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Abstract: The increasing prevalence and severity of pediatric food allergies (FA) demands innovative
preventive and therapeutic strategies. Emerging evidence suggests a pivotal role for the gut
microbiome in modulating susceptibility to FA. Studies have demonstrated that alteration of gut
microbiome could precede FA, and that particular microbial community structures early in life could
influence also the disease course. The identification of gut microbiome features in pediatric FA
patients is driving new prevention and treatment approaches. This review is focused on the potential
role of the gut microbiome as a target for FA prevention and treatment.
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1. Introduction

In the past two decades, the prevalence, persistence, and severity of food allergies (FA) have
been increasing [1]. This has led to an increased number of hospitalizations and costs for patients,
their families, and healthcare systems [2]. Several hypotheses have been formulated to explain
such phenomenon. Among these, the current “old friends and biodiversity hypotheses” propose
that changes in living environment, diet, and lifestyle associated with Westernized countries have
altered the microbial diversity, disrupting the immunoregulatory function of the microbiome and
predisposing people to allergic sensitization [3-5]. The formulation of these hypotheses derives from
robust evidence suggesting a key role of microbiome alteration, influenced by modern lifestyle factors,
in the development of FA [6]. The purpose of this review is to present an overview of the current
knowledge on the role of the gut microbiome as an innovative target of interventions against FA.

2. Gut Microbiome Dysbiosis and Food Allergy

Growing evidence from human and animal studies supports a crucial role of gut dysbiosis, a state
of imbalance in the gut microbial ecosystem, in FA development.

2.1. Evidence from Human Studies

The first studies highlighting different gut microbiome structures in subjects with FA were
culture-based investigations, but this type of study was able to provide only partial results, as most of
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the microbiota could not be cultured [7,8]. For this reason, subsequent studies used other techniques,
such as 16S rRNA sequencing and shotgun metagenomic sequencing, both based on next-generation
sequencing technology, which enable more comprehensive and culture-free profiling of taxa in a given
sample [9]. Unfortunately, shotgun metagenomic sequencing has not yet been widely implemented in
studies with FA. Findings from 16S rRNA sequencing-based studies have shown that children with FA
have a distinct gut microbiome structure compared with those without FA (Table 1).

Table 1. Main gut microbiome differences in 165-rRNA-sequencing-based studies between pediatric
patients with and without FA.

Main Features Associated

Food Allergy OTUs Diversity with Food Allergy

Cow’s milk, egg, wheat,

Ling et al. 2014 [10] T Bacteroidetes T Proteobacteria

(n=34;FA) nut, peanuts, fish, shrimp, ! = TActinobacteria | Firmicutes
soybean
Azad etal. 2015 [11] S _ | Enterobacteriaceae
(n=12; FS) Cow’s milk, egg, peanut ! B | Bacteroidaceae
Chen et al. 2015 [12] Egg white, cow’s milk, NR L T Firmicutes T Proteobacteria
(n =23; FS) wheat, peanut, soybean o T Actinobacteria | Veillonella
TRuminococcaceae
. . T Lachnospiraceae
gfr_ngg e;r;a)n ietal. 2016 [13] Cow’s milk T N.R. |Bifidobacteriaceae
Y |Streptococcaceae
LEnterobacteriaceae
Bunyavanich et al. 2016 [14] s .
(n = 226; FA) Cow’s milk T N.R. T Bacteroidetes TEnterobacter
s o SEsheetan Nw e Ve
(n = 4; FA) T 4 o o .
eanut, shrimp, cral orea ermansia
’ P hrimp, crab | Dorea | Akk
Kourosh et al. 2018 Tree nuts, fish, milk, egg, 1 NR 1%;%2;;: d?ZiZ”;;ﬁZZECS
[16] (n = 68; FA) sesame, SOy o

1 Faecalibacterium sp.

T Lachnospiraceae
Egg N.R. N.R. T Streptococcaceae
T Leuconostocaceae

Fazlollahi et al. 2018 [17] (n
=141; FA)

T Lactobacillaceae

Dong et al. 2018 [18] Cow’s milk N.R. l | Bifidocacteriaceae

(n = 60; FA) | Ruminococcaceae
Savage et al. 2018 [19] Cow’s milk, egg, wheat, B B i g;i;[(’)i’(l)it;rsl Oscillospira
(n = 14; FA) soy, walnut, peanut - -

1 Dorea

FA: food allergy; FS: food sensitization; OTUs: operational taxonomic units; N.R.: not reported; 7: increase;
|: decrease; =: unchanged.

All studies reported in Table 1 investigated IgE-mediated FA or food sensitization. Data on gut
microbiome structures in non-IgE-mediated FA are still largely unreported [20-22]. Interestingly, data on
46 patients affected by non-IgE-mediated cow’s milk allergy (CMA) showed dysbiosis characterized by
an enrichment of Bacteroides (Bac 12) and Alistipes when compared to healthy controls, with overlapping
signatures with IgE-mediated-CMA children, characterized by a progressive increase in Bacteroides
from healthy to IgE-mediated-CMA patients. In the same study, children with non-IgE-mediated CMA
had a significantly lower fecal concentration of butyrate than healthy controls [22].

The available data from human studies suggest that dysbiosis precedes FA onset. Nakayama et al.
profiled the fecal bacteria compositions in allergic and nonallergic infants and correlated some changes
in gut microbiome composition with allergy development in later years [23]. Azad et al. found that an
increased Enterobacteriaceae/Bacteroidaceae ratio and low Ruminococcaceae abundance, in the context
of low gut microbiome richness in early infancy, are associated with subsequent food sensitization,
suggesting that early gut dysbiosis contributes to subsequent development of FA [11]. Moreover,
the available data from human studies suggest that:
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- No specific bacterial taxa could be consistently associated with FA, with a broad range of microbes
that could have positive or negative influence on tolerogenic mechanisms [10-19];

- Microbiome structure early in life, particularly in the first 6 months of life, is more relevant in FA
development [14];

- Dysbiosis could influence not only the occurrence, but also the disease course of FA, as suggested
by different gut microbiome features comparing children who outgrow FA with patients with
persistent forms of FA [14].

2.2. Evidence from Animal Studies

Data from animal studies provide interesting insights on the importance of gut microbiome in FA.
Mice treated with antibiotics showed a predisposition to allergy development [24]. Similarly, germ-free
mice do not develop immune tolerance and maintain a Th2 immune response to orally administered
antigen [25-27]. This effect can be corrected by the reconstitution of the microbiome early in life,
but not at later ages. These findings document a decisive role of the gut microbiome in the acquisition
of immune tolerance to food antigens. Indeed, an early state of eubiosis allows for a change in the
lymphocyte Th1/Th2 balance, favoring a Th1 cell response; while dysbiosis alters the host-microbiome
homeostasis, producing a shift of the Th1/Th2 cytokine balance toward a Th2 immune response
and a consequent activation of Th2 cytokines with an increased IgE production [28]. Interestingly,
the gut microbiome is also able to transmit susceptibility to FA. In a mouse model susceptible to FA,
because of a gain-of-function mutation in the IL-4 receptor, investigators showed that reconstitution of
germ-free mice with a microbiome derived from sensitized susceptible mice, but not from sensitized
resistant mice, transferred FA susceptibility to the recipient mice [29]. Other studies have shown that
Clostridium species effectively exert an allergy-protective action in a FA mouse model, reducing allergic
response [30,31]. A suppressive role of the microbiome in FA is also supported by “humanized mouse
models”, created with inoculation of microbiota derived from human feces of healthy donors, resulting
in reduction of allergic response [31,32]. Feehley et al. showed that germ-free mice colonized with
feces from healthy donors were protected against CMA, whereas animals colonized with the feces
from CMA infants showed severe anaphylactic responses to cow’s milk proteins with an increase in
specific IgE response, and production of Th2 cytokines [31].

3. Gut Microbiome: Immune and Nonimmune Mechanisms of Action against Food Allergy

3.1. Mechanisms of Action at the Cellular Level

The gut microbiome plays an essential role in mediating immune tolerance by promoting several
immune and nonimmune mechanisms of action against FA. Current evidence suggests that the gut
microbiome protects against FA, inducing the activation of T-regulatory (Treg) cells, which were
found to be depleted in germ-free mice, with a consequent predisposition to FA development [33].
Microbiota-induced Treg cells express the nuclear hormone receptor RORyt and differentiate along
a pathway that also leads to Th17 cells; in contrast, in the absence of RORyt in Treg cells there is an
expansion of GATA-3-expressing Treg cells and conventional Th2 cells, and Th2-associated pathology
is exacerbated [34].

The mechanisms operating in the generation of protective RORyt+ Treg cells by the commensal
microbiota, including Clostridiales and Bacteroidales, is characterized by a pathway involving the
Myeloid differentiation primary response 88 (MyD88); this, in turn, is an essential signal transducer
of several innate immune cytokines (IL-1, IL-18, IL-33) and of Toll-like receptor signaling pathways.
Deletion of MyD88 in Treg cells abrogated the protective effect, thus establishing a MyD88-RORyt
signaling axis operative in nascent Treg cells in the gut that mediates tolerance induction by the
commensal microbiota in FA [35].
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It has been previously established that MyD88 in Treg cells regulates the IgA response to
gut microbiota and dietary antigens [36,37], which in turn plays an essential role in engendering
host-microbiome symbiosis [38]. FA dysbiosis leads to disruption of the commensal microbiota—Treg
cell MyD88-RORyt+ axis in FA; FA infants and mice had decreased secretory IgA binding to gut
microbiota and, remarkably, increased IgE binding.

In addition to the direct effect on Treg cells, a healthy gut microbiome protects against FA by
affecting enterocyte function and regulating its barrier-protective properties. Innate lymphoid cells
(ILCs), which are abundant in mucosal and barrier sites, are involved in these defense mechanisms [39].
Among other factors, ILC3 produce IL-22, a cytokine of crucial importance in maintaining tissue
immunity and physiology via its pleiotropic action in promoting antimicrobial peptide production,
enhancing epithelial regeneration, increasing mucus production, and regulating intestinal permeability
to dietary allergens [40].

Moreover, Feehley et al. demonstrated that mice colonized with fecal microbiota from healthy
infants showed upregulation of a unique set of genes in epithelial cells of the ileum, for example Fbp2,
which encodes the gluconeogenic enzyme fructose-bisphosphatase 1, which plays a relevant role in
the maintenance of gut eubiosis. By contrast, mice colonized with fecal microbiota from CMA infants
showed downregulation of Tgfbr3 and Ror2, which are important for the epithelial repair [31].

The microbiome also promotes B-cell receptor editing within the lamina propria upon
colonization [41]. Regulatory B cells have immunosuppressive capacity, which is often mediated by
IL-10 secretion, but also IL-35 and TGF-f3 production [42]. An additional immunoregulatory role is the
upregulation of IgG4 antibodies during differentiation to plasma cells [43].

3.2. Metabolic Level: Immunoregulatory Metabolites

Additional potential mechanisms by which gut microbiome exerts pro-tolerogenic effects in the
gut are related to the production of immunoregulatory metabolites, which interact with the host
immune cells to promote nonresponsiveness to innocuous luminal antigens [44].

The use of metabolomics is considered a powerful top-down biological systems approach,
and it is essential to reveal the genetics—environment-health relationship, as well as the clinical
biomarkers of diseases. Small-molecule metabolomics is the systematic identification, characterization,
and quantification of all small metabolic products created by using specific cellular processes in a
biological system. Metabolomics uses high-throughput techniques to characterize and quantify small
molecules in several biofluids, such as feces, urine, plasma, serum, and saliva [45]. The metabolomic
features of gut microbiota are still largely unexplored. Preliminary data available on short-chain
fatty acid (SCFA) profiles are opening new perspectives for intervention. SCFAs, including acetate,
propionate, valerate, and butyrate, are derived from microbial fermentation of dietary fibers in the
colon [46]. SCFAs are a major energy source for colonocytes [47].

SCFAs directly engage G-protein-coupled receptors (GPCR) on intestinal epithelial cells
(e.g., GPR41, GPR43, GPR109A, and Olfr78), or can passively diffuse through the cell membrane to inhibit
histone deacetylases (HDAC) in epithelial and intestinal immune cells [48,49]. The downstream effect
on enterocytes is regulation of the expression of genes involved in energy metabolism, cell proliferation
and differentiation, and fortification of the epithelial barrier (tight junctions and mucus production) [50].
SCFAs also affect gut inflammatory and tissue repair processes by altering NLRP3 inflammasome and
autophagy activity [51].

Among SCFAs, butyrate exerts a pivotal role in immune tolerance. It has been found that SCFAs
are able to increase colonic Treg cells” frequency, and in vitro propionate treatment of colonic Treg cells
from germ-free mice significantly increases FoxP3 and IL-10 expression, a key cytokine that regulate
Treg cell functions [52,53]. Similarly, it has been demonstrated that butyrate facilitates generation of
activated FoxP3+ Treg cells in mouse model [54]. Butyrate is able to enhance Vitamin A metabolism,
in turn inducing the activity of aldehyde dehydrogenases (ALDH) in CD103+ dendritic cells (DCs) in
the gut and increasing the percentage of Treg cells and IgA production [55]. Additionally, butyrate
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promotes B-cell differentiation and increases IgA and IgG production [56]. The mechanisms are
multiple and involve a strong epigenetic regulation of gene expression through the inhibition of
HDAC [52,53,57] (Figure 1).
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Figure 1. Butyrate exerts immune and nonimmune mechanisms of action against food allergy (FA).
Butyrate can improve gut epithelial barrier integrity, increasing mucus layer thickness (enhancing mucin
genes’ expression, in particular Muc2) (1) and tight junction expression (2). Amongimmune mechanisms,
butyrate acts on intestinal epithelial cells (IECs) through two different pathways: (a) the inhibition
of histone deacetylases (HDAC) 1 and 3 with subsequent increases in retinaldehyde dehydrogenases
(RALDH) 1 activity and retinoic acid (RA) levels (3); (b) the interaction with G-protein-coupled
receptor (GPR) 43, with subsequent increases in Vitamin A metabolism and epithelial barrier integrity.
The effect of butyrate on dendritic cells (DCs) results in increasing RALDH?2 activity and RA levels
through direct (interaction with GPR109A expressed by DCs) and indirect (RA produced by IECs)
mechanisms (4). Butyrate is also able to induce retinoic acid-related orphan receptor yt (RORyt)*
Forkhead box P3 (FoxP3)" T regulatory (Treg) cells thanks to the inhibition of HDAC6 and 9, which
leads to increase of FoxP3 gene expression, as well as the production and suppressive function of
Treg cells (5). The induction of RORyt" FoxP3* Treg cells is also mediated by DCs interaction (6).
Butyrate may induce B-cell differentiation and IgA and IgG production through HDAC inhibition which
leads to acetylation of specific genes involved in B-cell differentiation and/or IgG and IgA production
(7). Moreover, butyrate increases the cellular metabolism necessary for B-cell differentiation and Ig
production. These mechanisms are also strongly influenced by IL-10 secreted by Treg cells (8). In the
figure, the blue arrows indicate the direct effect of butyrate, the black arrows indicate the indirect effect
of butyrate.
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Butyrate-producing bacteria represent a functional group, rather than a coherent phylogenetic
group [58]. Dysbiosis results in the suppression of high-butyrate-producer species, leading to a
reduction in overall butyrate production. Thus, different types of dysbiosis may share the same
metabolic features, leading to similar effects in terms of butyrate or other metabolite levels that could
facilitate the occurrence of FA. Starting from these data, we tested oral butyrate in a murine model
of CMA and observed that it inhibited acute allergic skin response and anaphylactic symptom score,
body temperature decrease, intestinal permeability increase, and beta-lactoglobulin (BLG)-specific
IgE, IL-4, and IL-10 production, suggesting a protective role of butyrate against FA [59,60]. Moreover,
butyrate supplementation enhanced the desensitization of effector cells induced by oral immunotherapy
in a murine model of CMA, with effective reduction of mast-cell and basophil activation upon antigen
challenge, and enhanced Treg cells’ functionality [61].

Besides these preliminary data derived from murine models of CMA, results from human studies
have confirmed the important role of SCFAs in FA (see Section 4.4).

Metabolomics will provide important insights into not only the pathogenesis of FA, but also
the disease severity. FA is associated with disease-specific metabolomic signatures, especially in
sphingolipid and phospholipid metabolism, which distinguish it from asthma. Specific comparison of
patients with FA and asthmatic patients revealed differences in the microbiota-sensitive aromatic amino
acid and secondary bile acid metabolism. Among children with FA, the history of severe systemic
reactions and the presence of multiple FAs were associated with changes in levels of tryptophan
metabolites, eicosanoids, plasmalogens, and fatty acids. Lower levels of sphingolipids and ceramides
and other metabolomic alterations observed in children with FA might reflect the interplay between an
altered microbiome and immune-cell subsets in the gut [62].

The identification of bacterial metabolites that positively affect the immune tolerance network
may be an interesting strategy against FA using a postbiotic approach.

4. Targeting Gut Microbiome in Food Allergy

4.1. Environmental Factors

There are several modifiable environmental factors that can influence the occurrence of FA and
can potentially be targeted to prevent FA. The window of opportunity, in which environmental
factors determine an individual susceptibility to developing communicable and noncommunicable
chronic diseases (including allergies) in adult life, is called the “first 1000 days”. This period
goes from intrauterine development to the first 2 years of life, during which gut microbiota and
immune system development are strongly influenced by environmental factors [63]. Maternal diet
during pregnancy and lactation exert a direct and indirect effect on maternal gut and mammalian
gland microbiota (enteromammary pathway) and play a pivotal role in early influence on
infant gut microbiome composition and function [64]. Other factors such as rural environment,
vaginal delivery, increased family size, exposure to pets, breastfeeding, a high-fiber diet, and/or
fermented food are associated with a protective effect against FA development. In contrast,
cesarean section delivery, prenatal and early-life exposure to antibiotics, gastric acidity inhibitors,
antiseptic agents, and junk-food-based and/or low-fiber/high-fat diets may increase the risk of FA
development. These environmental factors are mostly related to the structure and function of the gut
microbiome [65-78] (Figure 2).



Int. J. Mol. Sci. 2020, 21, 5275 7 of 17

Vaginal delivery Prevalence of SCFAs "9‘.:“ . Gut barrier integrity
Breastfeeding producing bacteria %’:’ A L

High-fiber diet Butyrate

and/or fermented - EUBIOSIS - IMMUNE
food w TOLERANCE
Pet exposure

Rural environment

Caesarian deliver Prevalence of

Junk-food-based ! p‘:ﬂz’l‘:ﬁ‘:l':‘ éij:gu Gut barrier impairment

Antibiotic exposure

and/or low-fiber diet RISK FOR
Antiseptic agents -DYSBIDSIS -FG{)D ALLERGY
Gastric acid inhibition
uu A w DEVELOPMENT
| - ¢ ?
2 4 e, ¢

8

FIRST 1000 DAYS

Figure 2. Infant gut microbiome composition and function is related to multiple environmental factors.
The “first 1000 days” start from intrauterine development to the first 2 years of life and represent
the frame of gut microbiome structure and function shaping. The ideal path begins with a full-term
gestational period, followed by spontaneous delivery, breastfeeding provided by a mother following a
Mediterranean diet lifestyle, earlier rural environmental exposure, and infant intake of a high-fiber
diet and/or fermented food. All these factors are responsible for gut eubiosis, with a prevalence of
SCFA-producing bacteria and gut barrier integrity, laying foundations for a healthy status and for a
long-lasting protection against noncommunicable chronic diseases (such as FA) later in life. Conversely,
caesarian delivery, from a mother following a junk-food-based and/or low-fiber diet, and direct or indirect
childhood exposure to antiseptic agents and drugs (mainly antibiotics and gastric acidity inhibitors)
leads to gut dysbiosis with prevalence of pathogenic bacteria, reduction of immunomodulatory factor
production, increased gut barrier permeability, and a risk for FA development.

4.2. Probiotics

Probiotics are defined as “live microorganisms which, when administered in adequate amounts
as part of food, confer a health benefit on the host” [79]. Probiotics could act at different levels in
the immune tolerance network: modulating gut microbiome structure and function (e.g., increasing
butyrate production) [13]; interacting with enterocytes with subsequent modulation of nonimmune
(gut permeability and mucus thickness) [80,81] and immune tolerogenic mechanisms (stimulation
of secretory IgA and 3-defensin production) [82]; and modulation of cytokine response by immune
cells [52,59,83-85]. Probiotic supplementation represents an interesting option to prevent and treat FA.
The most common probiotic bacteria fall into two groups, namely lactobacilli and bifidobacteria.

Recent preclinical studies on probiotic activity against FA were carried out in a murine model
of egg allergy. Lactobacillus reuteri AB425917 restored the deteriorated profile of gut microbiota and
the imbalance of Th1/Th2, inducing intestinal immune tolerance against ovalbumin-induced allergic
response [86]. Song et al. isolated and identified Lactobacillus rhamnosus 2016SWU.05.0601, able to
restore the immune imbalance of Th1/Th2 and Treg/Th17 in ovalbumin-sensitized mice by modulating
gut microbiota, which contributed to the decrease in serum IgE and ovalbumin-IgE levels [87].

In a mouse model of shellfish allergy, oral administration of probiotic strain Bifidobacterium infantis
14.518 effectively suppressed tropomyosin-induced allergic response in both preventive and therapeutic
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strategies. Further results showed that Bifidobacterium infantis 14.518 stimulated DC maturation
and CD103+ tolerogenic DC accumulation in gut-associated lymphoid tissue, which subsequently
induced Treg cell differentiation aimed at suppressing Th2-biased response. The authors showed that
Bifidobacterium infantis 14.518 regulates the alterations of gut microbiota composition. Specifically,
the increase of Dorea and decrease of Ralstonia was highly correlated with Th2/Treg ratio and may
contribute to alleviating tropomyosin-induced allergic responses [88].

Preclinical studies were also conducted in murine models of CMA. Neonatal monocolonization of
germ-free mice by Lactobacillus casei BL2 modulated the allergic sensitization to cow’s milk proteins.
Lactobacillus-casei-colonized mice developed higher casein-specific IgG responses because of casein
hydrolysis by Lactobacillus casei into immunogenic peptides [89]. Similar results were reported by other
authors who observed decreased of concentrations of IgE, IL-4, and IL-13 following administration of
Bifidobacterium infantis CGMCC313-2 in BLG-sensitized mice [90].

Clinical studies have investigated the efficacy of selected probiotic strains against FA. The effect
appears to be strain-specific. Among various probiotics, Lactobacillus rhamnosus GG (LGG) has emerged
as a bacterial strain able to exert antiallergic actions in humans, especially in CMA. We showed that in
CMA children, an extensively hydrolyzed casein formula (EHCF) supplemented with LGG induced
higher tolerance rates after 6 and 12 months compared with EHCF alone and other formulas [91,92].
At the 3 year follow-up of a pediatric cohort of 220 infants with CMA, further confirmation of a greater
rate of oral tolerance acquisition as well as a lower incidence of other allergic manifestations was
described after treatment with EHCF+LGG compared with EHCF alone [93]. Moreover, we showed
that treatment of CMA infants with EHCF+LGG resulted in the enrichment of specific strains of
bacteria that are associated with higher fecal butyrate levels [13]. The World Allergy Organization
guidelines consider the modulation of the immune system using functional foods a promising research
hypothesis, as part of efforts to induce a tolerogenic immune environment in the context of CMA.
However, the authors concluded that more evidence from randomized controlled trials is needed.
They identified further research on probiotic supplementation in CMA treatment as an important area
for the development of a stronger evidence base in CMA [94,95].

LGG has also been studied in patients with peanut allergies. In a clinical trial, LGG was
administered with peanut oral immunotherapy for 18 months. Subjects receiving the combination
treatment had higher rates of desensitization to peanut compared to placebo (82.1% vs. 3.6%,
respectively) [96]. A follow-up study of 48 of the 56 children who participated in this combined
probiotic and oral immunotherapy trial showed that treated individuals were more likely to have
continued eating peanut compared with those who took a placebo, four years after treatment cessation
(67% vs. 4%, p = 0.001); moreover, more participants from the treated group had smaller peanut
skin-prick test size and higher peanut sIgG4:sIgE ratios compared with placebo-treated controls [97].

4.3. Prebiotics

A prebiotic is now defined as “a substrate that is selectively utilized by host microorganisms
conferring a health benefit”, including nondigestible compounds, such as oligosaccharides or soluble
fermentable fibers that are selectively utilized and promote the growth of beneficial microorganisms
and improve health [98]. In particular, the galacto-oligosaccharides (GOS)/fructo-oligosaccharides
(FOS) combination is the most studied. The mechanisms of action of prebiotics are due to direct and
indirect effects. Indirect effects include selective fermentation, increasing populations of resident
health-promoting microorganisms of the gut. SCFAs mediate prebiotics” direct beneficial effects at the
intestinal and extraintestinal level [46,99]. The supplementation of prebiotics has been proposed as a
possible method of intervention in the prevention of allergic disorders [100]. However, the vast majority
of the systematic reviews and meta-analyses conducted in this area have concluded that although
several studies show a positive effect of prebiotics on allergic manifestations, the existing evidence
is not sufficient to recommend prebiotic as a routine method for allergy prevention in formula-fed
infants [101,102]. Thus, further rigorous studies in this field are required.
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4.4. Postbiotics

The term postbiotic refers to the use of nonviable cells or cell fractions which, when administered in
adequate amounts, confer a health benefit to the host. Additionally, the term postbiotic is also related to
soluble components such as SCFAs, vitamins, bacteriocins, organic acids, enzymes, hydrogen peroxide,
ethanol, diacetyl, peptides, cell-surface proteins, teichoic acids, peptidoglycan-derived muropeptides,
endo- and exopolysaccharides, lactocepins, plasmalogens, polyphosphates, and quorum-sensing
molecules produced by live probiotic cells in fermentation processes or synthetically produced in a
laboratory [103,104]. The immunomodulatory mechanisms elicited by SCFAs represent one of the
strongest connections between diet, gut microbiome, and allergic diseases [44]. In a human cohort of 301
1-year old children, significant associations were reported between the composition of dietary intake
and stool SCFA content, suggesting that diet can be used to modulate microbial production of SCFAs.
The authors also investigated the role of SCFAs in allergy prevention and found that the children
with the highest levels of butyrate had a reduced risk of becoming sensitized to food allergens [105].
As we said above, preclinical studies have shown that among SCFAs, butyrate contributes to protection
against the development of FA through multiple tolerogenic mechanisms. In human observational
studies, butyrate deficiency was observed in allergic children [106], whereas an enrichment of
butyrate-producing taxa (Clostridia class and Firmicutes phylum) was observed in children with
faster CMA resolution [14]. More recently, Cait et al., using shotgun sequencing, analyzed the fecal
microbiomes (at 3 month and 1 year stool samples) of 105 atopic children from the Canadian Healthy
Infant Longitudinal Development (CHILD) study to investigate whether bacterial butyrate production
in the early-infancy gut is protective against the development of atopic diseases later in life. The authors
found that bacteria involved in butyrate production were rather depleted in 3-month-old infants who
later developed atopy. Analyzing the gut microbiome function, they also found that 3-month-old
infants who later had allergic manifestations lacked genes encoding key enzymes for both carbohydrate
breakdown and butyrate production [107]. We evaluated the direct effects of butyrate on peripheral
blood mononuclear cells (PBMCs) from children affected by challenge-proven IgE-mediated CMA.
PBMCs were stimulated with BLG in the presence or absence of butyrate. Preliminary results show
that butyrate stimulates IL-10 and IFN-y production and decreases the DNA methylation rate of two
cytokine genes.

These data suggest the potential of a postbiotic approach, based on the use of SCFAs against FA.
However, clinical trials based on SCFA supplementation for FA prevention and treatment have yet
to be undertaken. Therefore, there is no current recommendation from any scientific society on the
optimal postbiotic administration frequency for the prevention and treatment of FA.

4.5. Synbiotics

Synbiotics are a mixture of prebiotics and probiotics that affect the host by improving the survival
and implantation of live microbial dietary supplements in the gastrointestinal tract, improving the
health of the host [108]. Candy et al. [109] designed a study to investigate whether synbiotic ingredients
could improve the gut microbiota in infants with non-IgE-mediated CMA to achieve a microbial
composition close to that seen in healthy, breastfed infants. Infants with suspected non-IgE-mediated
CMA were administered the test formula containing the synbiotics, or a control formula without
the synbiotics. The test formula was a hypoallergenic, nutritionally complete amino-acid-based
formula, including a prebiotic blend of fructo-oligosaccharides and the probiotic strain Bifidobacterium
breve M-16V. The control formula was an amino-acid-based formula without synbiotics. The authors
concluded that the amino-acid-based formula containing specific synbiotics improved the fecal
microbiota of infants with suspected non-IgE-mediated CMA, approximating the composition of the
gut microbiota of healthy, breastfed infants.

Interestingly, Bifidobacterium breve M-16V may alter the gut microbiota to alleviate allergy symptoms
by IL-33/ST2 signaling. These results indicated that gut microbiota is essential for regulating FA
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to dietary antigens, and demonstrated that intervention in bacterial community regulation may be
therapeutically related to FA [110].

However, although these preliminary data are promising, further studies are needed to evaluate
the efficacy of this approach on clinical symptoms.

A planned but not yet recruiting randomized, double-blind clinical trial of children at high risk for
allergy will compare partially hydrolyzed infant formula with synbiotics vs. standard infant formula
(NCT03067714) for the primary outcome of doctor-diagnosed IgE-mediated allergic manifestations.

4.6. Fecal Microbiota Transplantation

Fecal microbiota transplantation represents another approach to shape the gut microbiota in FA
patients. The idea behind this strategy is that fecal microbiota transplantation from a healthy donor to
a disease recipient can restore gut eubiosis by promoting oral tolerance [111,112]. Recently, a human
study revealed that fecal microbiota transplantation is able to induce remission of infantile allergic
colitis through restoration of gut microbiota diversity [113]. However, the available data in this field
remain limited and the relevant scientific work is just beginning. A small Phase I open-label trial to
evaluate the safety and efficacy of oral encapsulated fecal microbiota for the treatment of peanut allergy
is underway (NCT02960074).

5. Conclusions and Future Perspectives

Growing evidence suggests that dysbiosis in early life is a crucial factor for FA development.
For this reason, the gut microbiome is emerging as an innovative target for pediatric FA prevention
and treatment [114-119]. Shaping the gut microbiome with an intervention in the form of modifiable
environmental factors and/or with pro-/pre-/syn-/postbiotics is a promising strategy against FA. In this
field, evidence from human and animal studies is encouraging, but many questions remain unresolved.
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ALDH Aldehyde dehydrogenases
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GATA-3 GATA-binding protein 3
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GPCRs G-protein coupled receptors
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ILC Innate lymphoid cells

LGG Lactobacillus rhamnosus GG

NLRP3 NOD-, LRR- and pyrin domain-containing protein 3

OTUs Operational taxonomic units

PBMCs Peripheral blood mononuclear cells

RA Retinoic acid

RALDH Retinaldehyde dehydrogenases

RORyt Retinoic acid-related orphan receptor yt

Ror2 Receptor Tyrosine Kinase Like Orphan Receptor 2

SCFAs Short-chain fatty acids

TGF3 Transforming growth factor-beta

Tgfbr3 Transforming Growth Factor Beta Receptor 3

Th T helper

Treg T regulatory
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