australia, and New Zealand, etc., where mass screening at the borders
can allow rapid identification and isolation of infected returners from high disease impact countries,
avoiding new massive outbreaks. Those returners tested negative can then be allowed to enter the
cities after a reasonable testing time. When the high-incidence areas succeed to bring down the case
numbers dramatically, this assay can be used at the borders to avoid re-importing new source of
infections and hence subsequent epidemic waves. Until the availability of an effective vaccine for
SARS-CoV-2, the world will have to adopt strict international traffic control and universal personal
hygiene measures. This COVID-19-LAMP can serve as a cost-effective method for mass screening,
allowing social activities and the economy to function at its maximum.

Concerning biosafety, in places where biosafety cabinet is not available for sample processing
before virus inactivation, portable flexible film isolator can be used as an alternative with full personal
protective equipment with N95 respirators in a separately ventilated compartment is recommended to
prevent cross contamination of samples and laboratory-acquired infection. The use of a flexible film
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isolator allows performing extraction under negative pressure environment and filtering with HEPA
filter. Disinfectant agents, such as Virkon, can be used for disinfection inside the flexible film isolator
after sample extraction to prevent any carryovers. Regular maintenance and fumigation of the flexible
film isolator can also be carried out to ensure the function and safety of the isolator. Since the virus in
clinical samples is rapidly inactivated by the lysis buffer at the first step of nucleic acid extraction, all
subsequent procedures can be safely performed with biosafety level 1 (BSL-1) practice, with appropriate
settings to avoid RNA or LAMP amplicon contamination which may result in false-positive reactions.
Another concern with this colorimetric assay is that it requires the recognition of color change by
naked eye. Though not difficult, generally, the results can only be interpreted by workers without
color blindness. One possible solution is to use a colorimeter or a smartphone colorimeter application
which can be used for objective result interpretation.

4. Materials and Methods

4.1. Patient Samples

Respiratory samples collected from 40 hospitalized patients with laboratory-confirmed COVID-19,
including four asymptomatic patients and other respiratory virus infections in Hong Kong were
included in this study. The collection and use of clinical samples and data were approved by the
Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West
Cluster (UW 16-365 20-07-2016).

4.2. SARS-CoV-2 Culture

Viral culture of SARS-CoV-2 was performed in biosafety level-3 (BSL-3) facility. SARS-CoV-2
was isolated from a COVID-19 patient in our locality. SARS-CoV-2 was propagated in Vero cells in
minimum essential medium (MEM) (Gibco, Waltham, MA, USA) supplemented with 1% fetal bovine
serum (FBS) (Thermo Fisher Scientific, Waltham, MA, USA). Vero cells were seeded onto 24-well tissue
culture plates (NEST, Wuxi, China), with 1 mL of MEM with 10% FBS, at 1 × 106 cells/mL in 24 wells
plate and incubated at 37 ◦C in a 5% carbon dioxide (CO2) incubator for 24 h until >90% confluence
(~0.2 × 106 cells). Vero cells were washed once with phosphate-buffered saline (PBS) (Oxoid, Waltham,
MA, USA) and inoculated with three multiplicity of infection (MOI) of SARS-CoV-2 in serum-free
MEM, and then incubated at 37 ◦C. After 1 h of infection, unbound virus was removed by washing
with 1 mL of PBS twice. The infected cells were maintained in MEM with 1% FBS until virus-induced
cytopathic effect (CPE) was observed after two days. The supernatant was collected and was spun
down at 2000× g to remove cell debris for subsequent RNA extraction.

4.3. RNA Extraction from SARS-CoV-2 Culture Supernatant and Respiratory Samples

Cell culture supernatant and respiratory samples were subjected to RNA extraction by QIAamp
Viral RNA Mini kit (QIAGEN, Hilden, Germany) according to manufacturer’s instructions. Briefly,
RNA from 140 µL of each specimen was extracted and eluted with 60 µL of AVE buffer.

4.4. Development of COVID-19-LAMP Assay

Six LAMP primers were designed manually to target a region across orf3a and Envelope (E)
genes of SARS-CoV-2 (Supplementary Table S1 and Supplementary Figure S2). The optimal RT-LAMP
reaction conditions, including primer concentrations (outer primer F3, B3: 0.18–0.042 µM; inner primer
FIP, BIP: 1.45–0.3 µM; LoopF, LoopB: 0.36–0.073 µM), temperature (50–70 ◦C) and reaction time (30 min,
60 min, 90 min), were determined using SARS-CoV-2 RNA extracted from culture supernatant of
infected Vero cells (Supplementary Figure S1) on a Proflex Thermal Cycler (Thermo Fisher Scientific,
Waltham, USA). Each 25 µL colorimetric RT-LAMP reaction contained 12.5 µL WarmStart Colorimetric
LAMP 2×Master Mix (New England Biolabs, Ipswich, MA, USA), 7.5 µL mixture of outer primer (F3,
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B3: 0.18 µM), inner primer (FIP, BIP: 0.73 µM), and loop primer (LoopF, LoopB: 0.36 µM), and 5 µL
RNA template.

The optimal conditions determined were then used for COVID-19-LAMP assay on clinical samples
as described above, except that heat block instead of thermal cycler was used for RT-LAMP reaction
at 60 ◦C. All reaction tubes were spun down before visualization of results to avoid condensation of
solution. A change in color from pink to yellow or amber indicated a positive reaction, while pink
or coral pink color was regarded as a negative reaction (Figure 1). A recommended workflow and
standard operating procedure of this COVID-19-LAMP is provided in the Supplementary Materials
(Supplement S1).

To determine the detection limit, RNA extracted from SARS-CoV-2 culture supernatant were tested
by COVID-19-LAMP and quantified by N1 Probe of 2019-nCoV CDC qPCR probe assay (IDT, Coralville,
IA, USA) with Superscript III Platinum One-Step qRT-PCR kit (Thermo Fisher Scientific, Waltham, USA)
in a LightCycler 480 real-time PCR system (Roche, Risch-Rotkreuz, Switzerland). The copy number
for limit of detection determination was calculated by using 2019-nCoV_N_Positive Control (IDT,
Coralville, USA). Each 20 µL reaction mixture contained 10 µL of 2 × Superscript III Platinum Master
Mix, 1.5 µL of SARS-CoV-2 CDC qPCR N1 Probe, 1 µL of SuperScript III RT/Platinum Taq Mix and
5 µL RNA templates. The one-step qRT-PCR condition used was as follows: (1) reverse transcription
for 15 min at 50 ◦C, (2) pre-denaturation for 2 min at 95 ◦C, and (3) 45 cycles of denaturation for 3 s at
95 ◦C, and annealing and elongation for 30 s at 55 ◦C.

4.5. Evaluation of COVID-19-LAMP Assay Using Clinical Samples

A total of 223 respiratory samples positive for SARS-CoV-2 by qRT-PCR, including 96
nasopharyngeal swab, 67 sputum/deep throat saliva, and 60 throat swab samples from 40 COVID-19
patients hospitalized in our locality, including four asymptomatic patients; and 143 nasopharyngeal
samples positive for other respiratory viruses including human enteroviruses (A71, D68 and
coxsackievirus A6), adenovirus, parainfluenza viruses (1, 2, and 3), influenza viruses (A and
B), respiratory syncytial virus, human metapneumovirus, human rhinoviruses (A, B, and C),
human coronaviruses (OC43, 229E, HKU1, and NL63), were subject to COVID-19-LAMP assay
(Figure 3). The results were interpreted with the naked eye, by two independent persons who were
unaware of SARS-CoV-2 qRT-PCR results. There were no discrepancies between the two readers.
The diagnostic sensitives and specificities were calculated using the web-based tool “Diagnostic
Statistics” (https://www2.ccrb.cuhk.edu.hk/stat/ConfidenceInterval.htm). Box and whisker plots
were generated and Spearman’s correlation was performed to study the correlation between time
to positivity by COVID-19-LAMP and qRT-PCR Ct values by using GraphPad Prism version 8.14
(GraphPad Software, San Diego, CA, USA).
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