Supplementary Material

Figure S1. Spectral comparison of the cyclic Ub chains. (a) Superposition of the ¹H-¹⁵N HSQC spectra of c-diUb (black), c-triUb (red), and c-tetraUb (cyan). Chemical shift differences (b) between c-tetraUb and c-diUb, and (c) between c-triUb and c-diUb. Data are shown according to the equation $(0.04\delta_N^2 + \delta_H^2)^{1/2}$, where δ_N and δ_H represent the difference in nitrogen and proton chemical shifts, respectively. The proline residues and the residues whose ¹H-¹⁵N HSQC peak could not be used as a probe because of broadening are shown by asterisks.

Figure S2. Structural similarity among (a) the closed conformation of n-diUb observed in crystals [PDB: 1AAR] [1], (b) the NMR structure of c-diUb [2], and (c) an n-diUb part derived from the c-tetraUb crystal structure [PDB: 3ALB] [3]. The 3D structure models were shown with the same orientations, highlighting the positions of Val70 in red. Lys48 and Gly76 forming the isopeptide bond are shown as stick models.

Figure S3. Crystal structure of c-triUb (solved in this study; PDB: 7CAP) highlighting Leu8, Ile44, and Val70 on the hydrophobic surface.

Crystallographic data			
Space group	<i>C</i> 2		
Unit cell $a/b/c$ (Å)	88.4/54.8/61.0		
β(°)	122.0		
Data processing statistics			
Beam line	Photon Factory AR-NE3A		
Wavelength (Å)	1.0000		
Resolution (Å)	50-1.33 (1.35-1.33)		
Total/unique reflections	285,708/56,837		
Completeness (%)	99.9 (100.0)		
$R_{ m merge}$ (%)	7.5 (78.4)		
<i>Ι</i> /σ (<i>I</i>)	25.2 (1.5)		
Refinement statistics			
Resolution (Å)	20.0-1.33		
$R_{ m work}/R_{ m free}$ (%)	13.5/17.4		
RMS deviations from ideal			
Bond lengths (Å)	0.014		
Bond angles ($^{\circ}$)	1.74		
Ramachandran plot (%)			
Favored	100		
Allowed	0		
Outliers	0		

Table S1. Data collection and refinements statistics for the crystal structure of c-triUb.

Figure S4. ¹H-¹⁵N HSQC spectra of n-triUb chains, which were unit-selectively ¹⁵N-labeled at (a) the distal Ub1 (green), (b) the middle Ub2 (magenta), and (c) the proximal Ub3 (blue). ¹H-¹⁵N HSQC spectra of n-tetraUb chains, which were unit-selectively ¹⁵N-labeled at (d) the distal Ub1 (green), (e) the second Ub2 (magenta), (f) the third Ub3 (blue), and (g) the proximal Ub4 (orange).

Figure S5. ¹H-¹⁵N HSQC peaks originating from Val70 of monomeric Ub (cyan), c-diUb (black), c-triUb (red), and unit-selectively ¹⁵N-labeled n-triUb chains at the distal Ub1 (green), the middle Ub2 (magenta) and the proximal Ub3 (blue).

Figure S6. Conformer populations n-triUb estimated from the NMR spectral data. A cartoon model of the possible conformers in each state is shown. A pair of Ub units whose hydrophobic surfaces are shielded from each other are shown in black.

	Ub1	Ub2	Ub3	Ub4
	74 %	53 %	36 %	60 %
Open	1-2-3-4	1-2-3-4		1-2-3-4
	1-23-4	1-2-34	12-3-4	12 -3-4
	1-2-34	4-3	1-2-3	1-26-4
				4 3
	26 %	47%	64 %	40 %
Closed	12 -3-4	00-3-4	1-23-4	1-2-34
		1-23-4	1-2-34	
			4 <u>3</u>	
	00-94	00-00	00-00	00-00

Figure S7. Conformer populations of n-tetraUb estimated from the NMR spectral data. A cartoon model of the possible conformers in each state is shown. A pair of Ub units whose hydrophobic surfaces are shielded from each other are shown in black.

Figure S8. ¹H-¹⁵N HSQC spectra of monomeric Ub (blue) with (a) monomeric K48S-Ub (red) and (b) monomeric Ub-His₆ (red). Chemical shift differences (c) between monomeric Ub and monomeric K48S-Ub, and (c) between monomeric Ub and monomeric Ub-His₆. Data are shown according to the equation $(0.04\delta_N^2 + \delta_H^2)^{1/2}$, where δ_N and δ_H represent the difference in nitrogen and proton chemical shifts, respectively. The proline residues and the residues whose ¹H-¹⁵N HSQC peak could not be used as a probe because of broadening are shown by asterisks.

Figure S9. ¹H-¹⁵N HSQC peaks originating from Val70 of (a) uniformly ¹⁵N-labeled K48S-triUb, (b) unit-selectively ¹⁵N-labeled K48S-triUb chains at Ub2 and Ub3, and (c) unit-selectively ¹⁵N-labeled K48S-triUb at Ub1 and Ub2.

References

- Cook, W. J.; Jeffrey, L. C.; Carson, M.; Chen, Z.; Pickart, C. M., Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2). *J Biol Chem* 1992, 267, (23), 16467-71.
- Hirano, T.; Serve, O.; Yagi-Utsumi, M.; Takemoto, E.; Hiromoto, T.; Satoh, T.; Mizushima, T.; Kato, K., Conformational dynamics of wild-type Lys-48-linked diubiquitin in solution. J *Biol Chem* 2011, 286, (43), 37496-502.
- Satoh, T.; Sakata, E.; Yamamoto, S.; Yamaguchi, Y.; Sumiyoshi, A.; Wakatsuki, S.; Kato, K., Crystal structure of cyclic Lys48-linked tetraubiquitin. *Biochem Biophys Res Commun* 2010, 400, (3), 329-33.