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Abstract: A promising protein target for computational drug development, the human cluster of
differentiation 38 (CD38), plays a crucial role in many physiological and pathological processes,
primarily through the upstream regulation of factors that control cytoplasmic Ca®* concentrations.
Recently, a small-molecule inhibitor of CD38 was shown to slow down pathways relating to aging
and DNA damage. We examined the performance of seven docking programs for their ability to
model protein-ligand interactions with CD38. A test set of twelve CD38 crystal structures, containing
crystallized biologically relevant substrates, were used to assess pose prediction. The rankings for
each program based on the median RMSD between the native and predicted were Vina, AD4 >
PLANTS, Gold, Glide, Molegro > rDock. Forty-two compounds with known affinities were docked
to assess the accuracy of the programs at affinity/ranking predictions. The rankings based on scoring
power were: Vina, PLANTS > Glide, Gold > Molegro >> AutoDock 4 >> rDock. Out of the top four
performing programs, Glide had the only scoring function that did not appear to show bias towards
overpredicting the affinity of the ligand-based on its size. Factors that affect the reliability of pose
prediction and scoring are discussed. General limitations and known biases of scoring functions are
examined, aided in part by using molecular fingerprints and Random Forest classifiers. This machine
learning approach may be used to systematically diagnose molecular features that are correlated with
poor scoring accuracy.

Keywords: molecular docking; scoring functions; drug design; enzyme inhibitor; CD38 (cluster of
differentiation 38 protein)

1. Introduction

Chronological aging is related to a range of metabolic and pathophysiological changes. One
such change is the age-related decline of intracellular levels of nicotinamide adenine dinucleotide
(NAD) which has been linked to diseases such as obesity, diabetes, heart failure, inflammation, and
cancer [1]. NAD, found in all living cells, is involved in metabolic redox reactions, cell signaling, and
regulating levels of intracellular Ca?*. One important endogenous regulator of intra- and extracellular
NAD levels is the human cluster of differentiation 38 protein (CD38) [2]. CD38 is a transmembrane
protein that works to catalyze the degradation of NAD into adenosine diphosphate ribose (ADPR) or
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cyclic ADPR (cADPR) (cellular messengers for Ca®* signaling), and to hydrolyze cADPR to ADPR.
In a mouse model, inhibiting CD38 using a small-molecule inhibitor was linked to the inhibition of
pathways relating to aging and the reduction of telomere-associated DNA damage. Over 200 small
molecule inhibitors of CD38 have been reported in the literature. These compounds vary in class
(NAD analogs, flavonoids, heterocyclic, etc.) and mechanism of action (covalent vs. non-covalent
inhibition). Despite many promising drug candidates, taking a drug to market for CD38 targeting
therapies remains challenging, due in part to off-target interactions and generally poor specificity.

Crystal structures of CD38 co-crystallized with NAD, as well as cADPR and ATP-ribose, have been
vital in determining the key catalytic residues [3]. These structures reveal the formation of hydrogen
bonds between NAD and NAD-like ligands with E226 and R127, and Van der Waals interactions
between W125, W176, and W189 (see Figure 1) [4]. The W189 indole ring forms 7— interactions
with aromatic rings of the NAD substrate [5]. The mutation E226A eliminates the catalytic activity of
CD38 [6]. The catalytic pocket demonstrates remarkable recognition of these substrates and undergoes
substantial structural changes or “induced fit” upon binding. CD38 has a solvent accessible binding
volume of about 986 A3 when unbound, and 940 A3 with the cADPR intermediate (PDB codes:
1YH3 and 203R, respectively; volumes were calculated using the CASTp (Computer Atlas of Surface
Topography of Proteins) server) [7]. Previous computational efforts to model small molecules in
complexes with CD38 have included molecular docking (referred to hereafter as “docking’) [5,8-12].
Comparative Molecular Field Analysis (CoMFA) has also been previously used to inform CD38 drug
development efforts with robust results [4]. However, these results cannot be generalized to other
scaffolds, unlike docking [13].

Docking is a computational approach at predicting the binding pose and affinity of a small
molecule ligand and protein. Docking involves two interrelated operations—a search algorithm and a
scoring function. The performance of a docking program (or scoring functions in general) is usually
assessed by three tests of increasing difficulty—docking, scoring, and screening. A ‘docking’ test
assesses the program’s ability to reproduce experimental crystallographic poses. Generally, this is done
in a process called 're-docking’, where the native ligand is docked to the binding site in a protein. Tests
of the "scoring poor’ assess the correlation between predicted affinities and experimentally determined
affinities—either through regression (using Pearson’s correlation coefficient) or through ranking (where
Spearman’s correlation coefficient is the statistic of interest) [14]. “Screening” power tests for the ability
to determine true versus decoy binders, usually achieved by screening large libraries of compounds;
however, this test is outside the scope of this paper. Previous investigations have suggested that the
performance of a docking program is dependent on the type of receptor; for example, some programs
appear to perform better on hydrophobic vs. hydrophilic pockets [15]. Based on these previous
observations, we were interested to see how a range of academic and commercial docking programs
performed when modeling CD38.

The scoring functions (SFs) and search algorithms of the programs used in this study are outlined
in Table 1. Scoring functions are typically divided into three main classes: (1) physics-based SFs, which
typically rely on a force-field based approach taken from molecular mechanics, (2) empirical SFs which
use statistical regression techniques to fit (sometimes arbitrary) functions to experimental data (such
as Kj/K,; or ICs( values), and (3) knowledge-based SFs, which use other data, such as covalent bond
lengths alongside statistical distributions of interatomic distances determined from numerous crystal
structures [14]. In practice, many scoring functions use a combination of approaches. For example,
AutoDock 4 (AD4) largely uses a physics-based scoring function, with several terms taken from
the Amber family of force-fields; however, these terms are scaled to fit experimentally determined
binding constants, which means AD4 could be considered to use a hybrid physics-based/empirical
SF [16]. In contrast, AutoDock Vina (referred to hereafter as "Vina’) uses an empirical scoring function
composed of a five-term piece-wise linear potential (PLP); however, the inclusion of atomic Van der
Waals radii in the SF means Vina could be classified as a hybrid empirical/knowledge-based SF [17].
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The use of PLPs in empirical scoring functions is common since fitting constant scaling values for each
of the terms could be achieved simply with multiple linear regression.
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Figure 1. (a) Chemical transformations performed by CD38 involving important biomolecules such as
NAD, ADPR, and cADPR. (b) Key interactions between CD38 and NAD (PDB code: 203U). Yellow,
green, grey, and orange dotted lines represent salt-bridge, m—m, hydrophobic and m—cation interactions,
respectively. A Van der Waals surface representation of the binding site (c), colored by the electrostatic
potential, illustrates the shape and charge complementarity of the active site.
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Table 1. Overview of the scoring functions and search algorithms of the programs tested.

Program Scoring Function Search Algorithm

Random perturbation
AutoDock Vina Empirical + Knowledge-based (Metropolis—-Hastings),
local optimization (BFGS)

PLANTS Empirical Ant colony optimization
Gold Empirical + Physics-based Genetic algorithm (GA)
Glide Empirical + Physics-based Hierarchical search, local optimization
Molegro Empirical + Physics-based Guided differential evolution (DE)
AutoDock 4 (AD4) Empirical + Physics-based Lamarckian Genetic algorithm (LGA)

GA, simulated annealing

rDock Empirical . S
Simplex minimization

Many different approaches have been taken when developing search algorithms. Although the
technical aspects of these methods are outside the scope of this paper, here we give a brief overview
in the context of the programs included in this benchmark study. Popular methods include genetic
algorithms (used in AD4, Gold, Molegro, rDock), particle swarm optimization methods (such as the
ant colony optimization method used in PLANTS, described in detail by Korb et al. [18]), simulated
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annealing (rDock), as well as approaches which sample promising ligand poses and perform a local
optimization (as seen in Glide or Vina). In practice, search algorithms combine a variety of techniques
to optimize the binding mode.

Although much work has been dedicated to improving the accuracy of scoring functions, as
well as the speed and exhaustiveness of search algorithms, docking still faces fundamental challenges
that hinder its applicability. The assumption that a single binding pose has enough information to
reproduce the affinities, either in relative or absolute terms, rarely holds in practice. For this reason,
more accurate, ensemble-based free energy scoring methods, such as molecular mechanics generalized
Born and surface area continuum solvation (MM/GBSA), are routinely used to re-score compounds
during virtual screening [19]. However, these methods are more computationally expensive than
docking, usually making them prohibitive for large scale compound database screening.

Due to the outstanding interest in the continued development of CD38 inhibitors, we were
interested in benchmarking the performance of available molecular docking software as a tool for
rational drug discovery for this seemingly elusive target. A simplified overview of the study is given
in Figure 2. Here, seven molecular docking programs are evaluated in terms of their scoring power
and ability to reproduce crystal structures: three commercial programs (Glide, Gold, and Molegro) and
four academic programs (AutoDock 4, AutoDock Vina, PLANTS, and rDock). To help generalize these
results for the average reader, and to allow for a fair comparison, the performance of these programs
is based on their default parameters. Fortunately, the availability of structural data, in the form of
crystal structures of CD38 in complex with a diverse range of biological ligands (shown in Table 2
and Figure S1), allowed us to investigate the accuracy of the docking pose predictions. We note that
the biomolecule ligands in this test set are generally larger and more flexible than small molecule
drug candidates, so we are cautious about suggesting that the interpretation of these results would
necessarily translate to a virtual screening context. Previous efforts at determining experimental
affinities and structure-activity relationship (SAR) studies have also provided suitable data to critically
appraise the performance of docking programs for this target. Here, data from Deaton et al., which
reports the activities for a range of strong and weak affinity binders, is used to assess the scoring and
ranking power of these programs (see Table S1).
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Figure 2. A summary of the of aims of this study, and a simplified workflow of the steps taken towards
addressing these aims.
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Table 2. A list of structures used to investigate the performance of pose prediction. These ligands,
which are predominantly biologically relevant substrates for CD38, are generally larger and more
flexible in comparison to the drug-like compounds commonly docked during virtual screening.
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2. Results

2.1. Pose Prediction

The performance of the docking programs, when predicting the crystallographic pose of the
complex, varied massively across programs and structures in the test set (see Figure 3a). Due to the
diversity of the ligands in the test set, we chose to include the median root mean square deviation
(RMSD) (A) as an additional measure of re-docking success between programs. Many benchmarking
efforts report mean RMSD; however, this statistic can be misleading when working with structures
of varying size and flexibility [20]. The number of rotatable bonds found in the ligands in the test
set ranged from three to thirteen flexible connections. We also note that using the typical 2 A RMSD
cut-off for docking ‘accuracy’ may not be appropriate for all ligands in the test set. For instance, 3 A
RMSD may be a poor result for a small molecule; however, the same result might be indicative of a
good reproduction of the pose for a larger compound, such as a dinucleotide, which needs to explore
a much larger conformational space. For this reason, we also present the distribution of the RMSD
results for all structures in the test set (shown using the bar plots in Figure 3b).
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Figure 3. Comparisons of the redocking performance of all programs across the CD38 test set. (a) An
example of the results produced when redocking NAD to a crystal structure of CD38 (PDB code: 203U).
The native pose and isomesh of the electron density at 20 in the 2f.—f, map are shown in black. Poses
were selected to be representative of the average RMSD across ten trials. In the case of all programs, the
orientation of the nicotinamide fragment (essential to the catalytic mechanism of CD38) was successful,
apart from AutoDock 4, which did not reproduce this feature. (b) A heatmap indicating the average
RMSD for each program across all CD38 structures in the test set is shown. Models are sorted on the
y-axis by the number of rotatable bonds.

Based on these data, Vina was identified as the program that was most consistent at finding
suitable poses, giving a median RMSD of 2.5 A over the test set, with average RMSD results ranging
from 1.0 to 6.0 A RMSD. Autodock 4 produced comparable results, giving a median RMSD for 2.8 A
over the test set. Despite this, the range in results was considerably larger (between 0.98.3 A). Both
programs were able to find a pose within 2.0 A RMSD for approximately 35% of the test set. Vina
was able to find a pose within 4.5 A RMSD for almost 90% of structures in the test set; however, the
percentage of these results in AD4 was considerably lower (approximately 55%). Gold, PLANTS, and
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rDock performed similarly according to these metrics, each producing a median RMSD of about 4.5 A,
with a similar range of results compared to the Autodock 4 (~ 1-8 A RMSD).

Over the test set, Gold produced results like the native pose (within 2.0 and 4.5 A RMSD) at a
similar rate to AD4 (approximately 30% and 55%, respectively). PLANTS performed slightly worse
when finding structures within 2.0 A RMSD. Glide performed slightly worse than these programs, and,
in some examples, Glide failed to find a top-scoring pose that reproduced the crystal structure. Glide
produced a median docking result of 5.5 A RMSD and could only reproduce the crystallographic pose
in approximately 20% of structures. Molegro, using the MolDock GRID scoring function, performed
similarly. The median RMSD of the redocked poses produced using this program was 5.2 A.

Previous redocking studies involving CD38 have also encountered issues when reproducing
crystallographic poses [7-9,12]. Redocking in the presence of active-site water molecules has been
suggested as a method to improve the fit between the docked and the crystallographic pose. Indeed,
solvent-mediated interactions have been shown to be relevant to CD38 activity [8,12]. Certainly, our
poor results in the redocking section of this study are likely to be affected by challenges in modeling the
ligand-solvent interactions. Unfortunately, crystallographic waters are rarely ever resolved to atomic
precision. Furthermore, many scoring functions (e.g., Vina, Glide) were parameterized in the absence
of solvent, and including solvation effects in docking is a known challenge [21]. Future directions
aimed at assessing the performance of docking programs, which specifically model solvation effects, in
the context of CD38, are recommended.

2.2. Scoring and Ranking Known Inhibitors

The ability of each docking program to accurately score and rank the existing dataset of forty-two
inhibitors with known affinities (ICsp) was released by Deaton et al. [22]. Pearson’s correlation
coefficient, for the regression between the experimental pICsy and the docking score, is reported as
a measure of the “scoring accuracy”. We also present Spearman’s correlation coefficient, which is a
statistical measure of how well the docking programs reproduce the experimental rankings of the
compounds. Both statistics range from (-1, 1), where coefficients greater than zero represent a positive
trend, and coefficients less than zero represent an inverse relationship. Some docking scores have been
transformed accordingly to follow a positive trend in relation to the pICsg values, so ideally, coefficients
should be equal to 1.0 in the case of perfect agreement between the experiment and the modeling.

Vina and PLANTS were the top two performing programs when tested for scoring power on
this data set (Pearson of 0.57 and 0.55, respectively). Despite these similar results for ICs, regression,
Vina was markedly better at scoring the compounds than PLANTS (Spearman of 0.63 compared to
0.58). The performance of Glide and Gold was comparable, with the former being slightly better at
predicting the trends in affinity (Pearson of 0.47 and 0.43, respectively), and the latter being marginally
better at correctly ranking the compounds (Spearman of 0.47 and 0.43, respectively). AD4 cannot be
recommended for modeling the affinities of CD38 inhibitors based on these scaffolds, as the relationship
between experimental 1Csy and docking score was no better than random chance (Pearson of 0.0).
The rDock performed the worst out of all programs, producing negative Pearson’s and Spearman’s
coefficients (—0.37 and —0.38, respectively), which is to say that rDock was worse than random chance
at predicting the affinities for this series of compounds (see Figure S2a—g and Figure S3).

3. Discussion

3.1. Challenges with Dinucleotide Docking: Size, Flexibility, and Self-Similarity

The RMSD between the docked and native poses appeared to be correlated with the size and
number of rotatable bonds. It has been widely acknowledged in the literature that re-docking accuracy
decreases as the number of rotatable bonds increases, a phenomenon that is known to be independent
of which docking program is used [23]. For the larger, dinucleotide structures in the re-docking test
set, one potential challenge we predicted was that the docking programs might incorrectly guess
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which nucleotide fragment (i.e., nicotinamide or adenosine) sat where in the binding pocket, given
the self-similarity present in the conjoined phosphoribose groups. Crystallographic evidence strongly
suggests that the nicotinamide group sits inside the pocket, where -7 Van der Waals interactions with
W189 keep the substrate in the correct orientation for the catalytic displacement of the nicotinamide
fragment. This is also coordinated by W125, which interacts with the face of the adjacent ribose unit
to further stabilize the nicotinamide fragment. For this reason, a ‘correct’ pose prediction for the
dinucleotides should reproduce this important interaction. In many cases, the large values for RMSD
(Figure 4b) were associated with poses that accurately predicted the position of the nicotinamide group
but failed to position other parts of the molecule correctly. When re-docking the native ligand in the
structure 203U using Gold, the average RMSD for the top-scoring pose was 4.2 A. On inspection
of the pose (see Figure 4a), the nicotinamide portion of the molecule was in good agreement with
the crystallographic pose. The adenosine portion of the ligand sits outside the pocket; however, in
disagreement with the experimental model, which accounts for the majority of the RMSD measured. It
is possible that a more exhaustive search approach may have optimized this position of this group.
Certainly, a comparison between the number of active rotatable bonds and RMSD showed that there
was a statistically significant correlation between these variables for AD4, Gold, rDock, and Molgro
(Figure S2a—g). This suggests that, for these programs, the default parameters for exhaustiveness may
not be suitable for compounds with a high number of conformational degrees of freedom and should
be increased accordingly. However, exhaustiveness many not be the only factor contributing to the
poor performance of AD4 when docking dinucleotides, as the program predicted the adenosine group
to sit in the same site of the nicotinamide group—the native pose—which is likely a scoring issue.

10 100 7
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Figure 4. Distribution of the redocking results, and their corresponding ‘success rate’, for all programs.

RMSD (A)
Success rate %

Only the top-scoring pose of each of the ten trials, was used to calculate the average. (a) A boxplot
indicating the redocking accuracy in RMSD (A). A line corresponding to the 2 A RMSD cutoff, a typical
guide for measuring redocking success, is also provided for comparison. The orange line indicates the
median result for each program. (b) A stacked bar chart illustrating the ‘success rate’ for each of the
programs. The green, orange, and red areas correspond to the percentage of models that achieved a
redocking score of < 2.0, < 4.5, and > 4.5 A RMSD, respectively.

The structural disorder may also be a contributing factor in the poor performance across all
docking programs for certain crystal structures, for instance, another structure of the 4’-Thioribose
NAD complex (6EDR). In this case, there was considerable disorder in the adenosine ring and for
W175, as indicated by the high relative B-factors of these groups in the original crystal structure. This
structure models a different rotamer of W175, which faces away from the pocket. Subsequently, the
adenosine group is not stabilized by W175, like in the 203U structure (Figure 1). For this reason, many
of the programs were unable to predict the orientation of the adenosine group in a way that agreed
with the original model. 3DZH appeared to be a challenge for a similar reason. The triphosphate tail
was poorly resolved in the original X-ray experiment, and high B-factors for this group also suggested
high uncertainty in the original model.
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3.2. Scoring Functions Can Be Sensitive to Small Chemical Changes

The performance of some programs (namely Vina and PLANTS) when scoring the compounds
with known affinities was promising. However, we predict that chemical similarity in the dataset
may contribute to bias. Most compounds in this dataset are based on the 4-amino-8-quinazoline
carboxamide scaffold (R; = N), shown in Figure 5, apart from two compounds containing a quinoline
moiety (R; = CH). Overall, the compounds in the test set were relatively similar in structure, with many
R, groups (examples shown in Figure 5) being nearly identical. For example, the cyclopropyl versus
the cyclobutyl ring in compounds 1am and 1an (see Supplementary Materials Table S1). Differences
in the core scaffold for the quinoline containing molecules caused some programs to drastically
underpredict the affinity of these compounds. For Vina and Gold, removing the compounds containing
the quinoline scaffold dramatically improved the correlation (Pearson from 0.57 to 0.72 and from 0.43
to 0.56, respectively). This suggests that a large amount of the variance observed in these data could be
attributed to these poor scoring compounds. One possible explanation for this discrepancy is that the
scoring function over-estimated the affinity when the atom type at this position was changed from
a carbon to a hydrogen bond accepting nitrogen. Many scoring functions (Vina and Gold included)
have specific terms for hydrogen bonding, which favor the addition of H-bond donors/acceptors.
In contrast, removing these compounds from the Glide and PLANTS scoring test set only had a modest
improvement on regression (Pearson from 0.47 to 0.49 and 0.55 to 0.60, respectively). This could be
interpreted as these scoring functions being less sensitive to minor chemical changes, although more
benchmarking data should be obtained to support this conclusion. Overall, while some programs were
relatively successful at scoring the compounds, we expect that this result may not be generalizable
to other scaffolds or drug targets. Furthermore, there is scope to investigate the role of the search
algorithm parameters on the predictive powers of the docking software.

H,N" S0

Figure 5. The main scaffold, and example R-groups, of the compounds screened by Deaton et al [22].

Among the AutoDock family, Vina outperformed AD4 in both re-docking and scoring, which
agrees with previous benchmarking efforts [24,25] (see Figure 6). Overall, AD4 performed well in the
re-docking trials, in comparison to other programs, however in the scoring test set, AD4 was unable to
score, or rank, the compounds effectively. This observation may be unsurprising. Historically, purely
physics-based SFs have been acceptable when searching for low energy binding modes, often within
acceptable RMSDs from native crystal structures. However, it has been acknowledged previously
that physics-based SFs are less than optimal for scoring/ranking drug candidates [26]. Due to this
limitation, for example, Glide employs a final rescore of the molecular mechanics optimized poses
using an empirical SE. Even though AD4’s physics-based scoring function is “calibrated” to empirical
binding constants (K;/K;), AD4’s poor scoring performance may be a symptom of its reliance on a
physics-based approach.



Int. J. Mol. Sci. 2020, 21, 5183

10 of 19

Spearman's r?: 0.06 Spearman's r?: 0.70
Pearson's r?: 0.00 Pearson's r?: 0.72
124 L L]
12.0
. w
€ 11/ . a 5 115
A &
< 10 8 iy : g o 11:0
o % e — . £
< ° - F s > 10.5
9‘ - @ - 100
12 14 16 18 12 14 16 18
pICso plCsq
(a) (b)
Spearman's r2: 0.52 Spearman's r22: 0.59
Pearson's r: 0.49 100 Pearson's r*: 0.56
9 3 L] .. . =
g o
o
»8 vt
S 2
o7 Q
e L ]
6 = )
12 14 16 18 12 14 16 18
pICso p|C50
(c) (d)
Spearman's r2: 0.58 Spearman's r2: 0.37
Pearson's r?: 0.55 RTINS 12, =5
115 g o
140
o A
110 ~
@ S
) S 120
; 105 o
< o
|
o
2 100 % 100 .
B E &
12 14 16 18 12 14 16 18
pICso pIC50
(e) (f)

Figure 6. Summary of the correlation between experimental affinities (pICsp) for compounds screened by
Deaton et al. compared to the docking score for the following programs: (a) AutoDock 4, (b) AutoDock
Vina, (c) Glide, (d) Gold, (e) PLANTS, and (f) Molegro. The absolute value of the docking scores was
taken to produce a positive trendline. The confidence interval for the regression estimate is shown as a

translucent area centered around the line of best fit.

3.3. Poor Pose Prediction May Lead to Poor Scoring

Poses predicted by for Deaton’s CD38 inhibitors were generally in good agreement with the native
pose of NAD. In many poses, the interactions with TRP189 were reproduced by the quinazoline moiety,
which mimics the native interaction involving the nicotinamide group of NAD (see Figure 7a). Vina,
Gold, Glide, and PLANTS were generally able to reproduce the position of the aromatic, adenosine
group in the native pose, which is mimicked in the docked pose by the substituted aromatic ring in the
CD38 inhibitors. Vina, the best performing program at scoring/ranking, produced similar poses for each
of the compounds based on the alignment of the scaffold common for these compounds (see Figure 7b).
This alignment was less clear in other, more poorly performing programs. By producing top-scoring
poses with similar alignments, the contribution of the scaffold to the overall score should have been
similar, and the scoring of each of the different R, groups should have had a more dominant effect on the
overall score of the compounds. We suggest that this feature of the Vina results could be one contributor
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to the lower variance seen over the test set. Conversely, the lack of consensus when positioning the
common scaffold in other programs may produce scores with higher variance. Regardless, it is likely
that this observation does not completely explain the poor scoring power of rDock, which may be the
result of a pathological weakness in the rDock scoring function, at least when scoring compounds for
this target.

PDB: 203U

Vina Glide rDock
2 0.57 r2 0.47 r?

Pearson” = *

-0.37

Pearson” Pearson”

Figure 7. Examples of the pose predictions for some compounds from the Deaton et al. dataset. (a) The
docked model for compound 1am using Vina (shown in blue) compared to the native pose of NAD
observed in the structure 203U. (b) Top-scoring docked poses from twenty-fix random compounds
from Vina, Glide, and rDock. Despite the similar scaffolds, Glide and rDock had difficulties finding
similar poses, which may have contributed to the higher variance in the predicted affinities.

To draw some general observations relating pose and activity, we were interested in comparing the
poses of the best and the worst scoring compounds to provide some representative examples (Figure 8).
As described previously in Figure 7, the common scaffold (Figure 5) was docked similarly for most
programs—parallel with the hydrophobic surface of the alpha helix. This similarity was particularly
evident in Vina (Figure 8). Here, the main difference in the poses, which explains the difference in
predicted score, is the position of the R, group. The bulky R; group of the top-scoring compound
1ao sits comfortably in a small, hydrophobic depression in the pocket, where the cyclopentyl-moiety
is well-positioned to take advantage of these Van der Waals interactions. Conversely, the small R,
group (R, = methyl) of the lowest scoring compound 1a is not large enough to take advantage of these
interactions. The lowest scoring compound for Glide was 1q. Here, R; is too bulky (a 5,7-bicyclic
ring system) to afford a pose that can sit parallel with the alpha helix, abrogating this stabilizing
interaction, which seems to explain the poor score. The best and worst scoring compounds identified
by Gold produced similar poses for the common scaffold. Again, favorable hydrophobic interactions
of the bulk R, group 1aa were correlated with a top-scoring compound. In contrast to this, the worst
scoring compound 1i had a smaller, electrophilic R, group (Figure 8). Gold uses pseudo-atoms to
describe non-bonding p orbitals on hydrogen bonds accepting atom types (shown in grey). For 1i,
these model orbitals of the oxygen atom in the five-membered heterocyclic rings of R; clash with the
model orbitals of a glutamic acid residue close in space, which may be responsible for the poor score
produced by Gold.
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Figure 8. Comparisons of binding modes between the best (green) and worst (magenta) ranked
compounds for (a) Vina, (b) Glide, and (c¢,d) Gold. In all cases, the best and worst scoring compounds
were examples of low and high-affinity binders, respectively. Gold uses pseudo-atoms which represent
lone pairs (for hydrogen bonding), which are represented as grey atoms. For Vina and Gold, the
common scaffold of the inhibitors (Figure 5) were docked similarly. Top scoring compounds from these
programs contained bulky R, groups, which made favorable hydrophobic interactions with the surface
of the pocket.

3.4. Random Forest to Systematically Classify Bias in Scoring Functions

Quantitative structure-activity relationship (QSAR) models in drug discovery seek to understand
the relationships between high-dimensional data, such as chemical structures, and a property of
interest. Machine learning models have been a popular approach to this problem. One common
representation of chemical structures in these models is the molecular fingerprint, which examines the
local connectivity of each atom in a structure and creates a unique identifier or “hash” to represent
the atom’s local chemical environment [27]. We were interested in training a Random Forest model
to identify problem chemical groups that appear to bias a scoring function to over or underpredict
the affinity of a compound. A brief overview of this method is described in Figure 9. Models were
trained on the fingerprints of molecules that produced errors in relative affinity outside the explained
variance seen in the regression plots. The molecules in the training set were classified as “over” or
“underpredicted”, and these labels were used in the training of the model. Despite their utility in
machine learning methods, chemical fingerprints are difficult for humans to interpret. We used a
visualization technique, available in the cheminformatics library RDKit, which maps important features
of the fingerprint to the structure [28]. This is achieved by determining the change in the confidence of
the classification when the portion of the fingerprint corresponding to an atom is removed. This was
done for all the atoms in the structure to identify parts of the model that were strongly associated with
a certain bias.

In general, Vina tended to overpredict compounds when R, was a larger, often hydrophobic
substituent, and in conversely, the affinity of compounds with smaller, less hydrophobic groups at this
position was underpredicted. Examples of bit-vectors taken from the molecular fingerprints used to
train the model that were strongly correlated to a certain class are given in Table 3. The Vina score
appeared to be biased towards lipophilic groups since the R, group was generally found to dock near
hydrophobic residues W189 and V185. This is illustrated by bit-vectors d and a, which correspond
to a tertiary amine and a methylene carbon adjacent to a tertiary amine and an unsaturated carbon,
respectively, which are common in compounds where R2 was bulky. The bit-vector corresponding
to smaller R, groups (Table 3, rows c and e) was identified as being correlated with underpredicted
affinities. Interestingly, a simple chemical change, the addition of nitrogen to the azole ring (bit vector
b), caused over predictions by Vina. This is likely because Vina has simple atom types for nitrogen,
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and the electronic differences (e.g., partial charge), expected when moving alchemically from a triazole
to a tetrazole, are not captured by the scoring function.

Random Forest Classifier

Class probabilities mapped to each atom using RDKit

: Training data from Overpredicted Underpredicted

! . . 1 Bulky, hydrophobic Small, hydrophillic

' scoring function ' R g

: . 4 : groups R-groups

: validation tests - .

| X eg. e.g.

' | Overpredicted * FiC F - ;

. Class1 . .

I 1 HN

i = HN

: : 8 W

: ; N NH, —_——
i ; : HN" X0 7\ m'
. Underpredicted ! 2 HN" S0 .
] 1

Figure 9. An overview of the machine learning approach used to systematically diagnose molecular
features that were correlated with poor scoring accuracy. Example molecules where the scoring function
performed poorly (i.e., instances where the error was larger than the 95% confidence interval) were
labeled. A random forest classifier was trained on the bit vector of the Morgan fingerprint of the
ligand to identify features of the ligands that may contribute to over- or underpredictions by the

soring function.

Another explanation could be that smaller R, groups were underpredicted, in comparison to the
larger groups, due to the additive nature of scoring functions—many of which show bias towards
larger substituents [29,30]. Growing a portion of a molecule to better occupy a particular site in docking
will increase the docking score unless penalties are applied due to unfavorable interactions; however,
the entropic penalties associated with the solvation of the larger molecule, and conformational changes
to the binding pocket, are not suitably captured by SFs. When tackling the issue of bias in SFs due to
the number of atoms, a “ligand efficiency” score (equal to the docking score divided by the number
of atoms) can be used. The tendency for SF to over-predict affinities based on the total number of
atoms was observed in all programs, except for Glide. Glide and Vina (to a lesser extent), produced a
statistically significant correlation between the docking score and the ligand efficiency, which suggests
that, for these programs, ligand size did not bias the scoring of these compounds (p values at the
95% confidence interval, using Spearman’s correlation coefficient, were le—11 and 0.046, respectively,
see Figure 54). For virtual screening efforts, it may be beneficial to utilize two docking programs
side-by-side, to account for preferences in either the scoring function. By highlighting these limitations,
we hope the reader gets a better idea of the sensitivities and biases in conventional docking methods.
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Table 3. Examples of important bit vectors of a molecular fingerprint(s) which were identified as features
indicative of compounds with affinities that were over- or underpredicted by the Vina scoring function.

Bit Feature Weight Class
a L 0.0206 Overpredicted
N\
b v /l 0.0205 Overpredicted
7
NH

c N H/\ 0.0201 Underpredicted

d 0.0190 Overpredicted
| N
NH
e /Y‘r:\\ 0.0089 Underpredicted
N I_i\

4. Materials and Methods
4.1. Molecular Docking

4.1.1. System Selection, Search Space Definition, and Independent Trials

Available crystal structures of CD38 containing co-crystallized small molecules were obtained
from the Protein Data Bank. Structures containing covalently bound ligands or multiple ligands in
the binding site were removed from the test set. Certain docking programs treat ‘closed” structures
(such as rings or cyclic compounds) differently, in the interest of fairness, structures containing cyclic
ligands (i.e., cyclic nicotinamide adenine dinucleotide; cNAD) were also removed from the test set. For
example, many programs keep cyclic structures rigid during docking (e.g., AutoDock Vina), while
some attempt to sample low energy conformations (e.g., Glide). Of the remaining structures, available
electron density maps were critiqued manually to ensure the assignment of the structures of the ligand
and all neighboring sidechains were supported experimentally.

A few docking programs may differ when defining the search space, usually opting to limit the
position of the poses generated to lie within a rectangular prism or sphere. We opted to choose a
20 % 20 % 20 A box (v = 8000 A3), as this volume included all residues in the pockets and has been
used in previous benchmarking efforts. When defining spherical boundary conditions, a radius of
approximately 12.5 A was used to keep the volume of the search space consistent between programs.
The center of the search space was defined as the centroid of the native ligand in the crystal structure.
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Docking programs that rely heavily on stochastic processes, such as the Metropolis—Hastings
algorithm in Vina or any program that uses a GA search, often produce results with large amounts of
variance. All programs included in this study produced non-deterministic results, except for Glide,
which appears to circumvent this behavior by performing an initial exhaustive search. Redocking
experiments were performed in replicates of ten, following the protocol previous benchmarking
efforts [31].

4.1.2. AutoDock 4

Proteins and ligands were prepared using AutoDockTools 1.5.6. In this step, files were converted
from the PDB to PDBQT format, and nonpolar hydrogens and Gasteiger charges were applied in this
step. The grid points and grid point spacing were set to 60 and 0.375 A, respectively. The parameters
for the Lamarckian genetic (search) algorithm (LGA) and the scoring function were left as their default
values, in correspondence with the AD4 manual.

4.1.3. AutoDock Vina

Input files generated using AutoDockTools 1.5.6 were kept as is. Each trial of Vina was run using
exhaustiveness of 8, while all other parameters were left as their default values.

4.1.4. Glide

Proteins and ligands were prepared using the ‘Protein Preparation Wizard’ in Maestro 12.0. This
included the assignment of the bond order and polar and nonpolar hydrogens using the ‘Epik’ program.
The Van der Waals scaling factor was set to 0.8 in accordance with the default setting, and Glide was
run in standard precision (SP) mode with three poses per ligand kept.

4.1.5. Gold

Preprocessed structures obtained from Maestro were used in Gold. The ‘chemscore kinase’
template was used for redocking and scoring, using Gold’s implementation of the ChemPLP scoring
function, which is now defaulted. The GA search was done using 300 runs for each ligand, with all
other search settings left as their default values.

4.1.6. PLANTS

Proteins and ligands were prepared using SPORES version 1.3.1. PLANTS (v. 1.2) docking was
performed using default parameters, with the ChemPLP scoring function, at “search speed” 1. The
clustering algorithm was given a threshold of 2 A RMSD in similarity.

4.1.7. rDock

The preprocessed structures obtained from Maestro were used in rDock. rDock requires a cavity
to be defined in order to run the search algorithm. The cavity was defined using the two spheres
method (small sphere = 1.5 A, large sphere = 6.0 A) centered at the geometric center of the native
ligand. Other parameters relating to the search algorithm and the scoring function were left as their
default values, in correspondence with the rDock manual.

4.1.8. Molegro

Protein structures were imported into the Molegro virtual docker, and solvent molecules were
removed. The reference ligand of its respective protein was used as the binding site origin for redocking
and scoring with a radius of 12.5 A. The MolDock scoring function with a grid resolution of 0.30 A was
used. For other parameters, including the search algorithm and energy threshold, their default values
were used.
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4.2. Virtual Screening

Structures for the drug candidates published by Deaton et al. were sketched using ChemDraw
19.0 and imported into Maestro 12.0 as 2D, sdf formatted files. 3D coordinates for each of the ligands
were generated using the ‘LigPrep” module in Maestro 12.0. The crystal structure of CD38 (PDB code:
203U) was prepared used the ‘Protein Preparation Wizard” in Maestro 12.0. This model of CD38 was
chosen, based on the quality of the primary data (i.e., the electron density maps and relative B-factors),
as well as its similarity (in terms of sidechain orientations in the binding site) to other published
structures. This structure contains a mutation in the activate site (E226Q), which was done to aid in
the crystallization of the complex and to prevent cleavage of the substrate. The ‘Mutate’ module in
Maestro 12.0 was used to revert this residue back to the wildtype glutamic acid. These files were used
in all other programs and prepared as necessary to meet their individual requirements.

4.3. Statistical Analysis and Machine Learning

Pearson and Spearman correlation calculations were performed using the functions available
in the Scipy statistics library in Python 3.6. A Random Forest classifier model was build using the
Scikit-Learn library in Python 3.6 and trained on the bit vector of the Morgan fingerprint (radius = 2,
encoding = 2048 bits), generated using RDKit (v. 2019.09.3) for each of the drug candidates from the
Deaton et al. dataset. The random forest feature weights were mapped onto the molecular graph and
visualized using RDKit. Several random forest classes were generated from the data and examined
individually, including high and low-affinity binders from the experimental data (cut-off ICsy value
of 50 nm was used to determine these classes) and whether or not the docking programs over or
underpredicted the affinity of the drug candidate, compared to the linear regression between docking
score and ICs, value.

5. Conclusions

We examined the performance of seven docking programs for their ability to model protein-ligand
interactions with CD38. The rankings for each program, when assessing pose prediction based on the
median RMSD between the native and docked ligand structures, were Vina, AD4 > PLANTS, Gold,
Glide, Molegro > rDock. Higher ligand flexibility appeared to negatively affect the success rate of
re-docking. Docking programs were able to reproduce important 7—7t Van der Waals interactions with
W189 in the predicted ligand poses. The rankings based on scoring power, when assessing a dataset of
42 compounds with known affinities, were: Vina, PLANTS > Glide, Gold > Molegro >> AutoDock
4 >> rDock. Out of the four performing programs for scoring, Glide had the only scoring function
that was not predisposed towards favoring larger ligands. The variation in the predicted affinities,
compared to the empirical data, may be influenced, in part, by variations in pose prediction between
similar ligands. It is important to note that these conclusions are in the context of this protein and
family of inhibitors and do not necessarily translate to other systems of interest. Finally, Random
Forest classifiers have been shown to be a promising new tool in understanding and interpreting the
biases in scoring functions.
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between ligand efficiency and docking score.
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Abbreviations

NAD nicotinamide adenine dinucleotide
cNAD Cyclic nicotinamide adenine dinucleotide
CD38 cluster of differentiation 38 protein
ADPR adenosine diphosphate ribose

cADPR cyclic adenosine diphosphate ribose
CoMFA Comparative Molecular Field Analysis
CASTp Computer Atlas of Surface Topography of Proteins

AD4 AutoDock 4

SAR Structure-activity relationship

SF scoring function

PLP piece-wise linear potential

GA genetic algorithm

RMSD root mean square deviation

MM/GBSA Molecula.r mechanics generalized Born and surface
area continuum solvation

QSAR quantitative structure-activity relationship

D Glutamic acid

K Lysine

R Arginine

W Tryptophan
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