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Abstract: The practice of non-testing approaches in nanoparticles hazard assessment is necessary to
identify and classify potential risks in a cost effective and timely manner. Machine learning
techniques have been applied in the field of nanotoxicology with encouraging results. A
neurotoxicity classification model for diverse nanoparticles is presented in this study. A data set
created from multiple literature sources consisting of nanoparticles physicochemical properties,
exposure conditions and in vitro characteristics is compiled to predict cell viability. Pre-processing
techniques were applied such as normalization methods and two supervised instance methods, a
synthetic minority over-sampling technique to address biased predictions and production of
subsamples via bootstrapping. The classification model was developed using random forest and
goodness-of-fit with additional robustness and predictability metrics were used to evaluate the
performance. Information gain analysis identified the exposure dose and duration, toxicological
assay, cell type, and zeta potential as the five most important attributes to predict neurotoxicity in
vitro. This is the first tissue-specific machine learning tool for neurotoxicity prediction caused by
nanoparticles in in vitro systems. The model performs better than non-tissue specific models.
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1. Introduction

The rise of nanotechnology and rapid production of nanoscale materials have increased human
and ecosystem exposure to NanoParticles (NPs). Determining the potential hazards of NPs is
therefore essential for both protecting organism health and ensuring the benefits of nanoenabled
products. Nanotoxicology (the study of NPs toxicity) has been a topic of rigorous research for more
than 20 years [1]. Many factors that affect NPs toxicity and the underlying mechanisms have been
investigated [2]. Surface chemical components, for instance, can cause Reactive Oxygen Species
(ROS), which can induce oxidative stress, resulting in disturbed physiological redox-regulated
functions inside a cell. This in turn may lead to DN A damage, unregulated cell signaling, cytotoxicity,
apoptosis, and cancer initiation [3]. Surface coating, size, morphology, surface charge, and other
physicochemical (p-chem) properties have all been shown to affect NPs toxicity [1,4-6].

Traditional hazard assessment relies mostly on in vivo testing. The Organisation for Economic
Co-operation and Development (OECD) for instance recommends a series of test guidelines for
acute/subchronic/chronic assessment [7] and developmental neurotoxicity [8]. Data generated with
these protocols are relevant and reliable for the assessment of those specific endpoints [9], but are of
high-cost and low time efficiency. In vitro and in silico tests are alternatives for fulfilling safety
assessments considering the increasing number of NPs [10,11]. Whilst guidelines to facilitate the
interpretation of toxicological results for harmonized in vitro methods have been issued [12], as of
yet there have been no guidelines for in silico approaches [13]. However, a number of explanatory
documents and reports have been produced by various regulatory agencies that provide leadership
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on how to use and report in silico approaches (for example what constitutes a valid model; what is it
appropriate usage; what serves as sufficient documentation) [14].

In silico methods are gaining popularity in accordance with the 3R (Replacement, Reduction and
Refinement) principles of diminishing in vivo studies and are increasingly cited within regulatory
frameworks as ways to fulfil data requirements. Although the Registration, Evaluation,
Authorisation and Restriction of Chemicals regulation (REACH) defends implementing such
alternative approaches as exploratory or predictive tools in hazard assessment [15], those tools are
accepted by regulators as complementary rather than stand-alone methods [16,17].

Machine Learning (ML) is a method of data analysis that automates analytical model building.
It is a branch of artificial intelligence based on the idea that systems can learn from data and identify
patterns. Diverse ML tools have been developed during the last two decades that explore the
prediction of toxicological properties or the adverse effects of NPs [18]. Quantitative
structure-activity/toxicity relationships (QSARs/ QSPRs) are among the most widely used practices
[19]. ML does not require deterministic insights; bypassing in depth comprehension of the
interactions within a system, it constructs a computational predictor bridging input data directly to
the outcome. Furthermore, those tools are fast and cheap, and as they rely on information inputs
rather than physical test materials, can be used to predict the impact of materials not yet synthesized,
thereby contributing to safe-by-design approaches [20].

The majority of the ML tools do not predict endpoints that are relevant for regulatory purposes
such as carcinogenicity, mutagenicity or acute toxicity [18]. Cell viability and aggregated endpoints
amongst others, have been popular toxicological predictors with in silico tools in the field of
nanotoxicology. Most of the tools are built on data from in vitro studies derived from diverse tissues
(lung, skin, etc). A small number of models use in vitro experimental information such as cell origin
(human, rodent etc), cell lines (lung, skin, pancreas etc) or cell name as input variables [18]. Few
models in the literature capture brain tissue in their modelling:

- Trinh, etal. [21] used in vitro characteristics as input parameters (cell line, origin, type etc.,) where
Glioma, Brain Microvascular Endothelial Cells (BMEC) and neuroblastoma cell lines (SHSY5Y)
derived from different species (human and murine) were included amongst other cell lines. Their
focus was curation and meta-analysis of data regarding metallic (Au and Ag) NPs for the
prediction of cytotoxicity using decision trees and instance-based algorithms.

- Labouta, et al. [22] developed decision trees for assembling information on cytotoxicity of several
NPs considering NP-features, cell-related features (cell-type, cell line, organism, organ/tissue
source, age and morphology) as well as methodological parameters related to cytotoxicity/cell
viability test and the exposure time. Human epithelial and mouse neuronal cell lines were
included as a representation of brain tissue amongst other organs.

- Ha, etal. [23] performed a meta-analysis of published articles on oxide NPs using attributes of p-
chem, toxicological, and quantum-mechanical properties. Brain tissue was considered in their
analysis for the prediction of cell viability in a binary form using trees algorithms.

- Bilal, etal. [24] and Oh, et al. [25] built ML tools based on trees and bayes algorithms for exploring
the cellular toxicity of cadmium-containing quantum dots. Models were developed based on a
dataset compiled from publications comprising cell viability and half maximal inhibitory
concentration (IC50) from in vitro data samples. Among many variables, they included cell
anatomical type (neural, neuronal) and cell name (i.e., PC12, N9) with different origins (human,
rat, mouse), while specifying the tissue in detail (spine, brain, adrenal-gland and hypothalamus).

- Marvin, et al. [26] built a Bayesian Network for the prediction of an aggregated hazard outcome
based on eight biological effects, namely, neurological, cardio-pulmonary, immunological,
inflammation, genotoxicity, reaches central nervous system; fibrosis and cytotoxicity using p-
chem characteristics and information regarding the study type (in vitro or in vivo).

- Furxhi, et al. [20] built Bayesian Networks bridging NP p-chem properties, experimental
exposure conditions and in vitro characteristics with biological effects of NPs on a molecular
cellular level from transcriptomics studies. Regarding brain tissue, the SHSY5Y cell line was used
as a model input variable.
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To our knowledge, there is neither an explicit mechanistic interpretation nor a non-mechanistic
predictive model specific to a neurotoxicological outcome. Brain as a tissue variable or a
neurotoxicological endpoint has been used in in silico tools in combination with other cell lines or in
combination with other outcomes [18]. Aggregated in such a way, this information is easily neglected
by data-seekers and is retrievable only when sought for in Supplementary Materials.

This study develops a ML classifier that predicts solely neurotoxicological, NP-induced, cellular
viability using inputs addressing p-chem properties, experimental exposure conditions and in vitro
characteristics. It gathers all aforementioned brain tissue toxicity experimental literature data in one
complete dataset. It uses the data to build a predictive model that is biologically accurate, i.e., tissue-
specific, but not biologically deduced. ML allows bypassing the uncertainty of input estimation in
applying physiology-based mass transport models. Furthermore, the ML model explicitly considers
in vitro experimental conditions, such as exposure dose, duration or toxicological assay, as input
parameters and, therefore, can be applied for diverse in vitro brain tissue exposures. The model is
validated accordingly and, where possible, compared to previous works. Our main motivation is that
in silico tools, for the prediction of a target-tissue effect, should be biologically and toxicologically
specific and aim at a definite endpoint. This approach has the advantage of focusing on a target
tissue/organ response at the cellular level since, compared to multiple tissue combining approaches,
it exhibits improved toxicity predictivity.

2. Materials and Methods

Figure 1 shows the workflow for the model implementation. Initially, studies assessing
neurotoxicity of NPs in vitro were identified (Section 2.1). Information regarding p-chem properties,
exposure conditions, in vitro characteristics (input variables), and endpoints (outputs) was extracted
and data completeness was assessed. A data set (Dataset I) comprised of 895 observations was created
at first with multiple outcomes. After identifying the final output to be predicted, based on data
completeness, Dataset II was formed, processed and used to develop the model, comprised of 603
rows (Section 2.2). Various normalization methods were carried out, a Synthetic Minority
Oversampling Technique (SMOTE) was applied to increase model performance and to minimize
prediction biases, and bootstrapping was applied to further facilitate model application. Multiple
random splits were performed and the training datasets were used for model development using a
trees algorithm, random forest (RF). The model is evaluated internally and externally via metrics
based on the confusion matrix. Furthermore, additional toxicity data identified from a meta-analysis
of nanoparticle cytotoxicity were used for reliability validation of the developed model (Section 2.4).
Analysis of important attributes based on model information gain (entropy) was conducted to reveal
the most significant inputs regarding outcome prediction (Section 2.5). Finally, the applicability
domain was defined (Section 2.6).
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Figure 1. Model development workflow.

2.1. Data Collection

Studies of NP-induced neurotoxicity were assembled in a recent review paper by [27]. The paper
(ibid) reviewed studies with an emphasis on molecular and cellular mechanisms. The authors
concluded that NPs induce oxidative stress, inflammation, DNA damage, and cell death, all of which
are potential mechanisms of tissue toxicity. From the reviewed studies, we focused on 36 articles
referring only to in vitro experiments. Having in vivo and in vitro data in one dataset requires finding
a harmonized way of reporting dose metrics in different systems, a complex and challenging topic
not addressed here. For example, in vivo studies report the exposure dose in mg/kg [28] or mg/kg
bw/day [29] with multiple durations and frequencies of exposure [30]. On the other hand, in in vitro
assays, single dose is expressed as pig/mL in most of the cases. Harmonizing those dose metrics would
result in assumptions feeding uncertainty to a model.

2.2. Data Extraction

Dataset I — Extraction of outcomes
From each study reviewed, several outcomes (mechanisms of NP-induced neurotoxicity in vitro)
were recorded in accordance with [27]. Those outcomes are summarized in Table 1.

Table 1. Results of toxicological endpoints from in vitro neuronal assays, extracted as outcomes for
use in developing the model (list of biological endpoints not exhaustive).

Mechanism and Results of Toxicity
Pro-inflammatory response (e.g., cytokine production IL1f, 1L-4, IL6, ILS, proteins or genes disruption
linked with inflammatory processes)
Mitochondrial effects (e.g., depolarization, alterations in dynamics or morphology, loss of membrane

potential)

Cellular Uptake (i.e., internalization)

Autophagy (e.g., reactions in autophagy process, alterations in phagocytosis activity, lysosomal

activation)
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Cell viability (i.e., cellular proliferation, mitochondrial activity, membrane integrity/damage, apoptosis
induction)

BBB permeability (e.g., increased permeability, integrity)
Genotoxicity (e.g., DNA damage, disruption of synthesis)
Oxidative stress (i.e., ROS production, disrupted pathways or molecules, lipid peroxidation, antioxidant
stimulation)
Morphological changes (i.e., damage-modification of cellular components or cellular form e.g.,
cytoskeleton changes)

The above outcomes were extracted in a binary form (toxic, non-toxic). If a study determined
that one particle was more toxic than another one, this is not shown in binary outcomes. Both particles
are presented as toxic without demonstrating the relative toxicities among them. Only statistically
significant alterations were extracted as toxic instances. For instance, if cell viability was examined in
an assay using different exposure doses, only the statistically significant cases (less than 50% of viable
cells) were recorded as toxic, while the rest of the instances were recorded as non-toxic. Studies
demonstrated an outcome with specific exposure scenarios, for example exposure A and duration B
resulted in outcome C. All information was extracted in instances (rows); if outcome (C) remained,
the same during different exposure conditions (A1.2...n, B12...n), this resulted in multiple instance cases
in our worksheet. However, a study might have applied various toxicological assays (diverse
endpoints) for the same NP. In this case, if the study demonstrated that the NP is non-toxic for a
specific outcome (i.e., DNA damage), information could not be assumed for the other outcomes e.g.,
membrane integrity, resulting in missing information for that experiment concerning the other
outcomes.

The toxicity of NPs can be determined by numerous factors such as the dose and duration as

well as the p-chem properties. Furthermore, the experimental in vitro parameters i.e., the cell type
(neuroblastoma, pheochromocytoma etc), cell origin (human, rat, mouse etc) and the assay (MTS,
XTT etc) add further variables that affect the outcome. There are no definite guidelines in dataset
formation and model implementation to create a predictive model with nanotoxicological data.
Nevertheless, prior research has demonstrated the significance of NP type, p-chem properties,
exposure conditions, and experimental parameters in predictive toxicity modelling [20,24,31-36].
In this study, each paper was reviewed focusing on information related to i) NP type (FeO, SiO2,
CuO etc), ii) nano-specific descriptors (core size, shape, zeta potential etc) and iii) study design
experimental parameters (exposure conditions and in vitro characteristics). The data was extracted
to construct the input variables. Ge, Du, Ran, Liu, Wang, Ma, Cheng and Sun [20] recorded the NP
type and some p-chem properties. However, after a detailed review of the studies, we identified
several properties not mentioned in their (ibid) article, such as agglomeration/aggregation, shape,
surface charge, hydrodynamic size, details on zeta potential (negative or positive potential was
provided), dose, duration etc., While the review study provided the ground for the data extraction,
we scanned the papers to extract all available information in greater details. Due to the high
occurrence of missing data on outcomes and the lack of detailed biological knowledge of the
relationship (causality) among the different outcomes, we chose to model the prediction of specific
cell lines targeted on neural system cellular viability, in a binary form (toxic, non-toxic). Thus, the
instances (rows) corresponding to the other outcomes were discharged in the new dataset (Dataset
1).

2.3. Data Management

Following data extraction and cleansing, all data was gathered in a single dataset along with all
relevant bibliographical, descriptive, and technical metadata. These include all publications and
author information and the methods and assays identified during data curation. In accordance with
the European Commission’s Open Data Policy and the FAIR (Findable, Accessible, Interoperable,
Reusable) data principles, the resultant dataset (data and metadata) was semantically annotated
using established ontologies (e.g., eNanoMapper ontology, Chemical Entities of Biological Interest
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ontology, National Centre for Biotechnology Information ontology). The dataset was uploaded and
made available under Creative Commons Attribution 4.0 International (CC BY-NC 4.0) licence,
through the NanoCommons Knowledge Base (available online:
https://ssl.biomax.de/nanocommons/cgi/login_bioxm_portal.cgi, accessed on 15 June 2020).

2.4. Data Pre-Processing and Validation

As measurement units and magnitude range differ and can affect the optimization of the model
during training, data was normalized [31]. Data normalization was conducted on the numeric inputs
to enhance model performance [19]. We used different normalization techniques such as log10, z-
score and min-max for each input individually while assessing the skewness. Skewness is a measure
of symmetry in a distribution of data, and a good value lies between -2 and 2. To investigate models
performance with the different normalization methods, we created three different datasets i) numeric
inputs as log10, ii) numeric inputs normalized along min-max and iii) numeric inputs normalized as
z-score. WEKA (Waikato Environment for Knowledge Analysis, version 3.8.4, available online:
https://www.cs.waikato.ac.nz/ml/weka/, accessed on 18 May 2020), an open-source Machine
Learning workbench, was used to train RF algorithm in default mode. Details on default values in
model configuration can be found at:
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.html, accessed on 18 May
2020. RF has been found to perform very well compared to other algorithms and demonstrate high
performance in cases of missing values [37].

A class imbalance problem occurs when one of the classes has more samples than the other. The
performance of most classification algorithms can be limited by unbalanced data. To avoid
compromising the performance, we balanced the dataset by adjusting the relative frequency of
toxic/non-toxic instances through resampling the dataset applying SMOTE, a supervised instance
algorithm that oversamples the minority instances using k-nearest-neighbour [20]. Once a balanced
dataset was achieved, we bootstrapped the data to further facilitate model application. Bootstrapping
in general refers to sampling of data with replacement maintaining the same data distribution [38,39].
In our cases, we implemented bootstrapping in two steps; first an oversampling was applied to the
balanced dataset to increase dataset size; then, we randomly sampled the dataset 10 times to different
sets of 90% (training dataset for internal validation) and 10% (external validation) of the data [19].
Oversampling was applied through a supervised filter that doubled the number of instances. Ten-
fold sampling with replacement was applied though a supervised filter to ensure stratification i.e.,
balanced classes in the subsets [40]. It should be noted that, in contrast to typical k-fold cross-
validation (CV), the 10 subsets were overlapping. For each of the 10 subsets, internal validation
(goodness-of-fit, robustness) was done for the training subset using 10-fold CV. In k-fold CV, the
training set is randomly split into k mutually exclusive subsets. The model is trained and tested k
times, each time being used to make predictions for instances that were withheld from the training
set. By bootstrapping the data followed by typical CV, we applied a nested cross validation able to
reveal overfitting and to estimate how well a model accounts for the variance of the response in the
training set (goodness-of-fit). In addition, using the cross validation, we ensure model stability of
prediction when a perturbation is applied in the training set (robustness) [14]. For each of the 10
subsets, the remaining 10% of the data were used for external validation (predictivity).

Different performance metrics were applied based on the confusion matrix. We used diverse
metrics since no single metric is optimal for model’s comparison [14]. Accuracy (ACC), sensitivity
(SENS), specificity (SPEC), precision (PREC), Fl-measure (F1), Receiver Operator Characteristic
Curve (ROC), and Matthews Correlation Coefficient (MCC) were demonstrated. For a detailed
explanation of the metrics please refer to the following articles, which also demonstrate the
advantages of MCC metric when dealing with classification models [20,41-43].

2.5. Important Attribute Evaluation

Attribute importance can be relatively measured and quantified based on information obtained
from the models. The advantage of measuring the importance based on built model information is
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that being closely tied to the model performance it incorporates the correlation structure between the
predictors into the importance calculation [44]. We recorded the attribute importance of RF based on
average impurity decrease (and number of nodes using that attribute) in WEKA via the information
gain with respect to the outcome [45,46]. Information Gain measures the correlation between the
attribute values and the class values estimating the entropy-based worth of each attribute. Values
vary from 0 for no information, to 1 for maximum information.

2.6. Applicability Domain

The Applicability domain (AD) of a model defines mathematically the input space that
corresponds to reliable model performance. AD calculation is based on comparing a test sample to
the dimensional limitations of the training dataset. They are several approaches proposed to define
the AD for toxicity models. The Bounding Box method defines the AD as the multidimensional
rectangular space outlined by the minimum and maximum values of the input variables. It can also
be used on the Principal Components of the data. Leverage is a distance method based on the
Mahalanobis distance of the query nanoparticle from the centroid of the reference nanoparticle data.
The k nearest neighbors” approach (kNN) investigates the similarity of the test sample to the instances
of the training dataset measuring the distances of the query nanoparticle to the nearest cases over a
predefined threshold. Alternatively, the distance from the training set data centroid can be calculated.
In order to eliminate any method-related bias, Bouncing box, bouncing box PCA, Leverage, Distance
from centroid, kNN -fixed k and variable k, were used to examine whether the external validation
dataset falls within the descriptor space [47].

When a dataset is comprised by non-numeric attributes, the applicability domain regarding
those attributes is defined by the values present in the dataset. For instance, an experiment referring
to a NP not already present in one of the studies comprising the training dataset falls out of the AD
of the model.

3. Results

3.1. Data Extraction

Dataset I: From the studies reviewed several endpoints of NP-induced in vitro neurotoxicity
were recorded in agreement to [20]. The initial dataset (Dataset I) was comprised of 895 rows derived
from 39 studies focusing on the nervous system. The outcome of the fewest missing values was
cellular viability with 73% completeness, as demonstrated in Figure 2 (left). Oxidative stress and
cellular morphological changes were 24% of cases complete. Other endpoints, such as mitochondrial
alterations, genotoxicity, pro-inflammatory responses etc., had insufficient completeness (<10%). This
is attributed to the fact that studies assessing cellular viability used a high number of combinations
of different exposure doses and/or cellular cultures, providing therefore most of the case. Figure 2
demonstrates the completeness of p-chem properties in Dataset I (left). Exposure dose and duration,
NP type, cell origin, cell type, cell name, assay, and particle primary size were always reported in the
studies, as expected. Zeta potential measured in different media (water, W, cellular medium, M) and
aggregation were missing in =50% of the recorded instances. Completeness of shape, hydrodynamic
size (W, M) and specific surface area was <50%. On the other hand, information regarding coating
presence and purity percentages were scarcely mentioned in the studies. Due to low completeness of
several outcomes, a model for the prediction of multiple outcomes would be poorly defined. In
addition, due to the lack of detailed biological knowledge of the relationship (causality) among the
different endpoints, we chose to create a specific in silico tool for the prediction of neurotoxic cellular
viability in a binary form (toxic, non-toxic). Thus, the rest of the outcomes were discharged in the
Dataset II. Since some rows did not provide information of cellular viability, but only for other
endpoints, this resulted in a smaller dataset.

Dataset II: Dataset I is comprised of 603 rows with p-chem properties, exposure conditions and
in vitro characteristics to predict cellular viability derived from 32 studies. Compared to the original
dataset, completeness was improved first, by deleting non-neurotoxic outcomes, and second, by
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grouping water and cell culture media measured attributes. Linear regression was used to estimate
Zeta potential and Hydrodynamic size measured in water from values measured in cell medium,
using data from the instances of the dataset where both values were measured. The improvement is
presented in Figure 2 (right). Zeta potential, Hydrodynamic size and Surface Area completeness
increased in comparison to Dataset I. No alterations were observed regarding shape. Coating,
Aggregation, and Purity were discarded (<20% completeness, data not shown) and Zeta (M) and
Hydrodynamic Size (M) were replaced in Dataset II.

Dataset |
Dose m o
Time m a
NP type 100% -
C_Origin 100% _
C_Type 100% 4 Dataset Il
C_name m |
Assay 100% " Dose 100% ]
- Size 100% S| Time 100% ]
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Figure 2. Dataset I completeness (percentages) of input parameters and the identified outcomes (left).

Dataset II completeness of inputs with one outcome: cellular viability (right).

syndu

inding

The final 12 input variables: two exposure conditions, six p-chem properties, and four in vitro
characteristics selected in our analysis are shown in Table 2. Cell viability (%) was classified as either
toxic if cell viability was less than 50% and non-toxic otherwise.

Table 2. Input final variables, type of input and information related to the labels and metrics.

Type Min-Max or Labels
Expos Dose 0.001-800 (pgr/mL)
ure Durati Num
condit uratio eric 1-168 (h)
ion n
Natri‘gfar Nomi FeO, $i02, TiO2, Ag, CuO, ZnO, GO, MnO, SWCNT,
1
Phusi Shape na Spherical, irregular, prism, cubic, nanotube, flat, oval, rod, crystalline, unknown
ysic
o- Zeta' —49-44 (mV), unknown
. Potential
chemi Hvdro s
cal yaro 14-2181 (nm), unknown
ize Num
prope Primar eric
rties mary 1-219 (nm)
size
Surface

Area

17-240 (m?/g), unknown
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Cell
. Human, rat, mouse
In origin Nomi
vitro Endothelial, astrocytes, microglial, medulloblastoma, neuroblastoma, mesencephalic,
Cell type nal
charac pheochromocytoma, cerebellar granule, Schwann cells
ter- Cell line HCMEC, BMEC, primary, ALT, D384, SHSY5Y, N9, BV2, PC12, N2a, CGC, RSC96, N27
ristics A Nomi MTT, MTS, XTT, AlamarBlue, LDH, Caspase 3/7, clonogenic, CCK-8, Trypan-blue, PI,
S8 hal BrdU, TUNEL, NRU, Annexin_V/PI
Outpu Cell Nomi . .
L 1 Toxic, non-toxic
t viability nal

3.2. Data Pre-Processing and Validation

Figure 3 demonstrates the data skewness of numerical inputs based on the three different
normalization techniques (log10, min-max and z-score).
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Figure 3. Skewness of numeric inputs based on different normalization methods. Four datasets were
tested for their distribution of data, raw dataset (no normalization), log10, min-max, and zscore
dataset.

Inputs normalized with log10 had skewness closer to zero for all attributes, which means that
the tails on both sides of the mean balance out overall. Raw dataset and mix-max had very high
skewness. Z-score corrected some attributes but not all. The log10 dataset was chosen to be used in
the RF model.

The balanced, normalized dataset was sampled randomly to 10 pairs of training and test sets
with a ratio of 90:10; 90% was used for internal validation (goodness-of-fit, robustness) and 10% for
external validation (predictability). The basic measures of the confusion matrix for internal and
external validation for the 10 subsets are listed in Table 3.

An external dataset for reliability validation was extracted from a meta-analysis of NP
cytotoxicity data [22]. The specific studies were selected based on specified cell-related attributes
(brain tissue). From the extracted subsample from available Supplementary Material, the reliability
dataset is comprised of 210 rows. The instances identified are unique and not included in our analysis
as the specific studies were not included in forming Datasets I and II. Exposure dose, duration, size,
NP type, zeta potential, cell origin, cell name, cell type, assay, and viability were included in the
dataset. Hydrodynamic size, specific surface area and shape were missing. Screening the source
(study) of the instances, we found additional information, however, the missing values remained
high for some instances e.g., 42%, 95% and 97% of values of zeta potential, hydrodynamic size and
shape, respectively, missing.

The results of the reliability validation are shown in Table 3. The ACC results demonstrate the
strength of the model to correctly capture the majority of the instances even if data of three input
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parameters are almost completely missing. Having a close look to the other metrics (MCC = 0.38), we
see that the model was slightly biased towards the prediction of one class (nontoxic). The same is
evident from the average SPEC results (66%) compared to 71% SENS.

Table 3. Internal 10-fold cross validation model performance and external validation-predictivity for
the ten random samples of the dataset.

Internal Validation
ACC PREC SENS SPEC F1 MCC ROC
Replication1 96.7% 96.8% 96.7% 96.8% 0.97 0.94 0.99
Replication 2 97.6% 97.6% 97.6% 97.6% 0.98 0.95 0.99

Replication 3 97.9% 979% 97.9% 97.9% 0.98 0.96 1.00 s
Replication 4 97.5% 97.5% 97.5% 975% 0.98 0.95 0.99 0‘_:.
Replication5  97.6% 97.6% 97.6% 97.6% 098 0.95 1.00 %‘
Replication 6 974% 974% 974% 974% 097 0.95 1.00 =3
Replication7  98.1% 98.1% 98.1% 98.1% 098 0.96 1.00 E
Replication8  98.0% 98.0% 98.0% 98.0% 0.98 0.96 1.00 .
Replication9  97.9% 97.9% 97.9% 979% 098 0.96 1.00
Replication 10 98.2% 98.2% 982% 982% 098 0.96 1.00
Average 97.7% 97.7% 97.7% 97.7% 0.98 0.95 1.00
External Validation
ACC PREC SENS SPEC F1 MCC ROC
Replication 1 985% 985% 985% 984% 0.99 0.97 1.00
Replication 2 98.4% 985% 98.4% 985% 0.98 0.97 0.99
Replication 3 96.2% 96.2% 962% 96.1% 0.96 0.92 0.99 s
Replication 4 99.2% 992% 99.2% 99.3% 0.99 0.98 1.00 0%.
Replication 5 985% 985% 985% 98.4% 0.99 0.97 1.00 g:
Replication 6 992% 992% 99.2% 99.0% 0.99 0.98 1.00 =%
Replication7  96.9% 97.0% 96.9% 97.0% 0.97 0.94 0.97 0%:

Replication8  98.4% 985% 984% 984% 098 0.97 1.00

Replication9  99.1%  99.1% 99.1% 98.7% 099  0.98 1.00

Replication 10 98.3% 98.3% 98.3% 98.3% 098 097 1.00

Average 98.3% 98.3% 98.3% 98.2% 098 0.97 0.99
Reliability Validation

ACC PREC SENS SPEC F1 MCC ROC

Replication 1 72% 72% 71% 66% 072  0.38 0.73

3.3. Attribute Importance Evaluation

The results of attribute importance analysis are presented in Figure 4. Exposure dose and
duration, toxicological assay, cell type, and zeta potential were identified as relatively important
attributes when compared to the other attributes; this means that their values enable during
classification the distinguishing of the materials as either toxic or non-toxic. In contrast, values of
specific surface area, cell origin, hydrodynamic size, shape, and NP type had lower effect.
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Figure 4. Attribute importance evaluation based on models” information gain.

NP type, shape, core size, and cell name in general are expected to contribute to the change of
the toxicity. However, the importance of the above attributes was measured relatively low in the
analysis. The result does not mean that those attributes do not affect the toxicity change. Rather, it
means that values of other attributes more decisively differentiate the outcome. It should be noted
that the range or diversity of the attribute values affect the importance assessment. The model still
uses the descriptive attributes such as NP type, shape and cell name to precisely predict the toxicity
and builds on all available information from the attributes as a whole. Running the model without
exposure conditions and in vitro characteristics resulted in lower Correctly Classified Instances
(79%), and the information gain analysis showed the same pattern of physicochemical attributes
affecting the prediction of outcomes i.e., zeta, core size and NP type as the most significant attributes.
On the other hand, shape and surface area demonstrated lower information gain (data not shown).

3.4. Applicability Domain

Table 4 presents the portion of the external validation dataset that lies within the applicability
domain of the model based on different methodologies regarding the numeric attribute data. All
methods show that all instances of the dataset belong to the AD of the model, revealing a very
balanced splitting. The result accords with the model performing equivalently for the internal and
external validation.

Regarding nominal attributes, values of all external validation instances are included in the
training dataset as well.

Table 4. Percentage of test set instances falling within the model AD according to different AD methods.

AD Method % of Test Set Falling within the Model AD
Bounding Box 100
Bounding Box PCA 100
Leverage 100
Distance from centroid 100
Distance kNN - fixed k 100

Distance kNN - variable k 100
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4. Discussion

In this study we presented a machine learning implementation, from data gathering to model
validation, to predict neurotoxicity induced by NPs in in vitro systems. The model complies with the
OECD principles [14] relating to: a defined endpoint; (cell viability is a biological effect that can be
measured and therefore modelled); an unambiguous algorithm (details of models” configuration are
provided); a defined domain of applicability; appropriate measures of goodness-of-fit, robustness
and predictivity (internal, external and reliability); and a mechanistic interpretation (assessment
between input variables and endpoint via information gain).

Data should be developed from homogeneous datasets in which the experimental data have
been generated by a single protocol. However, this is rarely viable in practice and data produced by
different protocols are commonly combined. In order to capture experimental variations, the
toxicological assay, serving as a surrogate of different protocols, is introduced to the model as an
input variable. Regarding p-chem characterization measurements, most instances for Zeta (W, M),
Hydro (W, M) and shape are measured with Dynamic Light Scattering (DLS). For zeta potential, other
techniques were used, such as Laser Doppler Velocimetry (LDV), Electrophoretic Light Scattering
(ELS), Electrophoretic mobility (EM) and Phase Analysis Light Scattering (PALS). Size was primarily
measured with TEM (54%) which is also under potential ISO standardization and secondarily with
DLS (37%), while few instances were determined through SEM. Surface area was determined mostly
with DLS (23%), while some instances were identified with TEM and Brunauer—-Emmett-Teller (BET).
Data completeness is shown in Figure 5.

Zeta W Zeta_M
Completeness Completeness
58.9% 53.48%

DLS{ LVDy EL DLSy  PALS]

5S¢ EMy 74 ElSy EMy 79
38.3% |[ 299% | [066% | [(199% | [15.1% | [ 49.86% | 365% | [0.66% | [3:32% | [ 5.9% |

Completeness Completeness Completeness
53.82% 9
Hydro_ W 36.87% 45.51% Shans
DLS DLS ? TEM y SEMy ?
53.82% [(35.8% |[099% | [ 4086% |[ 431% |[ 033% |
Completeness Completeness

Hydro_M
DLS TEM SEM ? DLSy  TEM{ BETY 7}
ﬁ ‘ 4.31% ﬁ [23.25% | [ 10.29% | [2.83% | [ 7.97% |

Size S_area

Figure 5. Physicochemical characterization completeness and experimental methodology.

Mourdikoudis, et al. [48] provided an excellent review on characterization techniques
mentioning strengths and limitations. The reproducibility of the p-chem characterization
measurements is a tough quest, since NPs act as chameleons: they change with time, handling, and
environmental conditions [49]. In this study, the experimental protocols were not taken under
consideration. Future studies may integrate weighting scoring rules for each published article based
on the measurement methods to evaluate the quality of the p-chem data as displayed in [21].

Few in silico tools in the literature capture neuronic cell cultures and do so only amongst other
cell lines (see Tables 5-7). In contrast to those tools, we compiled, for the first time and in an organized
manner, a toxicity dataset for the specific tissue. This resulted in a relatively small dataset but enabled
focusing on impact induced by NPs only on the selected tissue as defined by the different variables
related to the experimental study design and p-chem properties. The initial literature listing source
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was the review paper by [27], and the studies therein were examined for data extraction. Screening
papers individually is highly time consuming. In this direction, efforts are being made to create
curated harmonized databases, which will make the data FAIR. The FAIR Principles insist that all
data be Findable, Accessible, Interoperable, and Reusable.

Among the studies capturing brain tissue, two studies retrieved data from the S2Nano (available
online: http://portal.s2nano.org/, accessed on 23 July 2020) database (Table 5), while the rest practiced
literature individual screening. Our dataset contains diverse NPs such as metal (Ag), metal oxides
(ZnO, CuO, SiO2, etc) and carbon-based NPs (SWCNT). From the tools available that capture
neurotoxicity, two of them are trained for cadmium-containing semiconductor quantum dots, one is
focused on metal NPs (Au, Ag), and the rest capture a variety of NPs, mostly focused on metals and
metal oxides.

Our data are derived solely from in vitro studies, which is the practice in most tools (Table 5).
One of the general limitations of in vitro test systems is that they are restricted to one or a few different
cell types and, thus, cannot represent the biological responses in the whole organism. Single
exposures are typically used in in vitro studies, which usually last from a few minutes up to a few
days depending on the endpoint tested. Therefore, chronic exposures cannot be tested sufficiently.
Defining a suitable dose range is also a challenge for both in vitro and in vivo tests, as often
unrealistically high doses are chosen to observe an effect. Regarding the output, we predicted cell
viability in binary form. Marvin, et al. [26] predicted an aggregated outcome (cytotoxicity,
neurological, pulmonary, fibrosis, etc) translated into a hazard band. Furxhi, Murphy, Poland,
Sheehan, Mullins, and Mantecca [20] predicted disrupted pathways identified from transcriptomics
studies in a cellular level. The rest of the studies predicted cell viability, which is the most common
predicted endpoint in the field of nanotoxicology [18]. Diverse computational tools have been used,
such as trees, instance base and bayes algorithms (Table 5).

Table 5. In silico tools available in the literature capturing neurotoxicity. Data source and number of
studies regarding data compilation, its size for all tissues, level of biological organization, and final
input variables used to predict an endpoint. The algorithm implemented is also shown.

Data Level of Algorith
oy Data Dataset Size and Biological Endpoint - 8
Ref. Availabi- . NPs Category D . m
. Source Input Variables Organisatio Metric
lity n Category
(25] Literature: 1741 rows. 14 Decision
307 input Cadmium- Cell viability Tree, RF
Literature: 3028 rows cell containing In vitro and IC50
[24] 517 ' viability and 837 quantum dots Numerical
Data IC50. 18 input
dsheet
sprea .s ee Aggregét.ed Bayesian,
provided (cytotoxicity, BN
Literature: . Metal, Metal In vivo, in neurological,
[26] 559 rows. 20 input . .
32 oxide vitro pulmonary,
fibrosis, etc)
(nominal)
Instance
Database Based,
[21] (S2NANO 200515021& 4 Metal (Au, Ag) Decision
Not ): 63 P Tree,
Available SVM, RF
Database ..
23] (S2NANO 6842. rows. 15 Metal,. Metal . Cell viability Decision
input oxide In vitro R Tree, RF
): 216 (Binary)
Carbon-based,
Dat 3 datasets: 1052 Metal, Metal
[22] jiah " Literature: rows, 1261 rows Oxide, Decision
sprea ,S ee 93 540 rows. 17 Polymeric, Tree, DT
provided .
features Dendrimers,

Quantum Dots
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Disrupted
Data Literature: Metal, Metal processes (i.e., Bayesian
[20]  spreadsheet o1 246 rows. 12 input oxide, cell cycle and BN !
provided Polymeric proliferation)
(Binary)

In our study, numerous p-chem properties values were missing, which is a common issue in
nanotoxicological studies. For example, surface area, hydrodynamic size and zeta potential measured
in different media were absent in almost half our data samples. Nevertheless, RF has good
performance even with missing values [37], highlighting the RF selection [19] and demonstrating the
strength of ML tools to bypass missing knowledge. Researchers still encounter data shortness and
lack of harmonized protocols, and theoretical understanding further complicates making data
reproducible. Acknowledging the needs, the European Commission has embraced projects to explore
the opportunities offered by modelling in coupling the toxicity and properties of NPs, such as
GRACIOUS (available online: https://www.h2020gracious.eu/, accessed on 18 May 2020),
eNanoMapper (available online: http://www.enanomapper.net/, accessed on 18 May 2020),
NanoFASE (available online: http://www.nanofase.eu/, accessed on 18 May 2020), NanoCommons
(available online: https://www.nanocommons.eu/, accessed on 18 May 2020), ACENano (available
online: http://www.acenano-project.eu/, accessed on 18 May 2020), NanolnformaTIX (available
online: http://www.nanoinformatix.eu/, accessed on 18 May 2020), and NanoSolvelT (available
online: https://nanosolveit.eu/, accessed on 18 May 2020).

NP type (expressed as quantum dot core, NP type or NP material), particle primary size
(expressed as diameter, particle size or core size) and zeta potential (surface charge) are used as input
p-chem variables in all studies and this study as well (Table 6). Shape and specific surface area appear
in three and four out of seven tools, respectively. In our study, zeta potential data measured in
different media were initially gathered. However, due to low completeness, we integrated the
variables into a single one. Only one study specified the medium in which zeta potential and
hydrodynamic size were measured [21]. Besides p-chem properties, one study included quantum
chemical properties in their dataset such as formation enthalpy, conduction band energy etc. [23]
(Table 6).

Exposure conditions i.e., exposure dose and duration, are important attributes since the
manifestation of adverse effect depends on exposure. Exposure conditions are included in six studies.
Other exposure-related variables reported in some studies but not included in our study are delivery
type and administration route (Table 6).

In vitro characteristics were included in our analysis i.e., cell origin/line/type and assay. Cell
origin comprised of categories that indicate the species the cell culture is derived from (human, rat
and mouse). Cell origin is used in three other studies termed as cell source species, cell species, and
human/animal, while in one study, cell origin is used to describe whether cells are primary; cell type
is used in half of the studies labelled as cell anatomical type or morphology; cell type is used in a
study to describe if cell line is normal or cancerous. Cell line appears in four studies termed as cell
identification or cell type. Finally, assay is used most of the time either as assay type, method or test.
Those examples highlight the need for a harmonized way to describe the data. Brain tissue-related
attributes information, which enabled performing a cross comparison of our tool with the existed
ones, was retrieved from Supplementary Materials.

This suggests that looking for tools that cover e.g., a specific cell line cannot be limited to
screening a study report, but requires going through the actual data samples and stresses the need
for integrated databases.

The studies used in model implementation are considered biologically accurate, meaning that
the model is trained with toxicological information manifested in cell lines derived only from the
nervous system, as the potential target organ. In the best-case scenario, information would be derived
only from human cell lines, but due to lack of data, cells lines from rodents were included. Moreover,
the aggregation of different organ toxicities was not addressed, as this has been studied by a number
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of other investigators guided by the assumption that different tissue toxicities exhibit the same
patterns that allow a totaled toxicity prediction.

Table 6. In silico available tools in the literature capturing neurotoxicity (relevant features in bold).
The final input variables selected for model implementation are categorized in theoretical descriptors,
p-chem properties, exposure attributes and in vitro characteristics.

Input Variables
Ref. Theor.etlcal P-chem Properties Exp.o sure In Vitro Characteristics
Descriptors Attributes
Source, core, shell, Cell anatomical type (epltheha'l, '
. . neuronal, neuroblast etc), cell origin
diameter, surface ligand, Exposure dose . .
[25] . (cell line, primary), assay type (MTT,
surface charge, surface and time MTS etc), delivery type (passive
modification ! . ytype(p ’
active)
Cell source species (human, rat etc),
Shell, core, source, anatomical type (epithelial, neural,
diameter, surface ligand, Exposure dose neuronal etc), identification (PC12,
[24] surface charge, surface and time, Neuro-2a, N9 etc), tissue organ
modification, ligand delivery type origin (brain, adrenal gland,
- chemical hypothalamus etc), assay type (MTT,
LDH etc)
Shape, NP type,
dissolution, surface area, . .
. Administration . .
[26] surface charge, coating, route Study type (in vitro or in vivo)
surface reactivity,
aggregation, particle size
NPs type, shape, core size, toxic assay method (MTT, MTS, etc),
hydrodynamic size (W), cell lines (A549, SHSY5Y, BMEC
[21] -
surface charge (W), specific etc.), cell types (cancer/normal) and
surface area, coating cell species (human, murine)
Core size, Surface charge,
Hydrodynamic size,
Quantum Spec1f1c. surface area, Assay (MTT, MTS), cell species
. Formation enthalpy, (human, mouse, hamster etc), cell
[23] Chemical . .. . .
roperties Conduction band energy, origin (lung, blood, skin, brain etc),
PTop Valence band energy, cell type (normal/cancer)
Electronegativity, NP
material
Exposure dose Cell-type (L929'. HCMAEC, SHSY5Y
. etc), cell line (primary),
and time . .
Human/animal, animal (mouse, rat
etc), organ/tissue source (bone
NP type, core, surface marrow, brain, colon etc),
[22] - coating, diameter, surface morphology (epithelial, neuronal
charge etc), test (MTS, MTT etc), test
indicator (tetrazolium salts annexin
V etc), biochemical metric (cell
membrane integrity, LHD leakage
etc)
. cell line (HEPG2, VSMC, HACAT
NPs type, core size, shape, K
. etc), type (cancer, normal), tissue
[20] - coatings, surface area, zeta

(kidney, brain, lung etc), assay

potential (Affymetrix, bioscience)

Attribute importance analysis revealed that exposure dose, duration, assay, cell type, and zeta
potential are the top five most important attributes affecting the prediction of neurotoxicity. The
results are in accordance with the landscape presented in the field: Exposure dose and duration have
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been found as the most important attributes in all the studies covering brain tissue (Table 7). The
assay of the toxicological measurement also appeared in the majority of studies as important,
highlighting the significance of including experimental parameters in the dataset. In comparison with
the other studies, the type of cell was found in the opposite spectrum of importance. This could be
explained by the fact that our dataset being tissue-specific uncovered the fine influence on the
outcome those types of cells possess. It should be noted that the aforementioned attributes are
essentially the experimental parameters defining the study and not variables under investigation for
their toxicity effect. Zeta potential appears in studies as important or otherwise; this signifies that the
choice of all input variables influences the relative attribute importance. Only if the same set of
variables is used across the studies, influential attributes analysis can be comparable and
complementary.

Specific surface area, cell origin, hydrodynamic size, shape, and NP type are the five least
important attributes affecting the prediction. Shape and cell origin appeared as such in other studies
as well. Surface area appeared as either important or not, probably largely affected by low data
completeness. NP type is found to be both highly and lowly influencing; Trinh, Ha, Choi, Byun and
Yoon [21] had only one or two types of metal NP in their dataset, and this could explain why this
variable provided little information in building the models. Particle size appeared as significant
across all studies, highlighting the importance of size in the manifestation of toxicological effects.
However, we did not find the same results when other non-p-chem attributes were included. When
exposure conditions and in vitro characteristics were excluded, core size appeared the second most
influential variable.

In conclusion, exposure conditions, assay and size are key parameters that enable the prediction
of toxicity. Shape and cell origin do not influence toxicity prediction as much. Zeta potential, NP type
and surface area have diverging behaviors. The comparison results indicate that key parameters are
difficult to be determined in unison when each tool uses a different set of input variables.

We explored model performance in terms of robustness, goodness of fit and predictivity, in
agreement with the fourth OECD principle. The performance was measured with metrics such as
ACC, SENS, SPEC, MCC, ROC, and precision. MCC should be preferred in binary classification
evaluation when compared to more basic metrics such as ACCU, SENS or SPEC [41]. In comparison
with the other three models that predict cellular viability, our model shows better results, revealing
that tissue-specific modelling enables better predictions. The studies did not demonstrate
performance by a variety of metrics, making inter-comparison narrow. In details:

-Trinh, Ha, Choi, Byun and Yoon [21] trained five datasets different in terms of data qualities
and degrees of completeness, for either a single NP or a combination of NPs. The model algorithms
consist of RF and SVM. No internal validation metrics were provided, only external. The performance
metrics included ACC, SENS, SPEC, and F1. The model with the highest ACC = 96.4% was SVM
trained with AuNPs (dataset Al). This case reached SPEC =100%, SENS =50% and F1 = 0.50 showing
that this model is biased towards the prediction of a specific class. When SENS reached 82.2% (SVM
algorithm with Al dataset), ACC dropped to 85% and F1 increased to 0.73. For the same metrics for
external validation, our model reached ACC/SENS/SPEC =98% and F1 =0.98.

-Ha, Trinh, Choi, Maulina, Byun and Yoon [23] provided results of RF on five replications using
four datasets (20 cases). The authors provided internal validation metrics derived from cross
validation and external predictivity (ACC, SENS, F1 and precision). The most robust model reached
ACC =95%, SENS = 70%, F1 = 0.77 and PREC = 85% (Dataset III-A, 4th replication), lower than our
case. The best predictivity was reached with another dataset (Dataset III-B, 3d replication)
demonstrating ACC = 95%, SENS = 87%, F1 = 0.89 and 91% precision. In comparison, our model
resulted in ACC/SENS/SPEC = 98% and F1 =0.98.

-Labouta, Asgarian, Rinker and Cramb [22] trained eight decision trees internally using cross
validation providing ACC, SENS and PREC. The best decision tree (DT4) achieved ACC =91%, SENS
= 98.3% and PREC = 92%. SENS is similar to the performance of our model, which appears more
balanced with a 98% PREC.
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Luan et al., Kleandrova et al. [35,36] and Concu et al. [50] built models based on perturbation
theory using data from multiple literature sources to predict aggregated toxicological endpoints in a
binary form for different NPs. Among the diverse in vitro characteristic inputs, they used brain
tissues (Neuroblastoma, Neuro-2a cell line) amongst other mammalian lines with different origins.
The perturbation models performed quite well. Those models were not included in the comparison,
first, because the input variables consist of differentiations and combination of original attributes,
making inter-comparison of attribute importance difficult, and second, the endpoint of prediction is
an aggregated variable. However, even though the methodologies of data pre-processing are
different, out model still compares well internally and externally.

Wrapping up, the tissue-specific, pre-processed RF model provides better predictions and
performs adequately in reliability evaluation as well. Future studies should provide detailed and a
plethora of metrics, internally and externally to facilitate comparison. No other study conducted a
reliability validation.

Focusing on cellular viability specifically in brain tissue, the developed model performs better
than models covering multiple tissues. When toxicities of different organs are merged in a ML
classifier, tissue as an attribute appears to be a significant determinant of the output [20]. This comes
as no surprise, since cells of various tissues differentiate both in structure, function, and therefore,
toxicity. Even if the same outcome is selected, e.g., cell viability, and even if toxicities show similar
patterns, the way the combinations of experimental conditions affect cell toxicity is not the same
among different-tissue cells. Aggregating those cases in a ML approach without losing accuracy
requires a versatile model and a significant number of data. If those cases are aggregated using the
relatively small datasets available in nanotoxicity, different associations of NP characteristics,
exposure conditions and toxicities are forced together, resulting in adulterated predictions.

Table 7. In silico available tools in the literature capturing neurotoxicity. Attribute importance
methodology along with the top five and lowest five attributes are shown for relevant outcomes (in
bold). In addition, applicability domain and performance metrics and results are shown.

Attribut
ribute Top 5 Important Lowest 5 Important ~ Applicabilit
Ref. Importanc . . . Performance
Attributes Attributes y Domain
e Method
IC50: IC50: cell
Diameter>surface species<delivery
ligand>shell>assay type<cell
Random type>expf)su.re. time. origin<surface Cell viability: R2 =
. Cell viability: charge<NP source.
[25]  Permutatio Diameter>Concentrati Cell viability: cell 070.
n oY IC50: R2 = 0.80
on>surface anatomical type<cell
ligand>exposure species<cell
time>surface origin<delivery type<
modification. NP source.
11 viability: cell
Cell viability: . Ce .Ylal?l lty, e
. . identification<ligand
diameter>concentrati .
chemical< surface
on>exposure I
: modification<source
time>surface . s
ligand>assay type species<cell (cross) Cell viability:
[24] & IC5 O'Y pe. anatomical type F1=0.86
Sensitivity ) ’ IC50: cell IC50: R2 = 0.87
. diameter>exposure . e :
analysis . identification<Tissue
time>surface orean <source
ligand>shell>assay & .
e species<surface
ype. modification< Source
Nanoparticle>surface coatings>surface
[26] area>Aggregation>Particle size>surface (no cross) ACC: 72%

charge>shape>surface reactivity>dissolution
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Weights by ~ Dose> cell line> core (only external)

chi sauare size>surface Shape<species<type K ‘ Dataset with best
[21] stat(i]stic chareesspecific of cells<material< .n}?]jres § results: ACC: 87.0%,
§e™°p time<assay MEIBADOULS SENS: 61.3%, F1
method. surface area. algorithm -
. score: 65.2%
weighted
Leave-one- Cell type<surface : .
. Euclidean (cross) Dataset with
out out-of-  Dose>assay>time>sur charge< 3 quantum .
[23] . f . distance best results: ACC:
bag (OOB) face area>core size. chemical properties
96%, F1: 93%
errors (Ec<x<Ev)
22] Gain ratio Not specified, generation of several decision (cross) Generation of
algorithm trees several decision trees
o Normalized information gain for each model Three different
Sensitivity outcome. In general NP type, exposure dose .
[20] . o - . - models with 9
analysis and in vitro characteristics ranked first among

different outcomes.
the other variables.

Applicability domain, as a requirement of the OECD principles, was only identified in two
studies [21,23]. The authors report the ranges of the numeric attributes calculated using k-nearest
neighbours’ algorithm —weighted Euclidean distance. Similar to our study, the actual values of the
nominal attributes are shown as defining the AD. In this way, a case of a NP present in the training
dataset, injected in a specific biological assay also present in some other instance of the training
dataset, is acceptable in the model AD. However, the reliability dataset cases not captured by our
model showed that the exact combination of in vitro determinants of an experiment has to present in
the training dataset. Assays, cell lines and cell types cannot be combined as independent variables in
a classifier trained in small datasets, like the ones found in nanotoxicity. Although assays of the
reliability cases, such as MTT or Alamar Blue and cell types, such as neuroblastoma or
pheochromocytoma, can be found in the training set, their combinations are different among training
and reliability sets, and the model fails to capture the outcomes. More data are needed to enable
building models accounting accurately for the possible in vitro determinants’ combination. The same
holds for NP p-chem characterization, as shape, zeta potential, and specific area data were scarce in
the reliability dataset. Besides data availability, another point of dataset improvement is replacing
NP type as an attribute with a representative cluster of theoretical descriptors. This would extend the
AD of the model but burden the model complexity as training datasets remain small.

5. Conclusions

We developed a random forest model extracting data from multiple literature sources including
experimental results, p-chem properties and exposure conditions. Various pre-processing techniques
were used for model facilitation including analysis of relatively important attributes based on model
information. The developed model predicts cellular viability specifically in brain tissue and performs
better than models covering multiple tissues. Experimental conditions are shown to significantly
affect predictions. In vitro determinants combinations must be treated with caution when training
datasets are small.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/21/15/5280/s1.
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