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Abstract: The selective targeting of the cannabinoid receptor 2 (CB2) is crucial for the development of
peripheral system-acting cannabinoid analgesics. This work aimed at computer-assisted identification
of prospective CB2-selective compounds among the constituents of Cannabis Sativa. The molecular
structures and corresponding binding affinities to CB1 and CB2 receptors were collected from ChEMBL.
The molecular structures of Cannabis Sativa constituents were collected from a phytochemical database.
The collected records were curated and applied for the development of quantitative structure-activity
relationship (QSAR) models with a machine learning approach. The validated models predicted the
affinities of Cannabis Sativa constituents. Four structures of CB2 were acquired from the Protein Data
Bank (PDB) and the discriminatory ability of CB2-selective ligands and two sets of decoys were tested.
We succeeded in developing the QSAR model by achieving Q2 5-CV > 0.62. The QSAR models helped
to identify three prospective CB2-selective molecules that are dissimilar to already tested compounds.
In a complementary structure-based virtual screening study that used available PDB structures of
CB2, the agonist-bound, Cryogenic Electron Microscopy structure of CB2 showed the best statistical
performance in discriminating between CB2-active and non-active ligands. The same structure also
performed best in discriminating between CB2-selective ligands from non-selective ligands.
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1. Introduction

The medical effect of Cannabis sp. bioactive ingredients is the subject of extensive research [1–3].
It has been discovered that Cannabis sp. contains over 500 various compounds, with the cannabinoid
group itself having about 110 molecules [4]. Phytocannabinoids present in Cannabis sp. have slight
differences in their chemical structures (types: cannabidiol, cannabichromene, cannabitriol,
cannabicycol, cannabinodiol, cannabinol, cannabielsoin, cannabigerol, ∆9-tetrahydrocannabinol,
∆8-tetrahydrocannabinate) and are not selective. The most well-known phytocannabinoids are THC
(∆8-tetrahydrocannabinol) and CBD (cannabidiol). Research to date reports that both THC and CBD
have an affinity for various types of endocannabinoid system receptors [5–7]. For example, cannabidiol
is a non-competitive CB1 antagonist, CB2 inverse agonist, GPR55 and GPR18 antagonist, Peroxisome
proliferator-activated receptor (PPAR-γ) agonist, α1, α3 glycine agonist, TRPM8 antagonist, and an
agonist and antagonist of receptors of various types of serotonin 1A receptors (5-HT1A) [8–11].
The pharmacological effects of the interaction of Active pharmaceutical ingredients (APIs) with CB1
and CB2 receptors are the most investigated. The differences in the density of CB1 and CB2 receptor
distribution also determine the activities within the central nervous system [12]. The pharmacological
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effect of cannabinoids results from modification of the signaling pathway of two G protein-coupled
receptors (GPCRs): cannabinoid receptors 1 and 2 (CB1 and CB2). Activation of the CB1 receptor,
which is expressed mainly in the central nervous system, is responsible for their psychotropic
action, while CB2 receptors are found mainly in the immune system [13]. This distinct distribution
of CB2 receptors in human tissues suggests that selective cannabinoids are promising APIs with
anti-inflammatory, analgesic, and anti-neuroinflammatory actions [14]. The discovery of new selective
cannabinoids can be streamlined with the application of in silico methods such as structure-based
virtual screening (VS) [15–17] or ligand-based (quantitative structure-activity relationship (QSAR))
VS [18].

Machine learning-based QSAR models can be successfully applied in pharmaceutical research
related to drug discovery [19], drug formulation [20], and pharmaceutical analysis [21,22].
The applicability of QSAR modeling to predict the selectivity of CB receptors has also been reported in
the literature. The CB2-selective activity of 29 benzimidazole and benzothiophene derivatives was
investigated with comparative molecular field analysis (CoMFA) and comparative molecular similarity
indices analysis (CoMSIA) 3D-QSAR models [23] and showed an external predictive performance of R2

> 0.9. In the recent 4D-QSAR study involving molecular dynamics (MD), the modeling was performed
on 29 structurally similar CB2 receptor inverse agonists [24]. The 4D-QSAR approach based on partial
least squares (PLS) and multiple linear regression (MLR) resulted in Q2 = 0.719 and Q2 = 0.761 for the
PLS and MLR models, respectively. The selectivity of 29 arylpyrazole derivatives was investigated
with the application of 3D-QSAR/CoMFA analyses [25]. The QSAR model helped to identify the causes
of CB1 selectivity by producing counter maps of affinity for both CB receptor subtypes. Nevertheless,
the narrow applicability of these models due to similar scaffolds used as training examples may
be a significant limitation when they are used in the prediction of novel chemotypes. In contrast,
Floresta et al. conducted a 3D-QSAR study on a diverse dataset containing 312 molecules with reported
experimental CB1 affinities and 187 molecules with reported CB2 affinities [26]. These models showed
a predictive performance of Q2 = 0.62 and Q2 = 0.72 for the CB1 and CB2 QSAR models, respectively.
The diversity of molecular structures in the training set also allowed Floresta et al. to perform VS
for novel chemical scaffolds. The idea of the QSAR application for the identification of bioactive
compounds in plant extract was also used by Labib et al. [27]. This VS study aimed to predict the
activities of CB1 and opioid receptors among compounds isolated from Pinus roxburghii bark extract.
The model of Labib et al. explained the synergistic anti-inflammatory action of Pinus roxburghii and
provided information on the activity of several bioactive molecules identified in the extract.

Our study aimed to predict CB2-selectivity for molecules identified in Cannabis Sativa by using a
validated QSAR model. This goal was achieved by the execution of several steps: the collection of
diverse ligands’ structures with experimental data describing CB1 and CB2 affinity; data curation;
conducting QSAR study for CB1 and CB2; and the prediction of the CB1 and CB2 affinity of
phytochemicals in the Cannabis Sativa. So far, the lack of crystal structures in cannabinoid receptors has
been a major obstacle in searching for new, selective cannabinoids. However, there have been attempts
to predict binding modes of well-known actives of CB1 and CB2 using homology models of these
receptors and molecular dynamics [17,28,29]. Recent advances in structural studies of cannabinoid
receptors 6KPC [30], 6KPF [30], 6PT0 [31], and 5ZTY [32] provided new data that supplemented drug
discovery studies [30]. In this study, we tested the applicability of available experimental structures of
CB2, solved in both active and inactive conformations, in structure-based VS to search for novel or
more CB2-selective ligands.

2. Results

2.1. Study Design

Data on the experimentally evaluated affinity of diverse compounds to CB1 and CB2 receptors
and data on structures identified in Cannabis Sativa with unknown CB1/CB2 affinity were collected
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from publicly accessible online resources. Next, the data with known affinity values were curated and
subsequently used for the development and validation of CB1 and CB2 QSAR models. The validated
models were used for the prediction of the CB1 and CB2 affinity of Cannabis Sativa ingredients and
the prediction of prospective CB2-selective Cannabis Sativa ingredients. The dataset collected for the
QSAR study was used to evaluate the statistical characteristics of the discriminatory ability of CB1 and
CB2 crystal structures in the docking study.

2.2. Data Curation

Datasets of ligands with experimental affinities for CB1 and CB2 were joined with corresponding
records of assay metadata from ChEMBL. The resulting dataset was composed of six columns
containing: the structure of the molecule in simplified molecular-input line-entry system (SMILES)
format, a standard type of reported value (i.e., Ki, IC50, etc.), reported value, the mathematical relation
of the reported value to the experimentally measured value, the ID number of the source document
with reported study, and the confidence score. The initial dataset described above was subjected
to the removal of potentially unreliable data (Figure 1). The initial dataset included 14,126 records
for CB1 and 13,506 records for CB2 (Figure 1.1). Records without reported SMILEs, which included
metal complexes and polymers were excluded from the dataset (Figure 1.2). For the remaining
records, the respective molecular structures were standardized and 2D coordinates were generated.
We assumed that both the assays, which were carried out on a target protein or a homologous protein
were reliable. Records meeting these criteria were annotated in ChEMBL with a confidence score
of 9 and 8, respectively (Figure 1.3). Only activities measured in large and consistent assays were
picked from the dataset (Figure 1.4).That is, an assay was considered as suitable for selection if it
contained a consistent group of 10 or more molecules, all with the affinity measured. These large
assays were identified based on the document ID reported in ChEMBL. In the next step, records with
a reported affinity in any standard value type related to Ki were kept (Figure 1.5) and subsequently
converted to pKi. Duplicates analysis (Figure 1.6) was conducted by comparing records InChIKeys.
Duplicates were merged if the standard deviation of duplicate measurements was lower than 10% of
the entire range of measurements. As a result, only one record was kept, with the pKi value averaged.
Mordred descriptors and Morgan fingerprints were computed for each compound in the dataset and
then concatenated to create a feature vector. Records with duplicate feature vectors were removed
(Figure 1.7). These included, e.g., compounds differing only by chiral hydrogen atoms and those that
could not be differentiated by the used descriptors and fingerprints.
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2.3. Model Description 

Figure 1. Data records that passed through the subsequent data curation steps: (1) data acquisition,
(2) removing records with no SMILES included, (3) removing records with Confidence Score <8,
(4) keeping only records from large assays, (5) keeping only records with included Ki values, (6) duplicate
merging, (7) removing molecules with the same feature vector.
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2.3. Model Description

The independent CB1 and CB2 QSAR models were created according to the architecture presented
in Figure 2. The input feature vectors for the machine learning algorithm were molecular descriptors
and fingerprints of compounds from the training set (Figure 2.1). The feature vectors along with
experimental CB1 and CB2 pKi values were used as a training set for the CB1 and CB2 QSAR models
(Figure 2.2).
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Figure 2. Machine learning-based quantitative structure-activity relationship (QSAR) model.

The value predicted in each leaf of decision trees in a gradient boosting (GB) ensemble was used
for the embedding of a descriptor space (Figure 2.3). The embedded representation of the descriptor
space was used to create a separate k-nearest neighbor (kNN) model for each receptor (Figure 2.4).
The kNN algorithm was modified to predict an average pKi value of a compound only if all nearest
neighbors of the query molecular structure were within a given distance. This maximal distance
was used as an applicability domain threshold related to the confidence of prediction (Figure 2.5).
Different thresholds were tested to assess their influence on the statistical characteristics of kNN models.
We selected 20 thresholds as percentiles 5 to 100 with a step equal to 5% of the distribution of maximal
Euclidean distances within kNN clusters obtained for the training set.

2.4. Model Validation

In Figure 3, we present the dependence of cross-validated Q2 on the applicability domain threshold.
The predictive performance showed consistent behavior, declining with an increased threshold. The best
statistical characteristics Q2 > 0.8 for the CB1 and CB2 models was observed for the lowest thresholds
(<0.01). Interestingly, kNN models with the highest threshold, which corresponds to the most inclusive
applicability domain, still achieved the statistical characteristics Q2 > 0.6, as suggested in studies of
QSAR best practices [33].

An autocorrelation plot (Figure 4) shows good agreement between out-of-sample predictions and
experimental values for the majority of compounds, and importantly, for the CB2 selectivity ranges of
pKi (pKi < 6 for CB1 and pKi > 6.5 for CB2). The majority of data points presented in Figure 4 are
distributed between 6 and 8. Because machine learning techniques used in this study are interpolating
techniques, we expected our model to overestimate pKi predictions at lower values and underestimate
predictions at large ones.
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2.5. Virtual Screening of Cannabis Sativa Phytochemicals

Sixty-eight Cannabis Sativa phytochemicals with a molecular weight between 250D and 500D
were subjected to VS using our validated CB1 and CB2 QSAR models. On average, the selectivity of
compounds from Cannabis Sativa was less than for the ChEMBL-derived training set. Still, we observed
a relatively high autocorrelation of the predicted CB1 and CB2 activity of Cannabis Sativa phytochemicals
(see Figure 5) in comparison to the ChEMBL training set. The average absolute dpKi between CB2 and
CB1 was 0.69 and 1.26 for molecules in Cannabis Sativa and molecules in the training set, respectively.
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Despite relatively low average predicted selectivity of compounds in Cannabis Sativa, structures
C1–C3 showing dpKi > 1 and a Tanimoto coefficient (TC) < 0.5 were identified (Table 1). Low TC
values indicated a significant structural difference in the identified molecular structures in Cannabis
Sativa compared to the respective most similar molecular structures in the training set.

Table 1. Compounds from Cannabis Sativa that were predicted as CB2-selective and are also dissimilar
to the ChEMBL training set.

Structure Predicted Value Similar Molecule for ChEMBL Tanimoto
CoefficientCB1

pKi
CB2
pKi Structure CB1

pKi
CB2
pKi

C1
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2.6. CB2 Structure-Based Virtual Screening Results

We performed VS using four PDB structures of the CB2 receptor (PDB id: 6KPF, 6KPC, 6PT0,
and 5ZTY) and two compounds’ libraries. The library for the first compound was derived from
the curated, ChEMBL training dataset prepared for our QSAR models and it included CB2-selective
ligands expanded with CB2-non-selective ligands. For this compound library, 6KPF and 5ZTY
structures achieved the highest area under the receiver operating characteristic curve (ROC AUC)
value in the discrimination between CB2-selective ligands versus CB2-non-selective ones (see Table 2).
The antagonist-bound, 5ZTY structure slightly outperformed 6KPF (agonist-bound), as observed in a
detailed analysis of ROC curves obtained in our enrichment study (Figure 6). The second compound’s
library used in our structure-based VS included the same CB2-selective ligands derived from the
ChEMBL training dataset, named here with the term “actives”, and general diverse decoys that were
generated with DUD-E [34], named here as “non-actives”. In VS against this second library, 6KPF and
5ZTY structures performed similarly, discriminating CB2-actives from non-actives at the level of 0.8
and 0.79, respectively (see Table 2, ROC AUC values). 6KPF slightly outperformed 5ZTY according to
the ROC AUC characteristics and 6KPC performed the worst, however, the values were very close
with no explicit difference between active and inactive CB2 structures. Our results showed that even
slight differences between the crystal structures of the same receptor have an impact on the VS results.
A similar conclusion was derived from a recent study on glucagon receptors, where an ensemble
of receptor conformations generated in short MD simulations outperformed crystal structures in
VS [35,36].
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Table 2. Results of the enrichment study for CB2-receptor structures.

Metric CB2-Non-Selective Decoys General Decoys

6KPF 6KPC 6PT0 5ZTY 6KPF 6KPC 6PT0 5ZTY

EF 2% 0 0 0 1.7 3.3 0 0 3.3
EF 5% 0.67 0 0 1.3 4.7 1.3 1.3 3.3

EF 10% 1.7 0 0.33 1 4.0 2 1.7 3
ROC
AUC 0.6 0.53 0.53 0.6 0.8 0.73 0.77 0.79
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3. Discussion

The main goal of this study was to predict CB2-selective compounds among the phytochemicals
that constitute Cannabis Sativa. We achieved this goal through the following steps: collecting a large
set of experimental data from ChEMBL for the training set, data curation, model development and
validation, and predicting the selectivity of phytochemicals from Cannabis Sativa. In parallel, we tested
the applicability of recently released PDB structures of CB2 in structure-based VS by conducting an
enrichment study. The dataset collected by our group was curated, which resulted in the removal
of more than 90% of unreliable and inconsistent data. Despite the removal of this large fraction of
data, the final dataset included 1958 records for CB1 and 2616 records for CB2. Notably, such a large
dataset is sufficient for employing the machine learning approach. Much smaller datasets have been
successfully used to develop QSAR models for CB1/CB2 studies [23,24]. Nevertheless, focusing on the
dataset diversity in developing our QSAR model also created a challenge for predicting the activity
of outlier compounds. We solved this problem by determining an applicability domain for each
compound individually. Embedding the descriptor space of base GB models made it possible to assess
the prediction confidence based on Euclidean distances of k-nearest neighbors. The GB algorithm
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was also successfully applied by Ancuceanu et al. [37] for cytotoxicity prediction. The performance
of GB in the modeling of various QSARs was compared to other ensemble methods in a study by
Kwon et al. [38].

Our approach was validated with the five-fold cross-validation protocol with resulting statistical
characteristics of Q2 > 0.6 for the entire dataset and Q2 > 0.8 for the most confident predictions.
Regarding small subsets with the highest confidence predictions, our model outperformed much more
complex 3D and 4D QSAR models created for equally small sets of similar compounds [23,24]. We used
our validated QSAR models for the prediction of the CB1 and CB2 affinities of phytochemicals from
Cannabis Sativa. As a result, we identified three compounds C1–C3 (see Table 1) dissimilar to the training
dataset with a TC < 0.3 compared to the respective most similar structure, and predicted pKi difference
CB2 vs. CB1 (dpKi) ≥ 1. The common name of C1 is cannabispirol, and it is a compound isolated
from Japanese domestic Cannabis Sativa [39]. C1 has been experimentally evaluated for antimicrobial
activity [40] and was also tested in a study on targeting multidrug resistant mouse lymphoma cells [41].
Ilicic acid (C2) showed activity in G2/M cell cycle arrest of tumor cells [42]. Cannabichromente (C3) is
a precursor for biosynthesis of various cannabinoids [43].

As for structure-based VS using PDB structures of CB2, we observed that these structures were able
to discriminate not only CB2-actives from non-active ligands (DUD-E decoys) but also CB2-selective
from non-selective ligands (the ChEMBL-derived dataset). The best results were obtained for 5ZTY
and 6KPF structures, regardless of the activation state.

In this study, we identified potential selective cannabinoids among the constituents of Cannabis sativa.
Our QSAR model identified three compounds of potential interest with significant dissimilarity to
compounds already evaluated experimentally and reported in ChEMBL. The statistical characteristics
of the developed QSAR models suggest a high probability of successful experimental validation,
which we hope will attract attention from experimental groups interested in searching for CB2-selective
ligands of natural origin.

4. Materials and Methods

4.1. Data Collection

Chemical structures from the ChEMBL database [44] with experimentally measured affinities for
the CB1 and CB2 receptors were used as training data. The datasets were composed of 14,126 records
for CB1 and 13,506 records for CB2. Compounds constituting the phytochemical profile of Cannabis
Sativa were acquired from the Collective Molecular Activities of Useful Plants Database (CMAUP) [45].
The ChEMBL data was exported and downloaded in comma-separated values (CSV) format, while the
CMAUP data was downloaded as an Structure Data Format (SDF) file.

4.2. Data Curation

The method of data curation followed a modified approach of Fourches et al. [46,47]. We modified
the curation method by the addition of extra steps that were relevant for curating data acquired
from ChEMBL accompanied by additional metadata specific to this database. Namely, we grouped
experimental values provided their source studies were the same, and then removed groups with less
than 10 records. We also assessed data reliability according to the source study confidence score as
provided by ChEMBL. We then removed records with a confidence score lower than 8. A final dataset
consisted of records with InChIKeys as molecular structure identifiers with associated standardized
2D structures of compounds and pKi values. RDKit was used for standardization and InChIKeys
calculation [48]. The curated CB2 and CB1 datasets are available on the website [49].

4.3. Descriptor Calculation

The Mordred python library [50] was used to calculate 1613 2D standard descriptors and 213
3D descriptors. 3D descriptors were used to include information about chirality in ligand structures.
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Descriptors with variance less than 0.05 or containing invalid values were removed. The descriptors
were concatenated with 1024-bit Morgan fingerprints with a radius equal to 3.

4.4. Machine Learning

A gradient boosting (GB) algorithm implemented in the Light Gradient Boosting Machines
library [51] was used to create base models. The GB algorithm and its parameters were selected in
an inner 5-fold cross-validation protocol based on grid search. Other algorithms including linear
regression, partial least squares, and support vector machines from the scikit-learn library [52] were
also tested. GB models for CB1 and CB2 were decision tree ensembles. The output of each tree in a
boosted ensemble was used to create embedding of a descriptor space. A kNN algorithm with k = 3 was
used to determine the applicability domain of the model based on the embedding. The applicability
domain was defined by a threshold, which is a maximum allowed distance between a query molecular
structure and nearest neighbors. Molecular structures with the Euclidean distance to nearest neighbors
greater than a given threshold were considered as out of the applicability domain. Python code for the
execution of trained models is provided in the Supplementary Materials.

4.5. Model Validation

Models were validated using a 5-fold cross-validation protocol. Out-of-sample predictions were
used to calculate Q2 according to the following equation:

Q2 = 1−

∑
n

(
Yi − Ŷi

)2

∑
n

(
Yi −Yi

)2 (1)

Here, n is the number of samples in the dataset, Yi is an experimental pKi of the ith sample,
Ŷi is a predicted value of pKi of the ith sample, and Yi is a mean pKi value. We evaluated Q2 for
20 different applicability domain thresholds and considered Q2 as a confidence measure for a model
using a given threshold.

4.6. Prediction of CB2-Selectivity of Cannabis Sativa Ingredients

A curated dataset of Cannabis Sativa constituents reported in the CMAUP database [45] was tested
against our QSAR CB1 and CB2 models. In such a way, we searched for selective molecules with
dpKi ≥ 1, where dpKi was defined as dpKi = pKiCB2 − pKiCB1. For each predicted selective compound,
a Tanimoto coefficient (TC) was calculated to assess the similarity of predicted compounds to ones
already tested and used to exclude hits that were not novel with regard to training data. TC was
computed using 1024-bit Morgan fingerprints with a radius equal to 3.

4.7. Structure-Based Virtual Screening

CB2 receptor structures (PDB id: 6KPC [30], 6KPF [30], 6PT0 [31], and 5ZTY [32]) were derived
from the Protein Data Bank (PDB) [53]. This set included agonist-bound (6KPC, 6KPF, 6PT0) and
antagonist-bound (5ZTY) structures corresponding to different activation states of the CB2 receptor
(active and inactive, respectively). The CB2 structures used in this study were very similar to each other
(average pairwise RMSD = 6.41, with standard deviation = 3.40), yet differing in TMH6 conformation
(5ZTY and 6KPC vs. others) bending while interacting with a G protein complex. In all these
structures ligands were located in the orthosteric binding site of CB2, although allosteric modulation
has also been observed for these receptors [54]. The four PDB structures have nearly identical binding
sites except for a few residues: W258 (W6.48), S285, and to a lesser extent: F87 (F2.57), F91 (F2.61),
H95 (H2.65), F183 (EC2) (see Figure 7). W258 and F117 (F3.36) residues form a well-known Trp-Phe
toggle switch changing its position on the receptor activation [17,30]. Interestingly, the position of
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W258 is slightly different not only in comparing the active vs. inactive conformations but also in three
active conformations, e.g., moved away from the ligand (6PT0 vs. two others).
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Receptor structures were processed with the Protein Preparation tool 2017-4, Schrodinger LLC,
New York, NY, USA [55]. Ligands in PDB structures were used to determine the position of docking
grids spanning over the whole CB2 active site. The prepared CB2 structures were used for screening
against a CB2 actives library that included CB2-selective and CB2-non-selective compounds to assess
the ability of these CB2 structures to discriminate between selective and CB2-non-selective ligands.
This compound library was extracted from our ChEMBL training set (see Materials and Methods) and
included compounds with pKiCB1 <= 5.5 and pKiCB2 > 7 for CB2-selective, while others were considered
CB2-non-selective. The second round of VS was performed to test to what extent experimental CB2
structures were able to discriminate between CB2-actives and non-actives. Here, we used the
compounds library that was generated using DUD-E [34] with ChEMBL-derived CB2-selective ligands
(see above) used here as CB2 actives. Here, we discard CB2-non-selective ligands and we did not
include them in the compound library. VS was performed with Glide 2017-4, Schrodinger LLC,
New York, NY, USA [56] that followed the ligand preparation with Ligprep [57]. We computed
enrichment factors (EF) and areas under the curve (AUC) for receiver-operator curves (ROC) using
Maestro 2017-4, Schrodinger LLC, New York, NY, USA.

5. Conclusions

We would like to emphasize that our study aimed to perform an in silico study to identify
prospective CB2-selective compounds from C. Sativa that could be confirmed by experimental studies
in the future. This study shows the first robust CB1/CB2 QSAR models that are reproducible and
applicable to a large variety of chemical scaffolds. Our developed model was trained on a large and
diverse set of compounds that surpassed recent studies [26]. We based our method on machine learning,
which utilized data from thousands of experimental studies on CB1/CB2 activities. Our study was been
conducted without making common mistakes such as, e.g., not conducting data curation or its improper
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execution, lack of a validation protocol, applying inappropriate statistical characteristics for estimation
of predictive performance, and finally, lack of applicability domain determination [58–60]. We also
showed that the applicability domain estimation based on a gradient boosted model latent space allows
the accurate prediction of the model confidence. What is more, we validated the estimation of the
model confidence interval, which allows users to make conclusions based on the general statistical
characteristics of a model and also on the validated confidence of a single prediction. No prior QSAR
study on cannabinoids have showed these results.

The phytochemistry of C. Sativa has been described in many experimental and theoretical studies
(see ElSohly et al. [2]). The analgesic effect of C. Sativa extracts has been known for many years [61].
Among the many experimental studies regarding cannabinoids, a few studies describing the three
compounds selected by us deserve attention [39–43]. What is more, in the last year, many valuable and
novel studies on C. Sativa applications in medicine have been published [62–66], thus, we hope that
the exploration of the potential use of C. Sativa in pharmacotherapy will continue both experimentally
and by using theoretical models.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/15/
5308/s1.

Author Contributions: Conceptualization, M.M., D.L. and J.C.-P.; Data curation, M.M.; Formal analysis, D.L. and
J.C.-P.; Investigation, M.M. and D.L.; Methodology, M.M. and D.L.; Project administration, J.C.-P.; Resources, D.L.
and J.C.-P.; Software, M.M. and D.L.; Supervision, D.L. and J.C.-P.; Validation, M.M.; Visualization, M.M. and D.L.;
Writing—original draft, M.M., D.L. and J.C.-P.; Writing—review & editing, M.M., D.L. and J.C.-P. All authors have
read and agreed to the published version of the manuscript.

Funding: M.M. acknowledges the doctoral scholarship support from the National Science Center
DEC-2018/28/T/NZ7/00472. This research was supported in part by the PL-Grid Infrastructure.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

References

1. Cascio, M.G.; Pertwee, R.G.; Marini, P. The pharmacology and therapeutic potential of plant cannabinoids.
In Cannabis sativa L.—Botany and Biotechnology; Chandra, S., Lata, H., ElSohly, M.A., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 207–225. ISBN 9783319545646.

2. ElSohly, M.A.; Radwan, M.M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of Cannabis sativa L. Prog. Chem.
Org. Nat. Prod. 2017, 103, 1–36. [PubMed]

3. Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules.
Front. Plant Sci. 2016, 7, 19. [CrossRef] [PubMed]

4. Aizpurua-Olaizola, O.; Soydaner, U.; Öztürk, E.; Schibano, D.; Simsir, Y.; Navarro, P.; Etxebarria, N.;
Usobiaga, A. Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants
from different chemotypes. J. Nat. Prod. 2016, 79, 324–331. [CrossRef] [PubMed]

5. Galaj, E.; Bi, G.-H.; Yang, H.-J.; Xi, Z.-X. Cannabidiol attenuates the rewarding effects of cocaine in rats by
CB2, 5-HT1A and TRPV1 receptor mechanisms. Neuropharmacology 2020, 167, 107740. [CrossRef]

6. Aso, E.; Andrés-Benito, P.; Grau-Escolano, J.; Caltana, L.; Brusco, A.; Sanz, P.; Ferrer, I. Cannabidiol-enriched
extract reduced the cognitive impairment but not the epileptic seizures in a Lafora disease animal model.
In Cannabis and Cannabinoid Res; Mary Ann Liebert, Inc.: New Rochelle, NY, USA, 2019.

7. Volkow, N.D.; Hampson, A.J.; Baler, R.D. Don’t worry, be happy: Endocannabinoids and cannabis at the
intersection of stress and reward. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 285–308. [CrossRef]

8. Rong, C.; Lee, Y.; Carmona, N.E.; Cha, D.S.; Ragguett, R.-M.; Rosenblat, J.D.; Mansur, R.B.; Ho, R.C.;
McIntyre, R.S. Cannabidiol in medical marijuana: Research vistas and potential opportunities. Pharmacol. Res.
2017, 121, 213–218. [CrossRef]

9. Morales, P.; Hurst, D.P.; Reggio, P.H. Molecular Targets of the Phytocannabinoids: A Complex Picture.
Prog. Chem. Org. Nat. Prod. 2017, 103, 103–131.

http://www.mdpi.com/1422-0067/21/15/5308/s1
http://www.mdpi.com/1422-0067/21/15/5308/s1
http://www.ncbi.nlm.nih.gov/pubmed/28120229
http://dx.doi.org/10.3389/fpls.2016.00019
http://www.ncbi.nlm.nih.gov/pubmed/26870049
http://dx.doi.org/10.1021/acs.jnatprod.5b00949
http://www.ncbi.nlm.nih.gov/pubmed/26836472
http://dx.doi.org/10.1016/j.neuropharm.2019.107740
http://dx.doi.org/10.1146/annurev-pharmtox-010716-104615
http://dx.doi.org/10.1016/j.phrs.2017.05.005


Int. J. Mol. Sci. 2020, 21, 5308 12 of 14

10. Devinsky, O.; Cilio, M.R.; Cross, H.; Fernandez-Ruiz, J.; French, J.; Hill, C.; Katz, R.; Di Marzo, V.;
Jutras-Aswad, D.; Notcutt, W.G.; et al. Cannabidiol: Pharmacology and potential therapeutic role in epilepsy
and other neuropsychiatric disorders. Epilepsia 2014, 55, 791–802. [CrossRef]

11. Russo, E.B.; Burnett, A.; Hall, B.; Parker, K.K. Agonistic properties of cannabidiol at 5-HT1a receptors.
Neurochem. Res. 2005, 30, 1037–1043. [CrossRef]

12. Svíženská, I.; Dubovy, P.; Šulcová, A. Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution,
ligands and functional involvement in nervous system structures—A short review. Pharmacol. Biochem. Behav.
2008, 90, 501–511. [CrossRef]

13. Marzo, V.D.; Di Marzo, V.; Bifulco, M.; De Petrocellis, L. The endocannabinoid system and its therapeutic
exploitation. Nat. Rev. Drug Discov. 2004, 3, 771–784. [CrossRef] [PubMed]

14. Pacher, P.; Bátkai, S.; Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy.
Pharmacol. Rev. 2006, 58, 389–462. [CrossRef] [PubMed]

15. Lyu, J.; Wang, S.; Balius, T.E.; Singh, I.; Levit, A.; Moroz, Y.S.; O’Meara, M.J.; Che, T.; Algaa, E.;
Tolmachova, K.; et al. Ultra-large library docking for discovering new chemotypes. Nature 2019, 566,
224–229. [CrossRef] [PubMed]

16. Jakowiecki, J.; Filipek, S. Hydrophobic ligand entry and exit pathways of the CB1 cannabinoid receptor.
J. Chem. Inf. Model. 2016, 56, 2457–2466. [CrossRef] [PubMed]

17. Latek, D.; Kolinski, M.; Ghoshdastider, U.; Debinski, A.; Bombolewski, R.; Plazinska, A.; Jozwiak, K.;
Filipek, S. Modeling of ligand binding to G protein coupled receptors: Cannabinoid CB 1, CB 2 and
adrenergic β 2 AR. J. Mol. Model. 2011, 17, 2353–2366. [CrossRef] [PubMed]

18. Chohan, T.A.; Chen, J.-J.; Qian, H.-Y.; Pan, Y.-L.; Chen, J.-Z. Molecular modeling studies to characterize
N-phenylpyrimidin-2-amine selectivity for CDK2 and CDK4 through 3D-QSAR and molecular dynamics
simulations. Mol. Biosyst. 2016, 12, 1250–1268. [CrossRef]

19. Stokes, J.M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N.M.; MacNair, C.R.; French, S.;
Carfrae, L.A.; Bloom-Ackermann, Z.; et al. A Deep Learning Approach to Antibiotic Discovery. Cell 2020,
181, 475–483. [CrossRef]

20. Kasabe, A.J.; Kulkarni, A.S.; Gaikwad, V.L. QSPR Modeling of biopharmaceutical properties of hydroxypropyl
methylcellulose (cellulose ethers) tablets based on its degree of polymerization. AAPS PharmSciTech 2019,
20, 308. [CrossRef]
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