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Abstract: Cancer cachexia is a multifactorial syndrome characterized by general inflammation, weight
loss and muscle wasting, partly mediated by ubiquitin ligases such as atrogin-1, encoded by Fbxo32.
Cancers induced by high-risk human papillomavirus (HPV) include anogenital cancers and some
head-and-neck cancers and are often associated with cachexia. The aim of this study was to assess
the presence of cancer cachexia in HPV16-transgenic mice with or without exposure to the chemical
carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). Male mice expressing the HPV16 early region
under the control of the cytokeratin 14 gene promoter (K14-HPV16; HPV+) and matched wild-type
mice (HPV−) received DMBA (or vehicle) topically over 17 weeks of the experiment. Food intake and
body weight were assessed weekly. The gastrocnemius weights and Fbxo32 expression levels were
quantified at sacrifice time. HPV-16-associated lesions in different anatomic regions were classified
histologically. Although unexposed HPV+ mice showed higher food intake than wild-type matched
group (p < 0.01), they presented lower body weights (p < 0.05). This body weight trend was more
pronounced when comparing DMBA-exposed groups (p < 0.01). The same pattern was observed in
the gastrocnemius weights (between the unexposed groups: p < 0.05; between the exposed groups:
p < 0.001). Importantly, DMBA reduced body and gastrocnemius weights (p < 0.01) when comparing
the HPV+ groups. Moreover, the Fbxo32 gene was overexpressed in DMBA-exposed HPV+ compared
to control mice (p < 0.05). These results show that K14-HPV16 mice closely reproduce the anatomic
and molecular changes associated with cancer cachexia and may be a good model for preclinical
studies concerning the pathogenesis of this syndrome.
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1. Introduction

Between 50 and 80% of sexually active people worldwide have already had contact with human
papillomavirus (HPV), a common sexually transmitted infection [1,2]. The causative role of high-risk
(HR) HPV in cervical cancer has been recognized since the 1970s and is considered one of the major
infectious causes of cancer, not only in women but also in men [3,4]. Lesions caused by HR HPV
(e.g., HPV16 and HPV18) may persist when it is not cleared by the host’s immune response [5].
Lesion persistence increases the risk of developing cervical cancer but also other anogenital cancers
(vulvar, vaginal, penile and anal cancers) and a subset of head-and-neck cancers, especially squamous
cell carcinomas located in the oropharynx [3,6,7].

Up to 80% of cancer patients can suffer from a multifactorial syndrome named cachexia [8].
Cancer patients with cachexia present weight loss and a loss of skeletal muscle mass with or without a
loss of fat mass that cannot be fully reversed by conventional nutritional support [9,10]. One of the
pathways that leads to skeletal muscle loss in cancer cachexia is the ubiquitin-mediated proteasome
degradation pathway [8,10–12]. During cancer cachexia, this pathway is specifically upregulated in
skeletal muscle cells, through the expression of ubiquitin ligases such the Atrogin-1, encoded by the
Fbxo32 gene [8,10,11,13]. These ligases have increased expression due to the activation of forkhead box
O (FOXO) transcription factors by cytokine-activated NF-κB signaling [8,10,11,13]. The oncoproteins
of high-risk HPV can activate NF-κB signaling in multiple ways, contributing to tumorigenesis and
cachexia [14,15]. Cancer cachexia is a marker of unfavorable prognosis that is associated with high
mortality rates and limits therapeutic options because some types of chemotherapy may further
aggravate this syndrome [8,11,16].

K14-HPV16 transgenic mice (HPV+) have inserted in their genome the early genomic region of
HPV16 [17]. In these animals, the expression of the HPV16 early region is under the control of the
cytokeratin-14 (K14) gene promoter, therefore targeting the basal cells of keratinized epithelia [18].
These transgenic mice develop all the typical stages of HPV-induced multistep carcinogenesis in
keratinized epithelia, as observed in human patients [19,20]. In fact, these mice present HPV16-induced
lesions in different locations besides the uterine cervix, and advanced lesions were recently identified
in characteristic head-and-neck sites [21–24]. Interestingly, the presence of a wasting syndrome in
HPV+ female mice has also been suggested by our group [14,25].

7,12-dimethylbenz(a)anthrancene (DMBA) is a polycyclic aromatic hydrocarbon found in high
concentrations in the tar fraction of cigarette smoke, as well as in car exhaust and furnace gases [26].
DMBA is a carcinogen capable of synergizing with HPV’s oncoproteins to induce carcinomas [27,28],
but its association with cancer cachexia remains poorly defined [29,30].

In the present study, we aimed to assess the presence of cancer cachexia in male K14-HPV16
transgenic mice, determining the potential of this animal model for translational studies on cachexia
associated with HPV-related cancers. DMBA was employed as a possible cancer promoter and enhancer
of this syndrome in mice.

2. Results

2.1. General Findings

HPV− mice exhibited a normal phenotype without lesions, while the HPV+ mice demonstrated
several types of macroscopic cutaneous lesions that characterize this animal model, such as auricular
erythema, diffuse hyperkeratosis and cephalic alopecia.
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2.2. Mice Genotyping

The presence of the HPV16 construct was confirmed through the amplification of the E7 genomic
region (157 bp amplicon) in each mouse (Figure 1b), while the β-globin gene (494 bp amplicon) was
used as control (Figure 1a). The presence of the HPV16 E7 was confirmed in all the mice from Groups
3 and 4 (Figure 1b).
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amplification was not observed in wild-type mice (Groups 1 and 2 represented by Samples 1 and 2, 
respectively) but only in HPV+ animals (Groups 3 and 4 represented by Samples 3 and 4, respectively). 
MW: molecular weight marker (GeneRuler 50 bp, Thermo Scientific, Waltham, MA, USA). NC: 
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architecture. Squamous cell carcinomas were well differentiated, with islands of neoplastic 
keratinocytes invading the underlying stroma, often centered on keratin pearls. DMBA increased the 
incidence of more severe lesions in the chest skin (p = 0.003), in the ear skin (p = 0.025) and in the 
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Figure 2. Lesions induced by the HPV16 early genes were analyzed histologically (H&E, 200×). (a) 
Dorsal tongue. Normal oral mucosa (HPV− mouse, Group 1); (b) Dorsal tongue. Hyperplastic changes 
in the oral mucosa (HPV+ mouse, Group 3). Note the increased cellularity of the basal layers and 
normal epithelial differentiation. (c) Dorsal tongue. Squamous cell carcinoma (HPV+ mouse, Group 
3). Note the intense cell pleomorphism and disrupted epithelial architecture. 

Table 1. Histological classification of mouse samples. 

Figure 1. Mouse genotyping. (a) β-globin gene in mice was amplified by PCR and used as control.
β-globin amplification (494 bp fragment) was observed in all mice; (b) The presence of the HPV16
early region was assessed by the amplification of the HPV16 E7 gene (157 bp fragment). As expected,
amplification was not observed in wild-type mice (Groups 1 and 2 represented by Samples 1 and 2,
respectively) but only in HPV+ animals (Groups 3 and 4 represented by Samples 3 and 4, respectively).
MW: molecular weight marker (GeneRuler 50 bp, Thermo Scientific, Waltham, MA, USA). NC:
negative control.

2.3. Histological Analysis

The evaluation of the chest skin, ear, tongue and penile tissue samples of the wild-type mice
(Groups 1 and 2) showed normal histology (Figure 2). By contrast, the tissues of HPV+ mice
showed a variety of histological lesions, ranging from early hyperplastic to invasive squamous cell
carcinomas (Figure 2 and Table 1). While all the sites exhibited intraepithelial hyperplastic and
dysplastic changes, invasive squamous cell carcinomas were restricted to the tongue and the ear skin.
Hyperplastic lesions of the epidermis and keratinized mucosae showed increased numbers of cell
layers and hyperkeratosis without cell atypia. In addition to these features, dysplastic lesions did show
cell atypia, including suprabasal mitotic figures, anisokaryosis and disrupted epithelial architecture.
Squamous cell carcinomas were well differentiated, with islands of neoplastic keratinocytes invading
the underlying stroma, often centered on keratin pearls. DMBA increased the incidence of more severe
lesions in the chest skin (p = 0.003), in the ear skin (p = 0.025) and in the penile mucosa (p = 0.006).
However, for tongue tissue, a significant difference was not observed (p = 0.126).
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Figure 2. Lesions induced by the HPV16 early genes were analyzed histologically (H&E, 200×).
(a) Dorsal tongue. Normal oral mucosa (HPV− mouse, Group 1); (b) Dorsal tongue.
Hyperplastic changes in the oral mucosa (HPV+ mouse, Group 3). Note the increased cellularity of
the basal layers and normal epithelial differentiation. (c) Dorsal tongue. Squamous cell carcinoma
(HPV+ mouse, Group 3). Note the intense cell pleomorphism and disrupted epithelial architecture.
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Table 1. Histological classification of mouse samples.

Group
Anatomic
Regions

Histological Classification (%)

Normal Hyperplastic
Lesions

Dysplastic
Lesions

Invasive
Squamous

Cell
Carcinoma

1 (HPV− without DMBA
application, n = 10)

Chest skin 10/10 (100%) 0/10 (0%) 0/10 (0%) 0/10 (0%)
Ear skin 10/10 (100%) 0/10 (0%) 0/10 (0%) 0/10 (0%)
Penile 10/10 (100%) 0/10 (0%) 0/10 (0%) 0/10 (0%)

Tongue 10/10 (100%) 0/10 (0%) 0/10 (0%) 0/10 (0%)

2 (HPV− with DMBA
application, n = 10)

Chest skin 10/10 (100%) 0/10 (0%) 0/10 (0%) 0/10 (0%)
Ear skin 10/10 (100%) 0/10 (0%) 0/10 (0%) 0/10 (0%)
Penile 10/10 (100%) 0/10 (0%) 0/10 (0%) 0/10 (0%)

Tongue 10/10 (100%) 0/10 (0%) 0/10 (0%) 0/10 (0%)

3 (HPV+ without DMBA
application, n = 10)

Chest skin 0/10 (0%) 10/10 (100%) 0/10 (0%) 0/10 (0%)
Ear skin 0/10 (0%) 8/10 (80%) 2/10 (20%) 0/10 (0%)
Penile 2/10 (20%) 7/10 (70%) 1/10 (10%) 0/10 (0%)

Tongue 1/10 (10%) 4/10 (40%) 4/10 (40%) 1/10 (10%)

4 (HPV+ with DMBA
application, n = 10)

Chest skin 0/10 (0%) 3/10 (30%) 7/10 (70%) 0/10 (0%)
Ear skin 0/10 (0%) 2/10 (20%) 7/10 (70%) 1/10 (10%)
Penile 0/10 (0%) 2/10 (20%) 8/10 (80%) 0/10 (0%)

Tongue 0/10 (0%) 9/10 (90%) 1/10 (10%) 0/10 (0%)

2.4. Body Weight during the Experiment

In order to determine if the lesions induced by HPV oncogenes and DMBA induced cachexia in
this model, we assessed the body weight of each mouse every week, from the initiation of DMBA
application until the mice were sacrificed (Figure 3). During the 22 weeks, HPV− mice without DMBA
application (Group 1) showed a median body weight of 31.10 (IQR = 3.38) g/mouse; HPV− mice
with DMBA (Group 2) weighed 31.05 (IQR = 4.25) g/mouse; HPV+ mice without DMBA application
(Group 3) weighed 30.25 (IQR = 1.88) g/mouse, and HPV+ mice with DMBA application (Group 4)
weighed 28.95 (IQR = 2.22) g/mouse.
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Figure 3. Body weight mean per mouse by group in each week of the experiment. During the 22 weeks
of the experiment, transgenic mice (Groups 3 and 4) had lower body weights than matched wild-type
mice—Group 3 versus Group 1: p < 0.05; Group 4 versus Group 2: p < 0.01. Among the HPV+ mice,
7,12-dimethylbenz(a)anthracene (DMBA)-exposed animals showed lower body weights—Group 4
versus Group 3: p < 0.01. Group 1: HPV− without DMBA application (n = 10); Group 2: HPV− with
DMBA application (n = 10); Group 3: HPV+ without DMBA application (n = 10); Group 4: HPV+ with
DMBA application (n = 10).
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From the 11th experimental week (19–21 weeks-old) onwards, we observed that differences
between the groups became more noticeable (Figure 3), with the HPV+ groups registering lower
weights than their HPV− counterparts. Overall, during the 22 weeks of the experiment, the body
weights of the HPV+ mice were significantly lower than those of matched controls (Groups 1 versus 3:
p = 0.025; Groups 2 versus 4: p = 0.003). Interestingly, there was a pronounced split between the HPV+

groups with or without DMBA (Groups 3 and 4), while there were no noticeable differences between
the HPV− groups (Groups 1 and 2). Considering the whole experimental period, HPV+ mice with
DMBA application had a significantly lower body weight than HPV+ mice without DMBA (Groups 3
and 4: p = 0.003). No statistically significant difference was observed between both HPV− groups
(Groups 1 and 2: p = 0.860).

Next, we performed a more detailed analysis of the animals’ bodyweights at various time points.
At the first experimental week, (when the mice were 9–11 weeks old) the body weights were similar
for all the groups (p = 0.100) (Figure 4a). This similarity was preserved until the 11th week of the
experiment (19–21 weeks old), where all the groups showed an identical body weight per mouse
(p = 0.784) (Figure 4b). However, at the 22nd week, differences in the body weights per mouse between
the groups were verified (p < 0.001) (Figure 4c). Additionally, a significant decrease in the body weights
in both HPV+ groups were observed when they were compared with matched controls (p < 0.001)
(Figure 4c). When we compared the body weights at Week 11 of the experiment (when the mice were
19–21 weeks old) to the ones at Week 22 (when the mice were 30–32 weeks old), we observed important
differences between the groups: while the HPV− mice (Groups 1 and 2) not only maintained but also
gained body weight, the HPV+ mice lost 6.5% and 8.1% (Group 3 and group 4, respectively) of their
body weight in this period (Figure 4b,c).
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Figure 4. Body weights per mouse at different time points of the experiment. (a) Body weight per
mouse at Week 1 (9–11 weeks old). Mice of all the groups presented similar body weights at this time
point (p = 0.100). (b) Body weight per mouse at Week 11 (19–21 weeks old). The body weights of all
the groups remained similar (p = 0.784). (c) Body weight per mouse at Week 22 of the experiment
(30–32 weeks old). A significant decrease in the body weights of the transgenic mice was observed
(*** p < 0.001). Comparing the body weights at Weeks 11 and 22, there was a weight gain in the HPV−

mice and a weight loss in the HPV+ mice (6.5% in Group 3 and 8.1% in Group 4). Group 1: HPV−

without DMBA application (n = 10); Group 2: HPV− with DMBA application (n = 10); Group 3: HPV+

without DMBA application (n = 10); Group 4: HPV+ with DMBA application.
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2.5. Body and Gastrocnemius Weights at the Time of the Sacrifice

Finally, body weights were assessed immediately before the mice were humanly euthanized.
At this final time point, the HPV− mice without DMBA (Group 1) weighed 31.66 (IQR = 2.97) g/mouse;
the HPV− mice with DMBA (Group 2) weighed 29.69 (IQR = 4.45) g/mouse; the HPV+ mice without
DMBA (Group 3) weighed 29.48 (IQR = 3.44) g/mouse; and the HPV+ mice with DMBA (Group 4)
weighed 26.44 (IQR = 2.39) g/mouse. At the time of sacrifice, the HPV+ mice maintained significantly
lower body weights than matched HPV− controls (Figure 5). The HPV− mice without DMBA (Group 1)
had significantly higher body weights than the HPV+ mice without DMBA (Group 3) (p = 0.041).
There was also a statistically significant difference between the HPV− and HPV+ mice with DMBA
application (p = 0.002) and between both HPV+ groups (with and without DMBA) (p = 0.005).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 17 
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After the mice were sacrificed, their gastrocnemius muscles weights were assessed. HPV− mice
without DMBA (Group 1) had a median gastrocnemius muscle weight of 290.0 (IQR = 40.0) mg;
HPV− mice with DMBA (Group 2), 280.0 (IQR = 40.0) mg; HPV+ mice without DMBA (Group 3),
265.0 (IQR = 40.0) mg; and HPV+ mice with DMBA (Group 4), 215.0 (IQR = 20.0) mg. Interestingly, at
this time point, the gastrocnemius weights were in agreement with the body weights for each group.
The HPV+ mice (without and with DMBA) had significantly lower muscle weights than matched
HPV− mice (Groups 1 versus 3: p = 0.025; Groups 2 versus 4: p < 0.001) (Figure 6). Additionally,
we observed a statistically significant difference (p = 0.001) between both HPV+ groups, where HPV+

mice with DMBA (Group 4) had a lower gastrocnemius weight.
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Figure 6. Gastrocnemius muscle weights at the time of sacrifice. HPV+ mice had inferior gastrocnemius
weights than matched HPV− mice—Group 3 versus Group 1: * p < 0.05; Group 4 versus Group 2:
*** p < 0.001. Additionally, Group 4 had a lower gastrocnemius weight than Group 3 (** p < 0.01).
Group 1: HPV− without DMBA application (n = 10); Group 2: HPV− with DMBA application (n = 10);
Group 3: HPV+ without DMBA application (n = 10); Group 4: HPV+ with DMBA application (n = 10).

In addition, with the body and gastrocnemius weight data obtained at the time of the sacrifice,
we calculated the relative gastrocnemius weight for each mouse (Figure 7). The average relative
gastrocnemius weight for HPV−mice without DMBA (Group 1) was 9.46 (IQR = 1.20) mg; for HPV−mice
with DMBA (Group 2), 9.68 (IQR = 0.55) mg; for HPV+ mice without DMBA (Group 3), 8.80 (IQR = 0.71)
mg; and for HPV+ mice with DMBA (Group 4), 8.00 (IQR = 1.01) mg. The relative gastrocnemius
weights results were in agreement with the absolute weights (Figure 6), and we observed statistically
significant differences between Groups 2 and 4 (p = 0.002) and between both HPV+ groups (p = 0.028).
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Figure 7. Relative gastrocnemius weights at the time of sacrifice. HPV+ mice with DMBA (Group 4)
presented a lower relative gastrocnemius weight than matched HPV− mice (Group 2) (** p < 0.01).
There also was a statistically significant difference between the HPV+ groups (Group 4 versus Group
3: * p < 0.05). Group 1: HPV− without DMBA application (n = 10); Group 2: HPV− with DMBA
application (n = 10); Group 3: HPV+ without DMBA application (n = 10); Group 4: HPV+ with DMBA
application (n = 10).
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2.6. Fbxo32 Expression in Mice Gastrocnemius

We evaluated Fbxo32 gene expression in gastrocnemius muscle samples (Figure 8), since it has been
considered a marker of muscle atrophy and its expression is associated with the proteolytic machinery
in muscle wasting. This analysis showed that Fbxo32 mRNA expression was significantly increased in
HPV+ mice with DMBA (Group 4) when compared with that in matched controls (Group 2) (p = 0.03).
Using the Livak Method, the HPV+ mice with DMBA (Group 4) were found to express Fbxo32 at a
3.62-fold higher level than the HPV− mice with DMBA (Group 2). In HPV+ mice without DMBA
(Group 3), the average expression of Fbxo32 also seemed to slightly increase when compared with
that in HPV− mice without DMBA (Group 1), but this difference did not reach statistical significance
(p = 0.55). Additionally, there were no significant differences between the HPV− groups (Groups 1 and
2: p = 0.78) or between the HPV+ groups (Groups 3 and 4: p = 0.68), although Group 4 showed a higher
average expression of Fbxo32.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 17 
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HPV+ without DMBA application (n = 10); Group 4: HPV+ with DMBA application (n = 10).

2.7. Food Intake during the Experiment

To confirm whether the loss of body weight and skeletal muscle mass in the HPV+ mice could
be attributed to lower food ingestion, we analyzed the weekly food intake for each group (Figure 9).
We observed that the HPV− mice without DMBA application (Group 1) ingested 26.29 (SD = 4.46)
g/mouse/week, during the 22 experimental weeks; the HPV−mice exposed to DMBA (Group 2) ingested
28.16 (SD = 4.27) g/mouse/week; the HPV+ mice without DMBA application (Group 3) showed the
highest food intake at 31.51 (SD = 5.30) g/mouse/week; and in the HPV+ mice with DMBA application
(Group 4), the food intake was 29.80 (SD = 5.50) g/mouse/week. The HPV+ mice showed a higher
food consumption than matched HPV− mice. However, the only statistically significant difference
(p = 0.001) was found between HPV− without DMBA application (Group 1) and HPV+ without DMBA
(Group 3) mice.
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(Groups 3 and 4) had a higher consumption of food (per mouse) than the HPV− ones (Groups 1 and
2). However, there only exists a statistically significant difference between Groups 1 and 3 (p < 0.01).
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3. Discussion

Despite multiple attempts to understand its pathophysiology and develop therapeutic strategies,
cancer cachexia remains a common and challenging syndrome [31,32]. While in cases of anorexia or
starvation, the loss of skeletal muscle mass may be restored with adequate therapeutic intervention,
the sarcopenia that characterizes cancer cachexia cannot be fully reversed by conventional nutritional
support [9,10]. The most consensual diagnostic criterion for cachexia is a weight loss of over 5% over
6 months or over 2% in individuals with a body-mass index (BMI) below 20 or with sarcopenia [9].
Importantly, cancer cachexia contributes to at least 20% of cancer-associated deaths [8,31]. Weight loss
is a prognostic factor associated with poor responses to chemoradiotherapy and reduced survival
among cancer patients [32].

The lack of in-depth knowledge about cachexia’s pathophysiology remains a limiting factor for the
diagnosis and treatment of this syndrome [8,33–35]. Animal models play an essential role in translational
research and preclinical tests for novel therapies [14,25,36], and a number of them are available for
studying cancer cachexia, predominantly tumor xenograft and syngeneic mouse models [37,38].
However, these types of models present significant limitations including their short time courses
(2–25 days), often-extreme tumor burdens and excessive inflammatory status phenotypes [39,40].
Additionally, the injection site of tumor cells in the host may cause unwanted variations in the cachectic
phenotype [39,40]. In fact, the animal models currently used are characterized by an abrupt and rapid
cachexia with deadly wasting syndrome within a short period of time, while cachectic patients suffer
from progressive alterations [41]. Therefore, it would be desirable to have a model of progressive
tumor development with a more extended time course that could mimic more closely the changes
observed in cancer patients [42]. In order to achieve this, genetically engineered mouse models could
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be a good approach, such the KPP mouse, which develops progressive cachexia associated with
advancing pancreatic pathology [43]. The K14-HPV16 mice used in this study could also provide
such a model of progressive development [17,18]. We recently described that these mice develop
severe systemic inflammation coupled with reduced grip strength, which are important features of
cachexia (Figure 10) [14,25]. The present results help to further characterize this model, describing key
molecular and morphological characteristics that help to validate it for the study of cancer cachexia.
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Figure 10. Key features of cancer cachexia in K14-HPV16 mice. Lesions associated with HPV16, ranging
from hyperplasia to carcinoma, occur in typical anatomical sites. Systemic inflammation, low values
of muscle strength and muscle wasting occur in K14-HPV16 transgenic mice. These events help to
validate this model for studying cancer cachexia.

A good cancer cachexia model must present well-defined tumor lesions. The histological
evaluation showed that the HPV+ mice presented histological lesions in anatomical sites typically
affected by HPV16, such as the tongue base and the penis, and also on cutaneous sites typically
involved in this mouse model. DMBA application was useful for inducing more severe penile lesions
and also seems to have promoted carcinogenesis in other anatomical sites, presumably due to the
animal’s grooming behavior, which is likely to help in spreading the carcinogen. This is consistent
with previously described histological lesions [17,18,21,23,24] and provides a framework for studying
cancer cachexia in this model. The fact that DMBA promoted tumor lesions is consistent with the fact
that DMBA-exposed transgenic animals showed a more severe cachectic phenotype than matched
untreated mice. In fact, HPV+ mice with DMBA application lost more weight than HPV+ mice without
DMBA, in line with the more severe lesions.

We observed that HPV+ mice had higher food intakes than wild-type controls, which leads us to
conclude that the decreased body weight in the transgenic mice was not due to anorexia or reduced
food availability (food was offered ad libitum). In fact, cancer cachexia can be present in patients with
or without a decrease in appetite, and nutritional support is insufficient to prevent weight loss [8,11].
In addition, several other animal models present a loss of skeletal muscle, adipose tissue and body
weight without reduced food intake [37,39,44,45]. Body weight differences became apparent by the
11th experimental week, which coincides with the onset of the more severe dysplastic lesions in this
model, as previously described [19,46]. Both HPV+ groups (with and without DMBA) showed weight
losses over 5%, which fits the criteria for the clinical diagnosis of cancer cachexia [9] and supports the
use of K14-HPV16 for studying this syndrome.

Importantly, skeletal muscle wasting followed the same pattern as total body weight and was
associated with Fbxo32 up-regulation, adding more similarities between this model and the syndrome
observed in cancer patients [40,47]. The Fbxo32 gene encodes the protein atrogin-1, which has already
been demonstrated to be an E3 ubiquitin ligase that is upregulated in muscle atrophy and that may be
a potential molecular target for treating muscle atrophy induced by cancer cachexia [48,49].
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The present results agree with a previous study that described the body weight loss in the ApcMin/+

mice model of cancer [39]. At 3 months of age, ApcMin/+ and wild-type mice in a C57Bl/6 background
presented similar body weights and both groups maintained physiological weight gains up to 6 months
of age [39]. However, by the end of the experiment, the ApcMin/+ mice presented lower body weights
despite higher food intakes [39]. The authors also observed muscle wasting in the ApcMin/+ mice
compared to controls [39]. The results from this study also agree with previous data from our group
obtained from HPV16-transgenic female mice [14,25]. It would now be interesting to compare the
wasting process in males and females using this mouse strain. As the transgenic mouse model used in
the mentioned study [39], the K14-HPV16 mice model seems to present the same advantages and to be
a good model for the study of cancer cachexia, especially for the study of cachexia in HPV-induced
cancers. The weakness of the present study includes the lack of additional molecular markers of
cachexia, of a thorough histological examination of muscle tissue and of parameters related to skeletal
muscle function. Additional experiments should employ complementary strategies to further validate
this model, by studying the expression of other cachexia-associated genes (e.g., Trim63, which encodes
muscle RING finger 1), determining parameters such as twitch force, tetanic force and eccentric
contraction and studying cross-sections of affected muscles histologically.

The differences verified between both HPV+ mouse groups were associated with severe lesions
induced by DMBA, creating a more prominent cachexia syndrome in the HPV+ mice exposed to
DMBA. This potent carcinogen was used in numerous animal models [29,50,51], being also associated
with weight loss. In one study with hamsters, weight loss was more pronounced in animals with
DMBA application [52]. Similar results were obtained in rats [51]. Another study showed that
interrupting DMBA application allowed the animals to regain some weight, suggesting an acute toxic
effect [53]. Even so, DMBA is not an essential factor for observing this syndrome in the K14-HPV16
mice, as suggested by this work and other works by our group [14,25]. In a recent study, we showed that
the topical penile application of DMBA did not induce significant systemic genotoxicity or significant
differences in the weights of internal organs [24], presumably because the animal’s grooming behavior
was insufficient to promote significant ingestion of the drug.

4. Materials and Methods

4.1. Mice

K14-HPV16 transgenic mouse generation on an FVB/n background has been previously
reported [18]. These transgenic mice were kindly donated by Dr. Jeffrey Arbeit and Dr. Douglas
Hanahan (University of California) through the USA National Cancer Institute Mouse Repository.
The animal experiments were approved by the University of Trás-os-Montes and Alto Douro
Ethics Committee (10/2013) and the Portuguese General Veterinary Directorate (approval no.
0421/000/000/2014, 24 September 2014). The mice (wild-type and transgenic) were housed and
bred according to Portuguese (Decreto-Lei 113, August 7th) and European (EU Directive 2010/63/EU)
legislation, under controlled temperature (23 ± 2 ◦C), light–dark cycle (12h light/12h dark) and relative
humidity (50 ± 10%). Food and water were provided ad libitum.

4.2. Experimental Design and Sample Collection

Forty 9–11-week-old male mice were allocated to four groups: Group 1 (n = 10, wild-type (HPV−)
mice, without DMBA application), Group 2 (n = 10, HPV− mice, with DMBA application), Group 3
(n = 10, HPV+ mice, without DMBA application) and Group 4 (n = 10, HPV+ mice, with DMBA
application). The DMBA (D3254, Sigma-Aldrich, Merck kGAa, Darmstadt, Germany) was dissolved
in DMSO (CARLO ERBA Reagents S.A.S., Val de Reuil, France) and was topically administered
to the penile mucosa once a week (0.031 mg/animal/week in 4 µL of DMSO). DMBA (or vehicle)
administration started at 9–11 weeks of age and lasted for 17 consecutive weeks (Figure 11). All the
mice were sacrificed at 31–33 weeks of age under ketamine (CLORKETAM 1000, injectable solution,
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Vétoquinol, Barcarena, Portugal) and xylazine (Rompun® 2%, Bayer Healthcare S.A., Kiel, Alemanha)
anesthesia, by intracardiac puncture and exsanguination, as indicated by the Federation for Laboratory
Animal Science Associations (FELASA). From the initiation of DMBA application, the food intake
and the body weight were weekly registered for all the mice. The total body weights of all the
mice were also assessed before they were humanely euthanized, and the gastrocnemius weight was
assessed immediately after sacrifice (Figure 11). The gastrocnemius muscle samples were collected
in TripleXtractor reagent (Grisp®, Porto, Portugal), macerated and kept at −80 ◦C until further use.
Chest skin, ear, penis and tongue samples were also collected for histological analysis.
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Figure 11. Experimental design timeline. Weekly DMBA application (0.031 mg/animal/week in 4 µL of
DMSO) started at 9–11 weeks of age, lasting for 17 weeks. Groups 2 and 4 received DMBA, while Groups
1 and 3 received DMSO only (the vehicle). Animals were sacrificed at 31–33 weeks of age for sample
collection. wo: weeks old.

4.3. Mouse Genotyping

DNA isolation and purification from the samples in TripleXtractor reagent (Grisp®) was performed
using the GRS Genomic DNA Kit-Broad Range (Grisp®). DNA concentration and purity were assessed
using the NanoDrop™ Lite spectrophotometer (Thermo Scientific, Waltham, MA, USA). The presence
of the HPV16 early region was confirmed by the amplification of the HPV16 E7 gene, using the mouse
β-globin gene as a control, through polymerase chain reaction (PCR) with specific primers for both
genes (Table S1). The PCR reaction was performed in the GeneAmp® PCR System 9700 thermal cycler
(Applied Biosystems®, Foster City, CA, USA), in a total volume of 25 µL with 1x PCR Buffer with
dye, 0.4 mM dNTPs, 1.5 mM MgCl2, 0.3 µM concentrations of each primer, 0.5 U of Xpert Taq DNA
Polymerase (Grisp®) and 0.2 µg of genomic DNA. For both genes, the amplification conditions were
the following: DNA denaturation at 95 ◦C for 5 min, followed by 35 cycles at 95 ◦C for 20 s, 55 ◦C
for 30 s and 72 ◦C for 1 min, and a final extension at 72 ◦C for 5 min. For each PCR, the amplified
fragments were analyzed by electrophoresis in 1.5% (w/v) agarose gels stained with GreenSafe Premium
(NZYTech, Lisbon, Portugal) and visualized in GelDocXR (Bio-Rad Laboratories, Hercules, CA, USA).

4.4. Histological Anlysis

The chest skin, ear, penis and the tongue samples collected were fixated in 10% neutral buffered
formalin. Then, the tissues were dehydrated through graded alcohols and xylene using a Citadel 2000™
Tissue Processor (Thermo Scientific) and embedded in paraffin. Paraffin blocks were cut into 3 µm-thick
sections and stained with hematoxylin and eosin (H&E) for evaluation and classification under a bright
field microscope. The samples were classified as normal, hyperplastic, dysplastic or squamous cell
carcinoma based on changes involving the epidermis or the stratified squamous epithelia of the oral
and penile mucosae. Hyperplasia was diagnosed based on an increased number of basal cell layers
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(over two layers in the epidermis and over 3 layers in the oral and penile mucosae), without cytological
atypia. Dysplasia arose in foci from a hyperplastic background but also involved nuclear crowding,
the loss of suprabasal differentiation and the presence of cytological atypia. Squamous cell carcinoma
was diagnosed based on the invasion of the underlying stroma by groups of neoplastic cells.

4.5. Food Intake and Body Weights

The food in each mouse cage was weighed at the beginning of each week. The food intake per
week per animal was calculated using the following formula:

Food week n (g) − Food week n + 1 (g)
Number of animals in the cage

.

Then, the mean food intake per week was calculated for each group, and results are expressed as
the mean ± standard deviation.

The percentage of total body weight gained or lost during the experiment per animal was
calculated using the following formula:

First week′s weight (g) − Last week′s weight (g)
First week′s weight (g)

× 100.

4.6. Relative Quantification of Fbxo32 mRNA Expression

Total RNA extraction from gastrocnemius samples was performed using TripleXtractor reagent
(Grisp®) followed by a chloroform solution (EMSURE®, Merck kGAa, Darmstadt, Germany).
Total RNA was then purified using a GRS total RNA kit (Grisp®), and the concentration and
purity were assessed using the NanoDrop™ Lite spectrophotometer (Thermo Scientific). Then, 150 ng
of total RNA were reverse transcribed using the High-Capacity cDNA Reverse Transcription Kit
(Applied Biosystems®), and the thermal conditions were the following: 10 min at 25 ◦C, 120 min
at 37 ◦C, and 5 min at 8 ◦C. The cDNA was then used as a template for quantitative real-time PCR
(qPCR) using a StepOne qPCR Real-Time PCR device (Applied Biosystems®). B2m, Hprt and Tbp
were tested as potential endogenous controls, and the combination of Hprt and Tbp was selected
since these two genes showed the lowest standard deviation values. Fast SYBR™ Green Master Mix
(Applied Biosystems®) was added to the primers for Hprt, Tbp and Fbxo32 (Table S2) and to the cDNA
sample with the following conditions: 20 s at 95 ◦C followed by 40 cycles of 3 s at 95 ◦C and 30 s at the
annealing temperature of each pair of primers. The amplification efficiency for each pair of primers
was determined using a two-fold serial dilution of cDNA reverse transcribed from Universal Mouse
Reference RNA (Invitrogen™, Waltham, MA, USA). Only efficiencies between 90% and 110% were
accepted. The same baseline and threshold were set for each plate using the analysis software for qPCR
from the Thermo Fisher Connect platform (Thermo Fisher Scientific, Waltham, MA, USA), in order to
generate threshold cycle (Ct) values for all the genes in each sample.

4.7. Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics for Windows (Version 25.0).
Any statistical differences in the histological analysis of mouse tissue were evaluated using Fisher’s
exact test or the chi-square test. Prior to evaluating any statistical differences between two groups
in terms of food intake and total body weight during the 22 weeks of the experiment, the normality
of the data was tested (Shapiro–Wilk test). When the data followed a normal distribution, the data
were presented as mean and standard deviation (SD) and a Student’s t test was performed; otherwise,
the data were expressed as median and inter-quartile range (IQR) and a Mann–Whitney U test was
used. Moreover, the presence of statistical differences in the body weights among the four groups at
specific weeks of the experiment was evaluated using the ANOVA test, since the data were normally
distributed. The values of the gastrocnemius and total body weights assessed at the time of the
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sacrifice were presented as the median and IQR and were evaluated using the Mann–Whitney U test.
Fbxo32 expression was evaluated using the Livak method along with the Mann–Whitney U test. All the
graphics were constructed using GraphPad Prism 8 (GraphPad Software). The results were considered
statistically significant when the p values were <0.05.

5. Conclusions

In the present study, we hypothesized that DMBA could enhance the wasting syndrome induced
by the HPV16 oncogenes in mice. This hypothesis is supported by our results, showing that DMBA
promoted the development of more severe lesions in association with inferior gastrocnemius and body
weights. Even so, DMBA is not an essential factor for observing this syndrome in the K14-HPV16
mice. Additionally, there were no statistical differences between the HPV− mice with or without
DMBA application, indicating that DMBA per se does not induce cachexia, but acts by enhancing the
carcinogenesis initiated by the HPV16 oncogenes.

Therefore, we suggest that K14-HPV16 mice are a good model for studying the pathophysiology
of cachexia associated with HPV-induced cancers and a useful tool for the preclinical testing of
new therapies.
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