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Abstract: With the increased prevalence of chronic diseases, non-healing wounds place a significant
burden on the health system and the quality of life of affected patients. Non-healing wounds are
full-thickness skin lesions that persist for months or years. While several factors contribute to their
pathogenesis, all non-healing wounds consistently demonstrate inadequate vascularization, resulting
in the poor supply of oxygen, nutrients, and growth factors at the level of the lesion. Most existing
therapies rely on the use of dermal substitutes, which help the re-epithelialization of the lesion by
mimicking a pro-regenerative extracellular matrix. However, in most patients, this approach is
not efficient, as non-healing wounds principally affect individuals afflicted with vascular disorders,
such as peripheral artery disease and/or diabetes. Over the last 25 years, innovative therapies have
been proposed with the aim of fostering the regenerative potential of multiple immune cell types.
This can be achieved by promoting cell mobilization into the circulation, their recruitment to the
wound site, modulation of their local activity, or their direct injection into the wound. In this review,
we summarize preclinical and clinical studies that have explored the potential of various populations
of immune cells to promote skin regeneration in non-healing wounds and critically discuss the current
limitations that prevent the adoption of these therapies in the clinics.
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1. The Clinical Problem

The skin is the largest organ in mammals, which shields the organism from thermal, mechanical,
and chemical damage; toxins; and microorganisms, serving as a protective barrier at the interface
between the human body and the surrounding environment. Loss of skin integrity often results
in physiologic imbalance and disability, or even death, with significant impact on the healthcare
system [1,2]. Healing of any wound requires a coordinated response of multiple cell types, either
residing in the various skin layers (epidermis and dermis) or recruited from the circulation [3]. This can
be schematically divided in an early inflammatory phase, followed by a proliferative and regenerative
phase, associated with massive extracellular matrix (ECM) remodeling [3,4].

This process is often compromised in common diseases that are highly prevalent in the aged
population and include diabetes, obesity, and vascular disorders. As such, the incidence of chronic
non-healing wounds is progressively increasing. Recent studies report a general prevalence of
non-healing wounds of approximately 1-2%, similar to the one of heart failure [5-7].
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Clinically, a chronic wound is defined as a full-thickness skin defect that fails to heal after
3 months of standard care [8]. Chronic wounds are generally classified into vascular ulcers (caused
by either venous or arterial diseases), diabetic ulcers, and pressure ulcers. Additional, less common,
etiologies include infections [9], immune diseases [10,11], traumas [12,13], large-area burns [14,15],
and post-surgery complications [4,16-18]. Despite recent progresses in revascularization procedures
and in the use of dermal and epidermal substitutes to improve healing, these ulcers often persist
for more than one year and tend to recur in up to 70% of patients, significantly compromising their
quality of life [19,20]. In 2020, the rate of both minor and major limb amputations is still very high,
with reported incidences of 14-24% in patients with foot ulcers over the last decades [8].

Despite a heterogeneous etiology, most chronic wounds are characterized by persistent
inflammation [20]. Excessive levels of inflammatory cytokines, proteolytic enzymes, and reactive
oxygen species (ROS) damage both cellular and extracellular components, creating a proinflammatory
feedback loop [20,21] Moreover, proteases degrade both growth factors and their receptors, resulting
in cell cycle arrest and inhibition of proliferation and regeneration [22-24].

A common feature of all chronic wounds is insufficient vascularization, which represents a major
impediment to healing and regeneration [25,26]. Appropriate supply of nutrients and growth factors,
as well as maintenance of oxygen homeostasis, are essential to support cell proliferation, migration,
and recruitment of immune cell populations [3,27], which play a fundamental role in both phases of
the healing process.

The following chapters describe the existing models, commonly used to evaluate the efficacy
of innovative therapies for skin regeneration. In particular, we consider various immune cell types,
belonging to both innate and adaptive immunity, that contribute to wound healing and have been
considered for their therapeutic potential in either preclinical or clinical studies. These therapeutic
strategies rely on (i) immune cell mobilization into the circulation, (ii) cell recruitment and homing at
the level of the skin, (iii) modulation of their pro-regenerative activity, and (iv) direct cell implantation
to the wound site. Although we could not include all publications available in this expanding field,
representative studies supporting each of these approaches have been cited. The most relevant
approaches are schematically shown in Figure 1 and further details are provided in Table 1.
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Table 1. Preclinical and clinical studies based on cell therapy for non-healing wounds.

Cell Type Approach Preclinical Data Clinical Studies
Topical application of miR-129-2-3p on wounds of diabetic mice [28] -
. Modulation
Neutrophils Genetic inactivation of PAD4 in diabetic mice [29] -
Recruitment Topical delivery of C15 on burn wounds in mice [30] -

Monocytes and
Macrophages

Recruitment and
Modulation

Local expression of SDF-1 through transformed bacteria in mice with
diabetes and peripheral ischemia and ex vivo model of human skins [31]

Recruitment

Local injection of hGM-CSF [32-34]

Local application of f—glucans and MALP-2 [35,36]

Direct application

Local injection of autologous macrophages in diabetic
foot [37,38]

Modulation Genetic inactivation of MLL1 and Dnmt1 in mice [39,40] -
Dendritic cells Modulation Systemic administration of FL in burn wounds in mice [41] -
Lymphocytes (DETC) Modulation IL-15 administration in diabetic mice [42] -

Lymphocytes (DETC)

Lymphocytes (CD4* CD8™)

Lymphocytes (B cells)

Direct application

DETC engraftment in diabetic mice [43]

Cell transplantation in athymic nude mice [44] and SCID mice [45]

Topical application in diabetic mice [46]

Peripheral blood
mononuclear cells

Direct application

Application of cell sheets composed of fibroblasts and PBMCs in diabetic

mice [47,48]

Topical application of APOSEC in healthy volunteers [49]

Endothelial progenitors

Recruitment

Local administration of recombinant SDF1 in diabetic mice [50]

Pharmacological inhibition of DPP4 in diabetic wounds [51]

Modulation

Topical administration of estrogens in diabetic mice [52]

Direct application

Local transplantation of human EPCs in immunocompromised mice [53]

or model of burn wound in pigs [54]

Intra-arterial delivery of CD133* EPCs in diabetic foot
patients [55]

Mobilization and
Direct application

Systemic administration of GM-CSF followed by isolation
of CD34*/VEGFR2* cells and intramuscular injection in
non-healing foot in diabetic patients [56]

Stromal vascular fraction

Direct application

SVF seeding on human epidermal skin substitutes applied in nude rats [57]

Direct application of autologous SVF on diabetic
ulcers [58,59] or post-traumatic lower extremity ulcers [60]
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Figure 1. The figure shows examples of cellular therapies proposed and exploited for the treatment of
non-healing wounds, grouped according to four main approaches: cell mobilization into the circulation,
cell recruitment to the wound site, modulation of cell function/activity, and direct application of cells
to the wound site. Studies that reached the clinical stage are in bold. APOSEC, apoptotic secretome;
C15, chemerin 15; DETC, dendritic epidermal T cells; Dnmt1, DNA (cytosine-5)-methyltransferase 1;
DPP4, dipeptidyl peptidase-4; EPCs, endothelial progenitor cells; FL, FMS-like tyrosine kinase-3
ligand; GM-CSF, granulocyte-macrophage colony stimulating factor; IL-15, interleukin-15; MALP2,
macrophage-activating lipopeptide-2; MLL1, mixed-lineage leukemia 1; PAD4, peptidyl-arginine
deiminase 4; PBMCs, peripheral blood mononucleated cells; SDF1, stromal cell-derived factor-1; SVE,

stromal vascular fraction.

2. Animal Models of Wound Healing

Both small and large animal models have been developed to assess the regenerative potential
of immune cells in wound healing [61]. Obvious differences in the anatomy and physiology of the
skin in different species justify the use of multiple models, as no single one can reliably reproduce
the clinical situation [61,62], and, more importantly, the comorbidities that are often responsible for

chronic wounds [63,64].

Because chronic wounds usually occur in people affected by diabetes, ischemia, and mechanical
pressure [8,65], these conditions are generally induced in animals, prior to the generation of an acute

wound [66—69].
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Mice are the most common species used for this purpose, as their housing is relatively cheap and
affordable by most laboratories, they can be genetically manipulated for mechanistic investigation,
and state-of-the-art protocols to induce co-morbidities (i.e., diabetes and ischemia) are available [70].
Yet, the mechanism of wound closure is very different in mice and humans. While murine wounds
essentially close by contraction, in humans, wound healing relies on the formation of a new tissue,
composed by tightly packed fibroblasts, keratinocytes, and endothelial and inflammatory cells
(granulation tissue), which is progressively reabsorbed and replaced by re-epithelialization [71].
Preferential healing by contraction in rodents is mainly due to the presence of a thick layer of
subcutaneous striated muscle tissue (named panniculus carnosus), absent in humans, and by the
presence of active myofibroblasts. Several strategies have been developed to limit wound contraction
in mice (i.e., the application of either a silicone splint around the wound or a dorsal skinfold chamber),
allowing for the formation of granulation tissue and re-epithelialization, similar to what happens in
human wound healing [71-73]. Combined with intravital microscopy, the dorsal skin fold chamber
allows high-resolution real-time imaging of re-vascularization during skin regeneration [74]. While not
yet used at a large extent, the possibility to monitor the formation of new blood vessels appears critical
to develop new therapies improving wound healing and predict their efficacy in the clinics, as the
whole skin regeneration requires an appropriate supply of nutrients and oxygen [75].

The evaluation of invivo efficacy and safety of human cell therapies requires the use of
immunocompromised mice, i.e., NSG (NOD scid gamma) mice, which lack B and T lymphocytes,
as well as natural killer (NK) cells [44,76-78]. These mice are extensively used in the preclinical
assessment of human cell-based therapies, as they allow the engraftment of human cells, but obviously
do not recapitulate the complex immune response required for wound healing.

In conclusion, mice are very useful for the dissection of genetic, cellular, and molecular mechanisms
of skin regeneration, but they cannot be considered the gold standard for therapeutic applications.
Pigs share significant anatomical and physiological similarities to humans, in terms of epidermal and
dermal thickness and structure, dense dermal collagen and elastin fibers, epidermal turnover time
(approximately 30 days), pattern and structure of hair follicles, and biological response to growth
factors [61,79,80]. Moreover, the mechanism of wound healing is very similar in pigs and humans,
relying on the formation of granulation tissue, followed by re-epithelialization with minimal skin
contraction [64]. Finally, the colonization of the porcine skin by immune cells is quite comparable to
the human and different from the murine one, as also discussed later in more detail [79-83]. Because of
these numerous similarities, pigs are considered the gold standard in the transition from preclinical to
human studies. Yet, their use is importantly limited by high costs, absence of transgenic models for
cell tracing, and a need for both sophisticated instrumentation and skilled personnel [64,79].

3. Neutrophils

Neutrophils are part of the innate immune system; they do not physiologically reside in the
skin, but they are rapidly recruited to the wound site after injury [21,84]. They produce antimicrobial
substances and proteases, most of which are contained in their cytoplasmic granules. They also
generate cytokines and growth factors to recruit other components of the inflammatory system and
support angiogenesis, keratinocyte, and fibroblast proliferation. Upon activation, neutrophils release
proteins and decondensed chromatin that together form extracellular fibers able to trap bacteria.
These neutrophil extracellular traps (NETs) degrade virulence factors and kill bacterial cells [85].
While their beneficial role is exerted during the early inflammatory phase of wound healing, their
prolonged persistence caused by extensive damage and/or ongoing microbial contamination can
inhibit the late reparative phase due to continuous release of proteases that degrade the ECM [86].
Thus, inhibition of their persistent activity has been proposed as a therapeutic strategy in preclinical
experimentation, although it has not been translated to the clinics yet.

In an attempt to identify the molecular determinants of persistent neutrophil activation in
diabetic conditions, Umehara and colleagues investigated specific miRNAs that are differentially
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expressed by neutrophils in diabetic and healthy mice and identified miR-129-2-3p as one of the
most downregulated [28]. Consistent with the capacity of this miRNA to inhibit the expression of
proinflammatory genes (i.e., Caspase-6 and C-C chemokine receptor type 2, Ccr2), its topical application
to a wound of diabetic mice resulted in improved healing, although the cell type responsible for this
in vivo effect has not been clearly identified.

Furthermore, neutrophils isolated from fresh whole blood obtained from diabetic individuals
produce an increased amount of NETs [29]. High glucose correlates with elevated calcium levels in
neutrophils and enhanced activation of calcium-dependent enzymes that are essential for chromatin
decondensation (i.e., peptidylarginine deiminase 4, PAD4). Consistently, genetic inactivation of
PADA4 or systemic NETosis inhibition by DNasel improved wound healing and re-epithelialization in
diabetic mice.

As any inflammatory cell, neutrophils are recruited to the wound by chemoattractant molecules
that often bind receptors expressed by multiple cell types, thus allowing a coordinated multicellular
response. One example is ChemR23, a receptor abundantly expressed by neutrophils but also by
platelets and macrophages. This receptor binds the anti-inflammatory and pro-resolving peptide
Chemerin15 (C15), which is derived from the cleavage of the chemoattractant protein chemerin, mostly
known for its role in adipocyte differentiation and lipolysis [87]. C15 exerts reduced chemoattractive
and enhanced anti-inflammatory activities compared to full-length chemerin [88]. Accordingly, its
topical delivery as a gel on cutaneous burn wounds reduced the extension of granulation tissue,
accelerating closure and re-epithelialization [30], as measured by fluorescence spinning disk intravital
imaging. These data are consistent with previous evidence showing that C15/ChemR23 signaling
suppresses integrin clustering in neutrophils, thereby reducing their trans-endothelial migration [89].

4. Monocytes/Macrophages

As in any response to tissue injury, circulating monocytes are massively recruited to the site
of the skin wound, where they differentiate into macrophages able to mediate both destructive and
reparative functions [90,91]. Various monocyte subtypes can be recognized based on the expression
level of multiple cell surface markers. During the early phase of wound healing, CD11b*/Ly6Ch
cells, commonly named M1 macrophages, produce abundant levels of proinflammatory molecules,
including IL-13, TNF-¢, IL-6, and iNOS (inducible NO synthase) [92,93]. During the second phase,
proinflammatory M1 macrophages switch toward an anti-inflammatory and pro-regenerative M2
phenotype (CD11b*/Ly6C!°), characterized by the secretion of Transforming Growth Factor (TGF)-f1,
Vascular Endothelial Growth Factor (VEGF)-A, Arginase-1, and IL-10 [93,94]. As any classification,
the distinction between M1 and M2 macrophages appears to be over simplistic. Macrophages recruited
during the early phase sometimes express M2 markers and both macrophage types derive from the
same pool of circulating monocytes [95,96]. Thus, it is very difficult, if not unrealistic, to strictly control
macrophage polarization for therapeutic purposes, as highlighted in recent reviews [90,92,97].

In pathological states, like diabetes and obesity, monocyte recruitment, their differentiation into
macrophages, and macrophage polarization are often impaired [93,98]. Hypertrophic adipocytes
produce a plethora of adipokines that attract M1 macrophages and create a feedforward loop, resulting
in a chronic low-grade inflammatory state [99,100] and lack of transition to an effective reparative
phase [93,98].

Macrophage-based cell therapies that have reached clinical experimentation rely on their
recruitment, activity modulation, or direct injection into the wound [97]. The most exploited
strategy has been the local injection of human granulocyte-macrophage colony stimulating factor
(hGM-CSF), which promoted healing in both refractory chronic skin ulcers and second-degree
burns [32-34]. Approaches so far considered for their capacity to activate macrophages are based
on the use of compounds that are naturally produced by microorganisms and can be purified as
clinical-grade molecules. Among these are 3-glucans, natural components of the cell walls of bacteria
and fungi, which constitute the principal components of several Asiatic medicinal products, and the
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mycoplasma-derived macrophage-activating lipopeptide-2 (MALP-2) [35,36]. The local application of
these immunomodulators has been reported as safe and potentially useful to improve healing of human
wounds, although further studies will be needed to definitely prove efficacy [35,36]. Finally, the local
injection of autologous macrophages has been attempted to treat both deep sternal wound infections
following open heart surgery and refractory human ulcers in diabetic feet [37,38]. While these studies
confirm the feasibility of the approach, no conclusions can be drawn in terms of safety and efficacy.

Because the initial expectations raised by these cellular therapies have not been met by the
results of clinical studies, more preclinical work is needed to better define the appropriate timing
of macrophage administration [101] and the mechanisms by which they could be of real benefit in
skin regeneration. Over the last six years, additional animal studies have been undertaken to identify
novel molecules able to boost both macrophage recruitment and polarization. Perhaps the most
promising one is CXCL12 (SDF1), which recruits macrophages through its binding to CXCR4. The local
application of lactic acid bacteria transformed with a CXCL12-expressing plasmid accelerated wound
closure in healthy mice, in mouse models of hyperglycemia and peripheral ischemia, as well as in an ex
vivo model of human skin [31]. In addition, exposure to CXCL12 favored M2 polarization and secretion
of TGF-f3. Similar results on macrophage polarization were obtained by using exosomes derived from
a macrophage cell line (Raw264.7) [102]. Macrophage polarization is known to depend on multiple
epigenetic changes, which are often impaired in diabetes [39,40]. At least two methyltransferases,
MLL1 and Dnmt1, appear upregulated in macrophages of diabetic patients, in which they impose an
activation mark on the promoter of proinflammatory genes (i.e., IL-13, NOS2, and TNF-«) and inhibit
the expression of factors inducing macrophage differentiation, respectively. The genetic inactivation
of these methyltransferases has been shown to improve wound healing in animal models. However,
the translation of this approach to humans is still unproven.

In conclusion, several open questions remain, which at present do not support the clinical use
of these cells. First, the correlation between the mouse and human macrophage phenotype has been
poorly proven. Second, the appropriate timing for macrophage therapy application has not been
defined either in preclinical or clinical settings. Finally, as also highlighted for other cell populations,
the design of clinical trials has been so far of poor quality, in terms of both patient recruitment and
clinical endpoints.

5. Dendritic Cells

Dendritic cells (DCs) are antigen presenting cells that prime T cell responses. In the epidermis,
DCs are called Langerhans cells (LCs) and derive their name from the surface receptor CD207 (Langerin).
They exhibit a unique behavior, characterized by rhythmic extension and retraction of their dendrites
in intercellular spaces between keratinocytes [3,103]. In the dermis, there are two subtypes of resident
DCs, also named type 1 and type 2 myeloid/conventional DCs, which trigger Th1 and Th2 responses,
respectively [104,105]. Epidermal and dermal DCs serve as first-line defenders, presenting new antigens
to T cells within the dermis and migrating into draining lymph nodes where they continue to activate
T cell-mediated adaptive responses [3,106].

In addition, plasmacytoid dendritic cells (pDCs) do not physiologically reside in the skin but are
recruited together with neutrophils in case of injury [107]. They are particularly active during the early
phase, when they produce IFN-«/f3 in response to nucleic acids released by damaged cells and sensed
by the intracellular toll-like receptor 7 and 9 (TLR7 and TLR9).

Preclinical evidence of their positive role stems from multiple animal models of DC depletion
generated using either transgenic animals or neutralizing antibodies. DC depletion invariably
resulted in a suppressed early inflammatory response, reduced re-epithelialization, and decreased
revascularization of healing wounds [41,107]. Conversely, systemic treatment with the DC-specific
growth factor recombinant FMS-like tyrosine kinase-3 ligand (FL) significantly accelerated wound
closure when delivered during the early but not the late phase of wound healing. Despite these
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promising insights into the role of DCs in wound healing, their therapeutic relevance in humans is still
completely unexplored.

6. Lymphocytes

The adaptive immune response is orchestrated by lymphocytes, a heterogeneous population that
include B cells, responsible for the humoral response, and T cells, which mainly exert cytotoxic activity.
While their major function is to combat pathogen invasion, emerging evidence points toward their role
in regenerative processes, including wound healing [108]. The healthy skin is colonized by different
T cell subsets, identifiable by the expression of specific T cell receptor (TCR) isoforms. Two major
populations, namely v8-TCR and a3-TCR lymphocytes, physiologically reside in the skin of both
humans and rodents [109].

The most abundant T cell types in the murine healthy skin are two specialized classes of y5-TCR
lymphocytes, namely Vy5V$1 dendritic epidermal T cells (DETCs) and Vy4 dermal lymphocytes [110].
The crucial role of y5-TCR lymphocytes in wound healing has been first described using TCRS /" mice,
which lack epidermal lymphocytes and show a poor skin regenerative response after injury, resulting
in reduced keratinocyte proliferation [111,112].

DETCs stably reside in the epidermis and have a typical dendritic cell shape, which facilitates
their interaction with keratinocytes [113]. Upon activation by infection or injury, they change into
round-shaped active T cells and promote keratinocyte proliferation through the secretion of keratinocyte
growth factor (KGF-1) and insulin-like growth factor-1 (IGF-1) [114]. Vy4 dermal lymphocytes normally
reside in the dermis and migrate to the epidermis in response to proinflammatory molecules, such as
chemokine (C-C motif) ligand 20 (CCL20), which binds chemokine receptor 6 (CCR6) expressed on
their membrane [115,116]. These cells participate in the first phase of wound healing through the
secretion of tumor necrosis factor o (TNF-x) and IL-17 [117].

Therapeutic approaches exploit a positive feedback loop existing between DETCs and keratinocytes.
Injured keratinocytes secrete IL-15, which stimulates IGF-1 secretion by DETCs [118]. In turn, IGF-1
promotes keratinocyte proliferation and further secretion of IL-15. The importance of this paracrine
loop in skin regeneration has been demonstrated in diabetic mice, which have reduced levels of IL-15
and a low number of DETC in their epidermis, with consequent decreased levels of KGF-1 and IGF-1
and impaired wound healing. Engraftment of an extra amount of DETCs in the same mice rescued the
KGF-1 and IGF-1 levels and improved wound regeneration [43,118]. A similar therapeutic effect was
exerted by the administration of IL-15, which restored IGF-1 production by DETC both in vivo and
in vitro [42].

In addition to DETC, Vy4 T cells are also reduced in diabetic mice, consistent with decreased
levels of both IL-17 and CCL20 [119]. Evidence supporting the role of Vy4 T cells in skin regeneration
comes from IL-17/~mice, which are characterized by defective wound healing [120], as well as from
the therapeutic activity of IL-17 in improving wound healing in diabetic mice [119]. More recently,
conflicting data have been reported, showing that IL-17 inhibits IGF-1 secretion in the wound bed and
that Vy4 T cell depletion accelerates wound healing, which would indicate a negative effect of these
cells in the process [116].

Additional concerns on the therapeutic potential of y5-TCR lymphocytes for regenerative medicine
stems from the fact that no human counterpart for either DETC or Vy4 T cells has been clearly identified
and that y5-TCR cells represent less than 10% of total T cells in the human skin [121]. One single
study reported the capacity of a specific subset of human y6-TCR cells to produce IGF-1 in vitro when
isolated from an acute but not from a chronic wound [122].

The «B-TCR lymphocytes (CD4" helper and CD8* cytotoxic) represent the vast majority of
skin-resident T cells in humans, and a consistent part of them in mice [110,122]. While in humans,
they reside in the epidermis, and in mice, they are localized mainly in the dermis, proximal to hair
follicles [123,124]. In addition to the resident population, circulating CD4* and CD8" lymphocytes
are recruited to the wound bed, peaking at day 1 and 7, respectively. They exert antimicrobial
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function during the early inflammatory phase and recruit additional immune cells (neutrophils
and macrophages) through the secretion of a variety of cytokines, including IL-1§3, IL-6, TNF-«,
CXCL2, and CCL2 [108,125]. Several studies highlighted the detrimental role of CD4" and CD8*
lymphocytes in tissue regeneration and revascularization. For instance, CD4" cell ablation promotes
heart regeneration [126] and both CD4* [127] and CD8* [128] blockade improves angiogenesis in
diabetic mice. Yet, their functional role in skin regeneration is controversial, as indicated by numerous
studies reporting conflicting results, and a clear discrimination of the specific role of circulating and
resident lymphocytes is often missing. For instance, both CD4 and CD8 knockout mice do not show
any major deficit in wound healing, despite having reduced cytokine expression and poor macrophage
and neutrophil infiltration [125]. Even more surprisingly, athymic nude mice lacking all T cells present
scarless skin repair, similar to what happens during fetal development, suggesting that T cells impair
re-epithelialization and favor repair by scarring [44]. Opposite data have been obtained in SCID mice
transplanted with either CD8", CD4"* lymphocytes, or their combination. In this study, CD4" cells,
alone or combined with CD8* cells, induced robust re-epithelialization and neoangiogenesis together
with reduced inflammation and scarring [45]. While the role of CD8* and CD4* lymphocytes in wound
healing in the presence of either tissue ischemia or diabetes has not been investigated in animals, few
data are available in humans. Diabetic individuals with foot ulceration showed a decreased number of
total circulating lymphocytes [129], with a relative accumulation of activated T cells and increased
TNF« levels, indicative of a proinflammatory condition [130]. Overall, this evidence suggests that
altered balance of T cell sub-populations may impact on the closure of diabetic wounds, yet further
studies are needed to characterize their precise role.

An additional class of xp-TCR lymphocytes is composed by Tregs. These are considered the
major players in immune suppression, maintaining tolerance to self-antigens, and are traditionally
characterized by the expression of CD4, CD25, and the transcription factor forkhead box P3 (FOXP3).
Emerging evidence indicates that they are a heterogenous population, able to promote tissue
regeneration through mechanisms independent from their immune-modulatory function [131,132].
They physiologically reside in both the human and murine dermis [133,134], and rapidly accumulate
to the site of wounding. Different receptors have been described as key mediators of their recruitment,
including EGFR and CCR4 [135,136]. Depletion of Tregs in healthy mice resulted in delayed wound
closure, associated with increased proinflammatory cytokines and macrophage recruitment [137].
Contrasting results were obtained in diabetic mice, in which either Treg depletion or inhibition of their
recruitment resulted in increased collagen deposition, reduced cytokine content, and faster wound
healing [136]. This again warrants additional studies to better elucidate the mechanisms through which
Tregs might modulate the two phases of wounds, and in particular their capacity to control macrophage
polarization, as described in the setting of myocardial infarction [138], and revascularization of ischemic
tissues [127].

Finally, B lymphocytes have been shown to colonize skin wounds in rodents and humans, but very
poor information is available about their function [108,139]. The topical application of naive B cells,
but not T cells, accelerated the closure of either acute or chronic skin lesions in diabetic mice, associated
with enhanced collagen deposition, angiogenesis, increased TGF-3, and reduced MMP?2 levels [46].
In accordance, in CD19~/~mice, B cells are hyporesponsive, and displayed impaired wound healing,
decreased recruitment of neutrophils and macrophages, and an altered cytokine profile. On the other
hand, transgenic overexpression of CD19, which drives B lymphocyte hyper-responsiveness, induced
faster healing [140], thus supporting a positive role of these cells in wound healing. Overall, these
findings suggest that a correct balance between the different lymphocyte populations during wound
healing may represent a promising mechanism to investigate for future therapies.



Int. J. Mol. Sci. 2020, 21, 5235 10 of 22

7. Peripheral Blood Mononuclear Cells

PBMNCs represent a heterogeneous cellular pool composed by roughly 65% lymphocytes,
25% monocytes, and 10% granulocytes [141,142]. They can be easily isolated from venous blood using
different methods, including gravity sedimentation, gel layering, filtering and leukapheresis [141-143].

A few studies have evaluated the potential of PBMNCs, without any cell-specific enrichment,
to promote healing when directly applied to the wound. A seminal study in 1994 demonstrated that
the topical application of autologous PBMCs to skin ulcers in patients affected by peripheral arterial
disease (PAD) and post-thrombotic syndrome resulted in accelerated healing and pain relief [144].

While these cells have not been vastly used to treat chronic wounds in the following years, they
were exploited in multiple trials for the treatment of people affected by ischemic diseases, and in
particular myocardial infarction (MI). This improved the cardiac function, but their real regenerative
potential is still unproven. Starting from the evidence that very few transplanted cells survived in
the ischemic heart, an intriguing hypothesis was formulated and assumed that a large proportion
of apoptotic transplanted cells could modulate local tissue reaction, by downregulating innate and
adaptive immunity [145]. This led to a series of experimental studies supporting the efficacy of
the secretome of apoptotic PBMNCs (APOSEC) in improving the outcome of myocardial infarction
in rodents [146,147], followed by the application of a similar strategy also in wound healing [148].
A small randomized double-blinded placebo-controlled phase 1 trial on 10 volunteers was performed
to establish the safety and the efficacy of autologous APOSEC on artificially created wounds with
negative results [49].

A more recent application entails the seeding of a mixture of fibroblasts and PBMNCs in cellular
sheets, which can be topically applied to the wound. Incorporation of PBMNCs was shown to produce
a variety of cytokines (i.e., VEGFE, Hepatocyte Growth Factor, HGF, TGF-3, CXCL1, and CXCL2) and to
promote revascularization and wound closure in diabetic mice [47,48].

8. Endothelial Progenitor Cells

Highly controversial is the assumption that PBMNC also contains a population of CD34*
endothelial progenitor cells (EPCs), which could contribute to vessel formation through their direct
incorporation into nascent vascular tubes. This concept was put forward by Asahara in 1997 and
assumes that a vasculogenesis-like process might occur in adulthood [149]. The idea was embraced
with enthusiasm by the scientific community, as it could pave the way to novel clinical strategies for
tissue revascularization.

After more than 20 years of preclinical and clinical trials using EPCs, their real capacity to
differentiate into functional endothelial cells and become incorporated into new vessels, providing
clinical benefit, has never been proved. Major concerns have been raised on the method used to prove
and quantify their differentiation into endothelial cells [150-152].

In an attempt to better characterize these cells, CD34" EPCs have been expanded ex vivo and
distinguished as early and late EPCs depending on time of appearance of endothelial cells in the
culture [150-152]. Early and late EPCs appeared to exhibit a distinct phenotype and, thus, they
were reclassified as either hematopoietic (CD45%/CD133M) or non-hematopoietic (CD45~/CD133)
EPCs. Early hematopoietic EPCs do not generate endothelial cells able to form colonies and, when
transplanted into lethally irradiated recipient mice, give rise to a minimal number of endothelial cells
(no more than 1%) that persist for a few months after transplantation [153,154]. Further analyses
revealed that these cells are monocytic in nature and might be assimilated to M2 macrophages, able to
secrete proangiogenic molecules. Thus, the only way these cells appear to contribute to angiogenesis is
through a paracrine mechanism and not through their direct incorporation into vascular structures.

In contrast, non-hematopoietic EPCs, forming late endothelial colonies, can be derived from
umbilical and peripheral blood but also from other tissues, including white adipose tissue, intestine,
and liver [155-158]. These cells have been variably named over time, until a recent consensus statement
on the nomenclature of endothelial progenitors has recommended the use of the term “endothelial
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colony forming cells” or “ECFCs” [152]. In the following sections, we will still keep the term EPC,
as authors did not always discriminate between hematopoietic and non-hematopoietic origin in most
old studies. The majority of the clinical trials using either hematopoietic EPCs or ECFCs have focused
on myocardial infarction and peripheral arterial disease, with only a few studies considering the effect
of these cells on chronic wounds [55,159].

As for other rare populations of circulating cells, the simplest therapeutic strategies consist
in either their mobilization from the periphery or their enhanced recruitment at the level of the
wound [155]. Pre-clinical studies have largely explored this second strategy. Among the most relevant
chemoattractants for EPCs is SDF-1/CXCL12, which binds the CXCR4 receptor, widely and constitutively
expressed by cells of both hematopoietic and endothelial lineage. This pathway is compromised
in diabetic patients, as hyperglycemia is known to reduce SDF1 expression through inactivation of
its transcriptional regulator hypoxia-inducible factor-1 alpha (HIF-1«) [50]. In an attempt to rescue
the homing of EPCs through this pathway, the administration of recombinant SDF-1 into the skin
of diabetic mice restored EPC recruitment and accelerated wound closure. An alternative strategy
consisted in the pharmacological inhibition of dipeptidyl peptidase-4 (DPP4), a membrane-bound
extracellular peptidase that cleaves and inactivates SDF-1 [51], with analogous promising results.
The clinical translation of these approaches is still at its infancy, with only few human studies showing
the actual increase in the number of circulating EPCs upon delivery of the DPP4 inhibitor or human
recombinant G-CSF (NCT02694575 and NCT01102699).

Other studies have tried to enhance the EPC viability and proliferation at the site of the wound.
Starting from the evidence that angiogenesis during the menstrual cycle largely depends on estrogen
and that the latter increases the colony-forming capacity of EPCs in culture [160,161], the topical
administration of estrogen has been successfully validated as a treatment to accelerate wound healing
in diabetic mice [52]. However, to what extent this therapeutic effect can be ascribed to EPCs or
other estrogen-responsive cells participating in the healing process (i.e., keratinocytes and fibroblasts)
remains an open question [162-164].

Finally, EPCs could be directly transplanted into the wound. This has been attempted in multiple
preclinical models, using either syngeneic or human EPCs in immunocompromised animals [53,54,165].
One trial assessed the effect of the intra-arterial delivery of CD133" EPCs for the treatment of diabetic
foot in 53 patients [55]. This treatment prevented any amputation and resulted in a significant increase
in limb perfusion, paralleled by increased circulating levels of VEGF-A, and reduced levels of IL-6. Yet,
the real clinical benefit derived from this treatment is still not obvious, based on the large standard
deviation that is often reported in this type of analysis. In an additional trial, EPCs from diabetic
patients with a non-healing foot were first mobilized with G-CSF and then purified as CD34*/VEGFR2*
cells, prior to their intramuscular injection into the same individuals [56]. Major limitations of the
study, i.e., the inclusion of only five patients and the lack of a control group, do not allow any definitive
conclusion about the efficacy of this approach.

In conclusion, the persistence of hemangioblasts in postnatal life, able to sustain vasculogenesis-like
phenomena in adult organisms, has been harshly challenged. Similarly, EPCs of hematopoietic origin
have never been reported as being able to give rise to new vessels. It seems more realistic the existence
of ECFCs of non-hematopoietic lineage, although the physiological contribution of these cells to the
formation of new blood vessels in adult organisms and, more importantly, their real therapeutic
potential, still has to be determined. To this end, major efforts are required to define a consensus in terms
of their culture methods, phenotypic characterization, therapeutic dose, and route of administration.

9. Stromal Vascular Fraction

The evidence that multiple cell types contribute to tissue regeneration in wound healing has
prompted the use of heterogeneous cell populations, such as the one that can be obtained from
white adipose tissue and is commonly named stromal vascular fraction (SVF). This fraction contains
endothelial cells, pericytes, smooth muscle cells, immune cells, fibroblasts, preadipocytes, and a
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population of multipotent progenitors, often referred as adipose-derived stem cells (ASCs) [166,167].
Being of mesenchymal origin, ASCs differentiate into adipocytes, osteocytes, and chondrocytes and
secrete a variety of factors able to sustain tissue regeneration and the formation of new blood vessels in
a paracrine manner [168-170]. ASCs have been extensively tested for their capacity to accelerate wound
healing in multiple models of diabetes, particularly when embedded in scaffolds [171,172]. Notably,
the implantation of decellularized scaffolds recapitulates the therapeutic effect, suggesting that the latter
relies on the paracrine secretion of pro-regenerative factors. Further studies have shown that ASCs,
similar to the whole SVEF, exerted a comparable therapeutic effect on wound healing in hyperglycemic
mice, resulting in the expression of genes favoring fibroblast migration, angiogenesis, and macrophage
recruitment [173], again supporting a paracrine mechanism of action. Similar conclusions were drawn
upon the local or systemic delivery of human ASC exosomes, which improved wound healing by
promoting fibroblasts” migration and collagen production [174].

Consistent with the immunomodulatory function of other mesenchymal stromal cells, both ASCs
and the entire SVF could contribute to wound healing by locally controlling the immune response [175].
For instance, the addition of the SVF to vascularized human dermo-epidermal skin substitutes promoted
M2 macrophage polarization at the level of the wound in nude rats [57].

More recently, the idea of using the entire SVEF, also including other cell types that can directly
contribute to skin regeneration through their direct incorporation into the newly formed tissue,
is emerging as a more potent strategy compared to isolated ASCs.

A direct comparison of human SVF with either ASCs or SVF-derived condition medium indicated
that the whole SVF was the most effective in promoting angiogenesis, as well as the proliferation and
migration of keratinocytes and fibroblasts [176,177]. The superior efficacy of the SVF compared to
cultured ASCs was also confirmed by additional studies in nude mice [178].

This indicates that SVF might contribute to tissue regeneration through cellular mechanisms that
do not rely exclusively on ASCs or secreted factors. Indeed, fluorescently labeled SVF cells implanted
in mouse flanks and ischemic hind limbs were incorporated into newly formed vessels and exhibited
an endothelial phenotype, with null contribution from other cell types [179].

On the basis of these promising preclinical results, the therapeutic efficacy of the SVF in improving
skin regeneration has been investigated in various clinical trials. While most studies have considered a
low number of patients, not allowing conclusive results [58-60], promising data were obtained by a
trial that enrolled 28 patients with diabetic foot ulcers, who were treated with lipoaspirate SVF and
compared to a control group of 26 matched patients. The SVF-treated group showed faster healing,
resulting in full wound closure at 8 weeks in 100% of patients compared to 62% in the control group.

Despite these promising results, major concerns limiting the clinical use of the SVF refer to the poor
standardization of purification protocols, culture conditions, time, and phenotypic characterization
of ASCs and SVF cells. Recent single-cell sequencing approaches are expected to improve the
characterization of this heterogeneous cell population and thus the choice of appropriate markers for
their purification and therapeutic use [180-184].

10. Conclusions and Perspectives

The lack of effective therapies to treat non-healing wounds and prevent amputation, together with
an increasing understanding of the role of various immune cells in skin regeneration and healing, have
promoted the development of cellular and molecular therapies. These essentially aim at mobilizing
therapeutic cells into the circulation, recruiting them and modulating their activity at the wound
site, or directly supplementing them to the wound bed. However, none of these formulations can be
considered a standard of care, likely due to multiple limitations. First, both preclinical and clinical
studies often use different parameters to evaluate efficacy. For example, re-epithelialization and
revascularization were assessed by multiple modalities and the presence of granulation tissue was
variably considered as either a positive or a negative element. Second, clinical end points were mostly
based on wound area and healing time, and did not consider either the type of healing (i.e., scarring
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versus re-epithelialization) or incidence of long-term relapse. Finally, well-designed, randomized,
and placebo-controlled clinical trials are still lacking for most cell types.

By assessing the rationale and the supposed mechanism of action of these approaches, it emerges
that some signaling pathways regulate the activity of multiple cell types. For example, the SDF1/CXCR4
axis has been exploited to recruit both macrophages and ECFCs, paving the way to the development of
multitarget therapies able to orchestrate the participation of different cells.

This also highlights that a better understanding of the individual contribution of each cell type,
in different phases of the healing process, is required to optimize and select the best cellular therapies.
New tools will possibly provide simpler models for investigating the role and the therapeutic potential
of immune cells in skin regeneration.

Zebrafish is an emerging model allowing rapid assessment of the healing of skin wounds,
which can be easily and reproducibly generated on its flank [27,185,186]. In addition, both angiogenesis
and regeneration can be visualized in live imaging through its transparent skin. To what extent
this model will be exploitable to test the therapeutic potential of cellular therapies remains an open
question. More suitable to this end is the use of ex vivo models of human skin, including two- and
three-dimensional cultures of human cells (keratinocytes, fibroblasts, and endothelial cells), organotypic
skin cultures, and debrided skin specimens [62,187].
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